File: DivideTests.java

package info (click to toggle)
openjdk-11 11.0.4%2B11-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 757,028 kB
  • sloc: java: 5,016,041; xml: 1,191,974; cpp: 934,731; ansic: 555,697; sh: 24,299; objc: 12,703; python: 3,602; asm: 3,415; makefile: 2,772; awk: 351; sed: 172; perl: 114; jsp: 24; csh: 3
file content (427 lines) | stat: -rw-r--r-- 17,980 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/*
 * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * @test
 * @bug 4851776 4907265 6177836 6876282 8066842
 * @summary Some tests for the divide methods.
 * @author Joseph D. Darcy
 */

import java.math.*;
import static java.math.BigDecimal.*;

public class DivideTests {

    // Preliminary exact divide method; could be used for comparison
    // purposes.
    BigDecimal anotherDivide(BigDecimal dividend, BigDecimal divisor) {
        /*
         * Handle zero cases first.
         */
        if (divisor.signum() == 0) {   // x/0
            if (dividend.signum() == 0)    // 0/0
                throw new ArithmeticException("Division undefined");  // NaN
            throw new ArithmeticException("Division by zero");
        }
        if (dividend.signum() == 0)        // 0/y
            return BigDecimal.ZERO;
        else {
            /*
             * Determine if there is a result with a terminating
             * decimal expansion.  Putting aside overflow and
             * underflow considerations, the existance of an exact
             * result only depends on the ratio of the intVal's of the
             * dividend (i.e. this) and and divisor since the scales
             * of the argument just affect where the decimal point
             * lies.
             *
             * For the ratio of (a = this.intVal) and (b =
             * divisor.intVal) to have a finite decimal expansion,
             * once a/b is put in lowest terms, b must be equal to
             * (2^i)*(5^j) for some integer i,j >= 0.  Therefore, we
             * first compute to see if b_prime =(b/gcd(a,b)) is equal
             * to (2^i)*(5^j).
             */
            BigInteger TWO  = BigInteger.valueOf(2);
            BigInteger FIVE = BigInteger.valueOf(5);
            BigInteger TEN  = BigInteger.valueOf(10);

            BigInteger divisorIntvalue  = divisor.scaleByPowerOfTen(divisor.scale()).toBigInteger().abs();
            BigInteger dividendIntvalue = dividend.scaleByPowerOfTen(dividend.scale()).toBigInteger().abs();

            BigInteger b_prime = divisorIntvalue.divide(dividendIntvalue.gcd(divisorIntvalue));

            boolean goodDivisor = false;
            int i=0, j=0;

            badDivisor: {
                while(! b_prime.equals(BigInteger.ONE) ) {
                    int b_primeModTen = b_prime.mod(TEN).intValue() ;

                    switch(b_primeModTen) {
                    case 0:
                        // b_prime divisible by 10=2*5, increment i and j
                        i++;
                        j++;
                        b_prime = b_prime.divide(TEN);
                        break;

                    case 5:
                        // b_prime divisible by 5, increment j
                        j++;
                        b_prime = b_prime.divide(FIVE);
                        break;

                    case 2:
                    case 4:
                    case 6:
                    case 8:
                        // b_prime divisible by 2, increment i
                        i++;
                        b_prime = b_prime.divide(TWO);
                        break;

                    default: // hit something we shouldn't have
                        b_prime = BigInteger.ONE; // terminate loop
                        break badDivisor;
                    }
                }

                goodDivisor = true;
            }

            if( ! goodDivisor ) {
                throw new ArithmeticException("Non terminating decimal expansion");
            }
            else {
                // What is a rule for determining how many digits are
                // needed?  Once that is determined, cons up a new
                // MathContext object and pass it on to the divide(bd,
                // mc) method; precision == ?, roundingMode is unnecessary.

                // Are we sure this is the right scale to use?  Should
                // also determine a precision-based method.
                MathContext mc = new MathContext(dividend.precision() +
                                                 (int)Math.ceil(
                                                      10.0*divisor.precision()/3.0),
                                                 RoundingMode.UNNECESSARY);
                // Should do some more work here to rescale, etc.
                return dividend.divide(divisor, mc);
            }
        }
    }

    public static int powersOf2and5() {
        int failures = 0;

        for(int i = 0; i < 6; i++) {
            int powerOf2 = (int)StrictMath.pow(2.0, i);

            for(int j = 0; j < 6; j++) {
                int powerOf5 = (int)StrictMath.pow(5.0, j);
                int product;

                BigDecimal bd;

                try {
                    bd = BigDecimal.ONE.divide(new BigDecimal(product=powerOf2*powerOf5));
                } catch (ArithmeticException e) {
                    failures++;
                    System.err.println((new BigDecimal(powerOf2)).toString() + " / " +
                                       (new BigDecimal(powerOf5)).toString() + " threw an exception.");
                    e.printStackTrace();
                }

                try {
                    bd = new BigDecimal(powerOf2).divide(new BigDecimal(powerOf5));
                } catch (ArithmeticException e) {
                    failures++;
                    System.err.println((new BigDecimal(powerOf2)).toString() + " / " +
                                       (new BigDecimal(powerOf5)).toString() + " threw an exception.");
                    e.printStackTrace();
                }

                try {
                    bd = new BigDecimal(powerOf5).divide(new BigDecimal(powerOf2));
                } catch (ArithmeticException e) {
                    failures++;
                    System.err.println((new BigDecimal(powerOf5)).toString() + " / " +
                                       (new BigDecimal(powerOf2)).toString() + " threw an exception.");

                    e.printStackTrace();
                }

            }
        }
        return failures;
    }

    public static int nonTerminating() {
        int failures = 0;
        int[] primes = {1, 3, 7, 13, 17};

