1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/*
* Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 4851638 4900189 4939441
* @summary Tests for {Math, StrictMath}.expm1
* @author Joseph D. Darcy
*/
/*
* The Taylor expansion of expxm1(x) = exp(x) -1 is
*
* 1 + x/1! + x^2/2! + x^3/3| + ... -1 =
*
* x + x^2/2! + x^3/3 + ...
*
* Therefore, for small values of x, expxm1 ~= x.
*
* For large values of x, expxm1(x) ~= exp(x)
*
* For large negative x, expxm1(x) ~= -1.
*/
public class Expm1Tests {
private Expm1Tests(){}
static final double infinityD = Double.POSITIVE_INFINITY;
static final double NaNd = Double.NaN;
static int testExpm1() {
int failures = 0;
double [][] testCases = {
{Double.NaN, NaNd},
{Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
{Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
{Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
{Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
{Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
{Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
{Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
{Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
{infinityD, infinityD},
{-infinityD, -1.0},
{-0.0, -0.0},
{+0.0, +0.0},
};
// Test special cases
for(int i = 0; i < testCases.length; i++) {
failures += testExpm1CaseWithUlpDiff(testCases[i][0],
testCases[i][1], 0, null);
}
// For |x| < 2^-54 expm1(x) ~= x
for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
double d = Math.scalb(2, i);
failures += testExpm1Case(d, d);
failures += testExpm1Case(-d, -d);
}
// For values of y where exp(y) > 2^54, expm1(x) ~= exp(x).
// The least such y is ln(2^54) ~= 37.42994775023705; exp(x)
// overflows for x > ~= 709.8
// Use a 2-ulp error threshold to account for errors in the
// exp implementation; the increments of d in the loop will be
// exact.
for(double d = 37.5; d <= 709.5; d += 1.0) {
failures += testExpm1CaseWithUlpDiff(d, StrictMath.exp(d), 2, null);
}
// For x > 710, expm1(x) should be infinity
for(int i = 10; i <= Double.MAX_EXPONENT; i++) {
double d = Math.scalb(2, i);
failures += testExpm1Case(d, infinityD);
}
// By monotonicity, once the limit is reached, the
// implemenation should return the limit for all smaller
// values.
boolean reachedLimit [] = {false, false};
// Once exp(y) < 0.5 * ulp(1), expm1(y) ~= -1.0;
// The greatest such y is ln(2^-53) ~= -36.7368005696771.
for(double d = -36.75; d >= -127.75; d -= 1.0) {
failures += testExpm1CaseWithUlpDiff(d, -1.0, 1,
reachedLimit);
}
for(int i = 7; i <= Double.MAX_EXPONENT; i++) {
double d = -Math.scalb(2, i);
failures += testExpm1CaseWithUlpDiff(d, -1.0, 1, reachedLimit);
}
// Test for monotonicity failures near multiples of log(2).
// Test two numbers before and two numbers after each chosen
// value; i.e.
//
// pcNeighbors[] =
// {nextDown(nextDown(pc)),
// nextDown(pc),
// pc,
// nextUp(pc),
// nextUp(nextUp(pc))}
//
// and we test that expm1(pcNeighbors[i]) <= expm1(pcNeighbors[i+1])
{
double pcNeighbors[] = new double[5];
double pcNeighborsExpm1[] = new double[5];
double pcNeighborsStrictExpm1[] = new double[5];
for(int i = -50; i <= 50; i++) {
double pc = StrictMath.log(2)*i;
pcNeighbors[2] = pc;
pcNeighbors[1] = Math.nextDown(pc);
pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
pcNeighbors[3] = Math.nextUp(pc);
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
for(int j = 0; j < pcNeighbors.length; j++) {
pcNeighborsExpm1[j] = Math.expm1(pcNeighbors[j]);
pcNeighborsStrictExpm1[j] = StrictMath.expm1(pcNeighbors[j]);
}
for(int j = 0; j < pcNeighborsExpm1.length-1; j++) {
if(pcNeighborsExpm1[j] > pcNeighborsExpm1[j+1] ) {
failures++;
System.err.println("Monotonicity failure for Math.expm1 on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsExpm1[j] + " and " +
pcNeighborsExpm1[j+1] );
}
if(pcNeighborsStrictExpm1[j] > pcNeighborsStrictExpm1[j+1] ) {
failures++;
System.err.println("Monotonicity failure for StrictMath.expm1 on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsStrictExpm1[j] + " and " +
pcNeighborsStrictExpm1[j+1] );
}
}
}
}
return failures;
}
public static int testExpm1Case(double input,
double expected) {
return testExpm1CaseWithUlpDiff(input, expected, 1, null);
}
public static int testExpm1CaseWithUlpDiff(double input,
double expected,
double ulps,
boolean [] reachedLimit) {
int failures = 0;
double mathUlps = ulps, strictUlps = ulps;
double mathOutput;
double strictOutput;
if (reachedLimit != null) {
if (reachedLimit[0])
mathUlps = 0;
if (reachedLimit[1])
strictUlps = 0;
}
failures += Tests.testUlpDiffWithLowerBound("Math.expm1(double)",
input, mathOutput=Math.expm1(input),
expected, mathUlps, -1.0);
failures += Tests.testUlpDiffWithLowerBound("StrictMath.expm1(double)",
input, strictOutput=StrictMath.expm1(input),
expected, strictUlps, -1.0);
if (reachedLimit != null) {
reachedLimit[0] |= (mathOutput == -1.0);
reachedLimit[1] |= (strictOutput == -1.0);
}
return failures;
}
public static void main(String argv[]) {
int failures = 0;
failures += testExpm1();
if (failures > 0) {
System.err.println("Testing expm1 incurred "
+ failures + " failures.");
throw new RuntimeException();
}
}
}
|