File: HypotTests.java

package info (click to toggle)
openjdk-11 11.0.4%2B11-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 757,028 kB
  • sloc: java: 5,016,041; xml: 1,191,974; cpp: 934,731; ansic: 555,697; sh: 24,299; objc: 12,703; python: 3,602; asm: 3,415; makefile: 2,772; awk: 351; sed: 172; perl: 114; jsp: 24; csh: 3
file content (248 lines) | stat: -rw-r--r-- 9,632 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
 * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * @test
 * @library /test/lib
 * @build jdk.test.lib.RandomFactory
 * @run main HypotTests
 * @bug 4851638 4939441 8078672
 * @summary Tests for {Math, StrictMath}.hypot (use -Dseed=X to set PRNG seed)
 * @author Joseph D. Darcy
 * @key randomness
 */

import jdk.test.lib.RandomFactory;

public class HypotTests {
    private HypotTests(){}

    static final double infinityD = Double.POSITIVE_INFINITY;
    static final double NaNd      = Double.NaN;

    /**
     * Given integers m and n, assuming m < n, the triple (n^2 - m^2,
     * 2mn, and n^2 + m^2) is a Pythagorean triple with a^2 + b^2 =
     * c^2.  This methods returns a long array holding the Pythagorean
     * triple corresponding to the inputs.
     */
    static long [] pythagoreanTriple(int m, int n) {
        long M = m;
        long N = n;
        long result[] = new long[3];


        result[0] = Math.abs(M*M - N*N);
        result[1] = Math.abs(2*M*N);
        result[2] = Math.abs(M*M + N*N);

        return result;
    }

    static int testHypot() {
        int failures = 0;

        double [][] testCases = {
            // Special cases
            {infinityD,         infinityD,              infinityD},
            {infinityD,         0.0,                    infinityD},
            {infinityD,         1.0,                    infinityD},
            {infinityD,         NaNd,                   infinityD},
            {NaNd,              NaNd,                   NaNd},
            {0.0,               NaNd,                   NaNd},
            {1.0,               NaNd,                   NaNd},
            {Double.longBitsToDouble(0x7FF0000000000001L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFF0000000000001L),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FF8555555555555L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFF8555555555555L),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FFDeadBeef00000L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFFDeadBeef00000L),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FFCafeBabe00000L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFFCafeBabe00000L),      1.0,    NaNd},
        };

        for(int i = 0; i < testCases.length; i++) {
            failures += testHypotCase(testCases[i][0], testCases[i][1],
                                      testCases[i][2]);
        }

        // Verify hypot(x, 0.0) is close to x over the entire exponent
        // range.
        for(int i = DoubleConsts.MIN_SUB_EXPONENT;
            i <= Double.MAX_EXPONENT;
            i++) {
            double input = Math.scalb(2, i);
            failures += testHypotCase(input, 0.0, input);
        }


        // Test Pythagorean triples

        // Small ones
        for(int m = 1; m < 10; m++) {
            for(int n = m+1; n < 11; n++) {
                long [] result = pythagoreanTriple(m, n);
                failures += testHypotCase(result[0], result[1], result[2]);
            }
        }

        // Big ones
        for(int m = 100000; m < 100100; m++) {
            for(int n = m+100000; n < 200200; n++) {
                long [] result = pythagoreanTriple(m, n);
                failures += testHypotCase(result[0], result[1], result[2]);
            }
        }

        // Approaching overflow tests

        /*
         * Create a random value r with an large-ish exponent.  The
         * result of hypot(3*r, 4*r) should be approximately 5*r. (The
         * computation of 4*r is exact since it just changes the
         * exponent).  While the exponent of r is less than or equal
         * to (MAX_EXPONENT - 3), the computation should not overflow.
         */
        java.util.Random rand = RandomFactory.getRandom();
        for(int i = 0; i < 1000; i++) {
            double d = rand.nextDouble();
            // Scale d to have an exponent equal to MAX_EXPONENT -15
            d = Math.scalb(d, Double.MAX_EXPONENT
                                 -15 - Tests.ilogb(d));
            for(int j = 0; j <= 13; j += 1) {
                failures += testHypotCase(3*d, 4*d, 5*d, 2.5);
                d *= 2.0; // increase exponent by 1
            }
        }

