File: Expm1Tests.java

package info (click to toggle)
openjdk-11 11.0.4%2B11-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 757,028 kB
  • sloc: java: 5,016,041; xml: 1,191,974; cpp: 934,731; ansic: 555,697; sh: 24,299; objc: 12,703; python: 3,602; asm: 3,415; makefile: 2,772; awk: 351; sed: 172; perl: 114; jsp: 24; csh: 3
file content (228 lines) | stat: -rw-r--r-- 8,691 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*
 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * @test
 * @bug 4851638 4900189 4939441
 * @summary Tests for {Math, StrictMath}.expm1
 * @author Joseph D. Darcy
 */

/*
 * The Taylor expansion of expxm1(x) = exp(x) -1 is
 *
 * 1 + x/1! + x^2/2! + x^3/3| + ... -1 =
 *
 * x + x^2/2! + x^3/3 + ...
 *
 * Therefore, for small values of x, expxm1 ~= x.
 *
 * For large values of x, expxm1(x) ~= exp(x)
 *
 * For large negative x, expxm1(x) ~= -1.
 */

public class Expm1Tests {

    private Expm1Tests(){}

    static final double infinityD = Double.POSITIVE_INFINITY;
    static final double NaNd = Double.NaN;

    static int testExpm1() {
        int failures = 0;

        double [][] testCases = {
            {Double.NaN,                NaNd},
            {Double.longBitsToDouble(0x7FF0000000000001L),      NaNd},
            {Double.longBitsToDouble(0xFFF0000000000001L),      NaNd},
            {Double.longBitsToDouble(0x7FF8555555555555L),      NaNd},
            {Double.longBitsToDouble(0xFFF8555555555555L),      NaNd},
            {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      NaNd},
            {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      NaNd},
            {Double.longBitsToDouble(0x7FFDeadBeef00000L),      NaNd},
            {Double.longBitsToDouble(0xFFFDeadBeef00000L),      NaNd},
            {Double.longBitsToDouble(0x7FFCafeBabe00000L),      NaNd},
            {Double.longBitsToDouble(0xFFFCafeBabe00000L),      NaNd},
            {infinityD,                 infinityD},
            {-infinityD,                -1.0},
            {-0.0,                      -0.0},
            {+0.0,                      +0.0},
        };

        // Test special cases
        for(int i = 0; i < testCases.length; i++) {
            failures += testExpm1CaseWithUlpDiff(testCases[i][0],
                                                 testCases[i][1], 0, null);
        }


        // For |x| < 2^-54 expm1(x) ~= x
        for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
            double d = Math.scalb(2, i);
            failures += testExpm1Case(d, d);
            failures += testExpm1Case(-d, -d);
        }


        // For values of y where exp(y) > 2^54, expm1(x) ~= exp(x).
        // The least such y is ln(2^54) ~= 37.42994775023705; exp(x)
        // overflows for x > ~= 709.8

        // Use a 2-ulp error threshold to account for errors in the
        // exp implementation; the increments of d in the loop will be
        // exact.
        for(double d = 37.5; d <= 709.5; d += 1.0) {
            failures += testExpm1CaseWithUlpDiff(d, StrictMath.exp(d), 2, null);
        }

        // For x > 710, expm1(x) should be infinity
        for(int i = 10; i <= Double.MAX_EXPONENT; i++) {
            double d = Math.scalb(2, i);
            failures += testExpm1Case(d, infinityD);
        }

        // By monotonicity, once the limit is reached, the
        // implemenation should return the limit for all smaller
        // values.
        boolean reachedLimit [] = {false, false};

        // Once exp(y) < 0.5 * ulp(1), expm1(y) ~= -1.0;
        // The greatest such y is ln(2^-53) ~= -36.7368005696771.
        for(double d = -36.75; d >= -127.75; d -= 1.0) {
            failures += testExpm1CaseWithUlpDiff(d, -1.0, 1,
                                                 reachedLimit);
        }

        for(int i = 7; i <= Double.MAX_EXPONENT; i++) {
            double d = -Math.scalb(2, i);
            failures += testExpm1CaseWithUlpDiff(d, -1.0, 1, reachedLimit);
        }

