File: FdlibmTranslit.java

package info (click to toggle)
openjdk-11 11.0.4%2B11-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 757,028 kB
  • sloc: java: 5,016,041; xml: 1,191,974; cpp: 934,731; ansic: 555,697; sh: 24,299; objc: 12,703; python: 3,602; asm: 3,415; makefile: 2,772; awk: 351; sed: 172; perl: 114; jsp: 24; csh: 3
file content (387 lines) | stat: -rw-r--r-- 15,605 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/*
 * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/**
 * A transliteration of the "Freely Distributable Math Library"
 * algorithms from C into Java. That is, this port of the algorithms
 * is as close to the C originals as possible while still being
 * readable legal Java.
 */
public class FdlibmTranslit {
    private FdlibmTranslit() {
        throw new UnsupportedOperationException("No FdLibmTranslit instances for you.");
    }

    /**
     * Return the low-order 32 bits of the double argument as an int.
     */
    private static int __LO(double x) {
        long transducer = Double.doubleToRawLongBits(x);
        return (int)transducer;
    }

    /**
     * Return a double with its low-order bits of the second argument
     * and the high-order bits of the first argument..
     */
    private static double __LO(double x, int low) {
        long transX = Double.doubleToRawLongBits(x);
        return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |
                                       (low    & 0x0000_0000_FFFF_FFFFL));
    }

    /**
     * Return the high-order 32 bits of the double argument as an int.
     */
    private static int __HI(double x) {
        long transducer = Double.doubleToRawLongBits(x);
        return (int)(transducer >> 32);
    }

    /**
     * Return a double with its high-order bits of the second argument
     * and the low-order bits of the first argument..
     */
    private static double __HI(double x, int high) {
        long transX = Double.doubleToRawLongBits(x);
        return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
                                       ( ((long)high)) << 32 );
    }

    public static double hypot(double x, double y) {
        return Hypot.compute(x, y);
    }

    /**
     * cbrt(x)
     * Return cube root of x
     */
    public static class Cbrt {
        // unsigned
        private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
        private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */

        private static final double C =  5.42857142857142815906e-01; /* 19/35     = 0x3FE15F15, 0xF15F15F1 */
        private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */
        private static final double E =  1.41428571428571436819e+00; /* 99/70     = 0x3FF6A0EA, 0x0EA0EA0F */
        private static final double F =  1.60714285714285720630e+00; /* 45/28     = 0x3FF9B6DB, 0x6DB6DB6E */
        private static final double G =  3.57142857142857150787e-01; /* 5/14      = 0x3FD6DB6D, 0xB6DB6DB7 */

        public static strictfp double compute(double x) {
            int     hx;
            double  r, s, t=0.0, w;
            int sign; // unsigned

            hx = __HI(x);           // high word of x
            sign = hx & 0x80000000;             // sign= sign(x)
            hx  ^= sign;
            if (hx >= 0x7ff00000)
                return (x+x); // cbrt(NaN,INF) is itself
            if ((hx | __LO(x)) == 0)
                return(x);          // cbrt(0) is itself

            x = __HI(x, hx);   // x <- |x|
            // rough cbrt to 5 bits
            if (hx < 0x00100000) {               // subnormal number
                t = __HI(t, 0x43500000);          // set t= 2**54
                t *= x;
                t = __HI(t, __HI(t)/3+B2);
            } else {
                t = __HI(t, hx/3+B1);
            }

            // new cbrt to 23 bits, may be implemented in single precision
            r = t * t/x;
            s = C + r*t;
            t *= G + F/(s + E + D/s);

            // chopped to 20 bits and make it larger than cbrt(x)
            t = __LO(t, 0);
            t = __HI(t, __HI(t)+0x00000001);


            // one step newton iteration to 53 bits with error less than 0.667 ulps
            s = t * t;          // t*t is exact
            r = x / s;
            w = t + t;
            r= (r - t)/(w + r);  // r-s is exact
            t= t + t*r;

            // retore the sign bit
            t = __HI(t, __HI(t) | sign);
            return(t);
        }
    }