        // Test for monotonicity failures.  Fix one argument and test
        // two numbers before and two numbers after each chosen value;
        // i.e.
        //
        // pcNeighbors[] =
        // {nextDown(nextDown(pc)),
        // nextDown(pc),
        // pc,
        // nextUp(pc),
        // nextUp(nextUp(pc))}
        //
        // and we test that hypot(pcNeighbors[i]) <= hypot(pcNeighbors[i+1])
        {
            double pcNeighbors[] = new double[5];
            double pcNeighborsHypot[] = new double[5];
            double pcNeighborsStrictHypot[] = new double[5];


            for(int i = -18; i <= 18; i++) {
                double pc = Math.scalb(1.0, i);

                pcNeighbors[2] = pc;
                pcNeighbors[1] = Math.nextDown(pc);
                pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
                pcNeighbors[3] = Math.nextUp(pc);
                pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);

                for(int j = 0; j < pcNeighbors.length; j++) {
                    pcNeighborsHypot[j]       =       Math.hypot(2.0, pcNeighbors[j]);
                    pcNeighborsStrictHypot[j] = StrictMath.hypot(2.0, pcNeighbors[j]);
                }

                for(int j = 0; j < pcNeighborsHypot.length-1; j++) {
                    if(pcNeighborsHypot[j] >  pcNeighborsHypot[j+1] ) {
                        failures++;
                        System.err.println("Monotonicity failure for Math.hypot on " +
                                          pcNeighbors[j] + " and "  +
                                          pcNeighbors[j+1] + "\n\treturned " +
                                          pcNeighborsHypot[j] + " and " +
                                          pcNeighborsHypot[j+1] );
                    }

                    if(pcNeighborsStrictHypot[j] >  pcNeighborsStrictHypot[j+1] ) {
                        failures++;
                        System.err.println("Monotonicity failure for StrictMath.hypot on " +
                                          pcNeighbors[j] + " and "  +
                                          pcNeighbors[j+1] + "\n\treturned " +
                                          pcNeighborsStrictHypot[j] + " and " +
                                          pcNeighborsStrictHypot[j+1] );
                    }


                }

            }
        }


        return failures;
    }

    static int testHypotCase(double input1, double input2, double expected) {
        return testHypotCase(input1,input2, expected, 1);
    }

    static int testHypotCase(double input1, double input2, double expected,
                             double ulps) {
        int failures = 0;
        if (expected < 0.0) {
            throw new AssertionError("Result of hypot must be greater than " +
                                     "or equal to zero");
        }

        // Test Math and StrictMath methods with no inputs negated,
        // each input negated singly, and both inputs negated.  Also
        // test inputs in reversed order.

        for(int i = -1; i <= 1; i+=2) {
            for(int j = -1; j <= 1; j+=2) {
                double x = i * input1;
                double y = j * input2;
                failures += Tests.testUlpDiff("Math.hypot", x, y,
                                              Math.hypot(x, y), expected, ulps);
                failures += Tests.testUlpDiff("Math.hypot", y, x,
                                              Math.hypot(y, x ), expected, ulps);

                failures += Tests.testUlpDiff("StrictMath.hypot", x, y,
                                              StrictMath.hypot(x, y), expected, ulps);
                failures += Tests.testUlpDiff("StrictMath.hypot", y, x,
                                              StrictMath.hypot(y, x), expected, ulps);
            }
        }

        return failures;
    }

    public static void main(String argv[]) {
        int failures = 0;

        failures += testHypot();

        if (failures > 0) {
            System.err.println("Testing the hypot incurred "
                               + failures + " failures.");
            throw new RuntimeException();
        }
    }

}