1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/*
* Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 8139688
* @key randomness
* @library /test/lib
* @build jdk.test.lib.RandomFactory
* @build Tests
* @build FdlibmTranslit
* @build ExpTests
* @run main ExpTests
* @summary Tests specifically for StrictMath.exp
*/
import jdk.test.lib.RandomFactory;
/**
* The role of this test is to verify that the FDLIBM exp algorithm is
* being used by running golden file style tests on values that may
* vary from one conforming exponential implementation to another.
*/
public class ExpTests {
private ExpTests(){}
public static void main(String [] argv) {
int failures = 0;
failures += testExp();
failures += testAgainstTranslit();
if (failures > 0) {
System.err.println("Testing the exponential incurred "
+ failures + " failures.");
throw new RuntimeException();
}
}
// From the fdlibm source, the overflow threshold in hex is:
// 0x4086_2E42_FEFA_39EF.
static final double EXP_OVERFLOW_THRESH = Double.longBitsToDouble(0x4086_2E42_FEFA_39EFL);
// From the fdlibm source, the underflow threshold in hex is:
// 0xc087_4910_D52D_3051L.
static final double EXP_UNDERFLOW_THRESH = Double.longBitsToDouble(0xc087_4910_D52D_3051L);
static int testExp() {
int failures = 0;
double [][] testCases = {
// Some of these could be moved to common Math/StrictMath exp testing.
{Double.NaN, Double.NaN},
{Double.MAX_VALUE, Double.POSITIVE_INFINITY},
{Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY},
{Double.NEGATIVE_INFINITY, +0.0},
{EXP_OVERFLOW_THRESH, 0x1.ffff_ffff_fff2ap1023},
{Math.nextUp(EXP_OVERFLOW_THRESH), Double.POSITIVE_INFINITY},
{Math.nextDown(EXP_UNDERFLOW_THRESH), +0.0},
{EXP_UNDERFLOW_THRESH, +Double.MIN_VALUE},
};
for(double[] testCase: testCases)
failures+=testExpCase(testCase[0], testCase[1]);
return failures;
}
static int testExpCase(double input, double expected) {
int failures = 0;
failures+=Tests.test("StrictMath.exp(double)", input,
StrictMath.exp(input), expected);
return failures;
}
// Initialize shared random number generator
private static java.util.Random random = RandomFactory.getRandom();
/**
* Test StrictMath.exp against transliteration port of exp.
*/
private static int testAgainstTranslit() {
int failures = 0;
double[] decisionPoints = {
// Near overflow threshold
EXP_OVERFLOW_THRESH - 512*Math.ulp(EXP_OVERFLOW_THRESH),
// Near underflow threshold
EXP_UNDERFLOW_THRESH - 512*Math.ulp(EXP_UNDERFLOW_THRESH),
// Straddle algorithm conditional checks
Double.longBitsToDouble(0x4086_2E42_0000_0000L - 512L),
Double.longBitsToDouble(0x3fd6_2e42_0000_0000L - 512L),
Double.longBitsToDouble(0x3FF0_A2B2_0000_0000L - 512L),
Double.longBitsToDouble(0x3e30_0000_0000_0000L - 512L),
// Other notable points
Double.MIN_NORMAL - Math.ulp(Double.MIN_NORMAL)*512,
-Double.MIN_VALUE*512,
};
for (double decisionPoint : decisionPoints) {
double ulp = Math.ulp(decisionPoint);
failures += testRange(decisionPoint - 1024*ulp, ulp, 1_024);
}
// Try out some random values
for (int i = 0; i < 100; i++) {
double x = Tests.createRandomDouble(random);
failures += testRange(x, Math.ulp(x), 100);
}
return failures;
}
private static int testRange(double start, double increment, int count) {
int failures = 0;
double x = start;
for (int i = 0; i < count; i++, x += increment) {
failures += testExpCase(x, FdlibmTranslit.Exp.compute(x));
}
return failures;
}
}
|