    /**
     * hypot(x,y)
     *
     * Method :
     *      If (assume round-to-nearest) z = x*x + y*y
     *      has error less than sqrt(2)/2 ulp, than
     *      sqrt(z) has error less than 1 ulp (exercise).
     *
     *      So, compute sqrt(x*x + y*y) with some care as
     *      follows to get the error below 1 ulp:
     *
     *      Assume x > y > 0;
     *      (if possible, set rounding to round-to-nearest)
     *      1. if x > 2y  use
     *              x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
     *      where x1 = x with lower 32 bits cleared, x2 = x - x1; else
     *      2. if x <= 2y use
     *              t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
     *      where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
     *      y1= y with lower 32 bits chopped, y2 = y - y1.
     *
     *      NOTE: scaling may be necessary if some argument is too
     *            large or too tiny
     *
     * Special cases:
     *      hypot(x,y) is INF if x or y is +INF or -INF; else
     *      hypot(x,y) is NAN if x or y is NAN.
     *
     * Accuracy:
     *      hypot(x,y) returns sqrt(x^2 + y^2) with error less
     *      than 1 ulps (units in the last place)
     */
    static class Hypot {
        public static double compute(double x, double y) {
            double a = x;
            double b = y;
            double t1, t2, y1, y2, w;
            int j, k, ha, hb;

            ha = __HI(x) & 0x7fffffff;        // high word of  x
            hb = __HI(y) & 0x7fffffff;        // high word of  y
            if(hb > ha) {
                a = y;
                b = x;
                j = ha;
                ha = hb;
                hb = j;
            } else {
                a = x;
                b = y;
            }
            a = __HI(a, ha);   // a <- |a|
            b = __HI(b, hb);   // b <- |b|
            if ((ha - hb) > 0x3c00000) {
                return a + b;  // x / y > 2**60
            }
            k=0;
            if (ha > 0x5f300000) {   // a>2**500
                if (ha >= 0x7ff00000) {       // Inf or NaN
                    w = a + b;                // for sNaN
                    if (((ha & 0xfffff) | __LO(a)) == 0)
                        w = a;
                    if (((hb ^ 0x7ff00000) | __LO(b)) == 0)
                        w = b;
                    return w;
                }
                // scale a and b by 2**-600
                ha -= 0x25800000;
                hb -= 0x25800000;
                k += 600;
                a = __HI(a, ha);
                b = __HI(b, hb);
            }
            if (hb < 0x20b00000) {   // b < 2**-500
                if (hb <= 0x000fffff) {      // subnormal b or 0 */
                    if ((hb | (__LO(b))) == 0)
                        return a;
                    t1 = 0;
                    t1 = __HI(t1, 0x7fd00000);  // t1=2^1022
                    b *= t1;
                    a *= t1;
                    k -= 1022;
                } else {            // scale a and b by 2^600
                    ha += 0x25800000;       // a *= 2^600
                    hb += 0x25800000;       // b *= 2^600
                    k -= 600;
                    a = __HI(a, ha);
                    b = __HI(b, hb);
                }
            }
            // medium size a and b
            w = a - b;
            if (w > b) {
                t1 = 0;
                t1 = __HI(t1, ha);
                t2 = a - t1;
                w  = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
            } else {
                a  = a + a;
                y1 = 0;
                y1 = __HI(y1, hb);
                y2 = b - y1;
                t1 = 0;
                t1 = __HI(t1, ha + 0x00100000);
                t2 = a - t1;
                w  = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
            }
            if (k != 0) {
                t1 = 1.0;
                int t1_hi = __HI(t1);
                t1_hi += (k << 20);
                t1 = __HI(t1, t1_hi);
                return t1 * w;
            } else
                return w;
        }
    }