        // Test for monotonicity failures near multiples of log(2).
        // Test two numbers before and two numbers after each chosen
        // value; i.e.
        //
        // pcNeighbors[] =
        // {nextDown(nextDown(pc)),
        // nextDown(pc),
        // pc,
        // nextUp(pc),
        // nextUp(nextUp(pc))}
        //
        // and we test that expm1(pcNeighbors[i]) <= expm1(pcNeighbors[i+1])
        {
            double pcNeighbors[] = new double[5];
            double pcNeighborsExpm1[] = new double[5];
            double pcNeighborsStrictExpm1[] = new double[5];

            for(int i = -50; i <= 50; i++) {
                double pc = StrictMath.log(2)*i;

                pcNeighbors[2] = pc;
                pcNeighbors[1] = Math.nextDown(pc);
                pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
                pcNeighbors[3] = Math.nextUp(pc);
                pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);

                for(int j = 0; j < pcNeighbors.length; j++) {
                    pcNeighborsExpm1[j]       =       Math.expm1(pcNeighbors[j]);
                    pcNeighborsStrictExpm1[j] = StrictMath.expm1(pcNeighbors[j]);
                }

                for(int j = 0; j < pcNeighborsExpm1.length-1; j++) {
                    if(pcNeighborsExpm1[j] >  pcNeighborsExpm1[j+1] ) {
                        failures++;
                        System.err.println("Monotonicity failure for Math.expm1 on " +
                                          pcNeighbors[j] + " and "  +
                                          pcNeighbors[j+1] + "\n\treturned " +
                                          pcNeighborsExpm1[j] + " and " +
                                          pcNeighborsExpm1[j+1] );
                    }

                    if(pcNeighborsStrictExpm1[j] >  pcNeighborsStrictExpm1[j+1] ) {
                        failures++;
                        System.err.println("Monotonicity failure for StrictMath.expm1 on " +
                                          pcNeighbors[j] + " and "  +
                                          pcNeighbors[j+1] + "\n\treturned " +
                                          pcNeighborsStrictExpm1[j] + " and " +
                                          pcNeighborsStrictExpm1[j+1] );
                    }


                }

            }
        }

        return failures;
    }

    public static int testExpm1Case(double input,
                                    double expected) {
        return testExpm1CaseWithUlpDiff(input, expected, 1, null);
    }

    public static int testExpm1CaseWithUlpDiff(double input,
                                               double expected,
                                               double ulps,
                                               boolean [] reachedLimit) {
        int failures = 0;
        double mathUlps = ulps, strictUlps = ulps;
        double mathOutput;
        double strictOutput;

        if (reachedLimit != null) {
            if (reachedLimit[0])
                mathUlps = 0;

            if (reachedLimit[1])
                strictUlps = 0;
        }

        failures += Tests.testUlpDiffWithLowerBound("Math.expm1(double)",
                                                    input, mathOutput=Math.expm1(input),
                                                    expected, mathUlps, -1.0);
        failures += Tests.testUlpDiffWithLowerBound("StrictMath.expm1(double)",
                                                    input, strictOutput=StrictMath.expm1(input),
                                                    expected, strictUlps, -1.0);
        if (reachedLimit != null) {
            reachedLimit[0] |= (mathOutput   == -1.0);
            reachedLimit[1] |= (strictOutput == -1.0);
        }

        return failures;
    }

    public static void main(String argv[]) {
        int failures = 0;

        failures += testExpm1();

        if (failures > 0) {
            System.err.println("Testing expm1 incurred "
                               + failures + " failures.");
            throw new RuntimeException();
        }
    }
}