    /**
     * Returns the exponential of x.
     *
     * Method
     *   1. Argument reduction:
     *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
     *      Given x, find r and integer k such that
     *
     *               x = k*ln2 + r,  |r| <= 0.5*ln2.
     *
     *      Here r will be represented as r = hi-lo for better
     *      accuracy.
     *
     *   2. Approximation of exp(r) by a special rational function on
     *      the interval [0,0.34658]:
     *      Write
     *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
     *      We use a special Reme algorithm on [0,0.34658] to generate
     *      a polynomial of degree 5 to approximate R. The maximum error
     *      of this polynomial approximation is bounded by 2**-59. In
     *      other words,
     *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
     *      (where z=r*r, and the values of P1 to P5 are listed below)
     *      and
     *          |                  5          |     -59
     *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
     *          |                             |
     *      The computation of exp(r) thus becomes
     *                             2*r
     *              exp(r) = 1 + -------
     *                            R - r
     *                                 r*R1(r)
     *                     = 1 + r + ----------- (for better accuracy)
     *                                2 - R1(r)
     *      where
     *                               2       4             10
     *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
     *
     *   3. Scale back to obtain exp(x):
     *      From step 1, we have
     *         exp(x) = 2^k * exp(r)
     *
     * Special cases:
     *      exp(INF) is INF, exp(NaN) is NaN;
     *      exp(-INF) is 0, and
     *      for finite argument, only exp(0)=1 is exact.
     *
     * Accuracy:
     *      according to an error analysis, the error is always less than
     *      1 ulp (unit in the last place).
     *
     * Misc. info.
     *      For IEEE double
     *          if x >  7.09782712893383973096e+02 then exp(x) overflow
     *          if x < -7.45133219101941108420e+02 then exp(x) underflow
     *
     * Constants:
     * The hexadecimal values are the intended ones for the following
     * constants. The decimal values may be used, provided that the
     * compiler will convert from decimal to binary accurately enough
     * to produce the hexadecimal values shown.
     */
    static class Exp {
        private static final double one     = 1.0;
        private static final double[] halF = {0.5,-0.5,};
        private static final double huge    = 1.0e+300;
        private static final double twom1000= 9.33263618503218878990e-302;      /* 2**-1000=0x01700000,0*/
        private static final double o_threshold=  7.09782712893383973096e+02;   /* 0x40862E42, 0xFEFA39EF */
        private static final double u_threshold= -7.45133219101941108420e+02;   /* 0xc0874910, 0xD52D3051 */
        private static final double[] ln2HI   ={ 6.93147180369123816490e-01,    /* 0x3fe62e42, 0xfee00000 */
                                                 -6.93147180369123816490e-01};  /* 0xbfe62e42, 0xfee00000 */
        private static final double[] ln2LO   ={ 1.90821492927058770002e-10,    /* 0x3dea39ef, 0x35793c76 */
                                                 -1.90821492927058770002e-10,}; /* 0xbdea39ef, 0x35793c76 */
        private static final double invln2 =  1.44269504088896338700e+00;       /* 0x3ff71547, 0x652b82fe */
        private static final double P1   =  1.66666666666666019037e-01;         /* 0x3FC55555, 0x5555553E */
        private static final double P2   = -2.77777777770155933842e-03;         /* 0xBF66C16C, 0x16BEBD93 */
        private static final double P3   =  6.61375632143793436117e-05;         /* 0x3F11566A, 0xAF25DE2C */
        private static final double P4   = -1.65339022054652515390e-06;         /* 0xBEBBBD41, 0xC5D26BF1 */
        private static final double P5   =  4.13813679705723846039e-08;         /* 0x3E663769, 0x72BEA4D0 */

        public static strictfp double compute(double x) {
            double y,hi=0,lo=0,c,t;
            int k=0,xsb;
            /*unsigned*/ int hx;

            hx  = __HI(x);  /* high word of x */
            xsb = (hx>>31)&1;               /* sign bit of x */
            hx &= 0x7fffffff;               /* high word of |x| */

            /* filter out non-finite argument */
            if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
                if(hx>=0x7ff00000) {
                    if(((hx&0xfffff)|__LO(x))!=0)
                        return x+x;                /* NaN */
                    else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */
                }
                if(x > o_threshold) return huge*huge; /* overflow */
                if(x < u_threshold) return twom1000*twom1000; /* underflow */
            }

            /* argument reduction */
            if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
                if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
                    hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
                } else {
                    k  = (int)(invln2*x+halF[xsb]);
                    t  = k;
                    hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
                    lo = t*ln2LO[0];
                }
                x  = hi - lo;
            }
            else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
                if(huge+x>one) return one+x;/* trigger inexact */
            }
            else k = 0;

            /* x is now in primary range */
            t  = x*x;
            c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
            if(k==0)        return one-((x*c)/(c-2.0)-x);
            else            y = one-((lo-(x*c)/(2.0-c))-hi);
            if(k >= -1021) {
                y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
                return y;
            } else {
                y = __HI(y, __HI(y) + ((k+1000)<<20));/* add k to y's exponent */
                return y*twom1000;
            }
        }
    }
}