        // For each pair of prime products, verify the ratio of
        // non-equal products has a non-terminating expansion.

        for(int i = 0; i < primes.length; i++) {
            for(int j = i+1; j < primes.length; j++) {

                for(int m = 0; m < primes.length; m++) {
                    for(int n = m+1; n < primes.length; n++) {
                        int dividend = primes[i] * primes[j];
                        int divisor  = primes[m] * primes[n];

                        if ( ((dividend/divisor) * divisor) != dividend ) {
                            try {
                                BigDecimal quotient = (new BigDecimal(dividend).
                                                       divide(new BigDecimal(divisor)));
                                failures++;
                                System.err.println("Exact quotient " + quotient.toString() +
                                                   " returned for non-terminating fraction " +
                                                   dividend + " / " + divisor + ".");
                            }
                            catch (ArithmeticException e) {
                                ; // Correct result
                            }
                        }

                    }
                }
            }
        }

        return failures;
    }

    public static int properScaleTests(){
        int failures = 0;

        BigDecimal[][] testCases = {
            {new BigDecimal("1"),       new BigDecimal("5"),            new BigDecimal("2e-1")},
            {new BigDecimal("1"),       new BigDecimal("50e-1"),        new BigDecimal("2e-1")},
            {new BigDecimal("10e-1"),   new BigDecimal("5"),            new BigDecimal("2e-1")},
            {new BigDecimal("1"),       new BigDecimal("500e-2"),       new BigDecimal("2e-1")},
            {new BigDecimal("100e-2"),  new BigDecimal("5"),            new BigDecimal("20e-2")},
            {new BigDecimal("1"),       new BigDecimal("32"),           new BigDecimal("3125e-5")},
            {new BigDecimal("1"),       new BigDecimal("64"),           new BigDecimal("15625e-6")},
            {new BigDecimal("1.0000000"),       new BigDecimal("64"),   new BigDecimal("156250e-7")},
        };


        for(BigDecimal[] tc : testCases) {
            BigDecimal quotient;
            if (! (quotient = tc[0].divide(tc[1])).equals(tc[2]) ) {
                failures++;
                System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] +
                                   "; expected " + tc[2] + " got " + quotient);
            }
        }

        return failures;
    }

    public static int trailingZeroTests() {
        int failures = 0;

        MathContext mc = new MathContext(3, RoundingMode.FLOOR);
        BigDecimal[][] testCases = {
            {new BigDecimal("19"),      new BigDecimal("100"),          new BigDecimal("0.19")},
            {new BigDecimal("21"),      new BigDecimal("110"),          new BigDecimal("0.190")},
        };

        for(BigDecimal[] tc : testCases) {
            BigDecimal quotient;
            if (! (quotient = tc[0].divide(tc[1], mc)).equals(tc[2]) ) {
                failures++;
                System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] +
                                   "; expected " + tc[2] + " got " + quotient);
            }
        }

        return failures;
    }

    public static int scaledRoundedDivideTests() {
        int failures = 0;
        // Tests of the traditional scaled divide under different
        // rounding modes.

        // Encode rounding mode and scale for the divide in a
        // BigDecimal with the significand equal to the rounding mode
        // and the scale equal to the number's scale.

        // {dividend, dividisor, rounding, quotient}
        BigDecimal a = new BigDecimal("31415");
        BigDecimal a_minus = a.negate();
        BigDecimal b = new BigDecimal("10000");

        BigDecimal c = new BigDecimal("31425");
        BigDecimal c_minus = c.negate();

         // Ad hoc tests
        BigDecimal d = new BigDecimal(new BigInteger("-37361671119238118911893939591735"), 10);
        BigDecimal e = new BigDecimal(new BigInteger("74723342238476237823787879183470"), 15);

        BigDecimal[][] testCases = {
            {a,         b,      BigDecimal.valueOf(ROUND_UP, 3),        new BigDecimal("3.142")},
            {a_minus,   b,      BigDecimal.valueOf(ROUND_UP, 3),        new BigDecimal("-3.142")},

            {a,         b,      BigDecimal.valueOf(ROUND_DOWN, 3),      new BigDecimal("3.141")},
            {a_minus,   b,      BigDecimal.valueOf(ROUND_DOWN, 3),      new BigDecimal("-3.141")},

            {a,         b,      BigDecimal.valueOf(ROUND_CEILING, 3),   new BigDecimal("3.142")},
            {a_minus,   b,      BigDecimal.valueOf(ROUND_CEILING, 3),   new BigDecimal("-3.141")},

            {a,         b,      BigDecimal.valueOf(ROUND_FLOOR, 3),     new BigDecimal("3.141")},
            {a_minus,   b,      BigDecimal.valueOf(ROUND_FLOOR, 3),     new BigDecimal("-3.142")},

            {a,         b,      BigDecimal.valueOf(ROUND_HALF_UP, 3),   new BigDecimal("3.142")},
            {a_minus,   b,      BigDecimal.valueOf(ROUND_HALF_UP, 3),   new BigDecimal("-3.142")},

            {a,         b,      BigDecimal.valueOf(ROUND_DOWN, 3),      new BigDecimal("3.141")},
            {a_minus,   b,      BigDecimal.valueOf(ROUND_DOWN, 3),      new BigDecimal("-3.141")},

            {a,         b,      BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("3.142")},
            {a_minus,   b,      BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("-3.142")},

            {c,         b,      BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("3.142")},
            {c_minus,   b,      BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("-3.142")},

            {d,         e,      BigDecimal.valueOf(ROUND_HALF_UP, -5),   BigDecimal.valueOf(-1, -5)},
            {d,         e,      BigDecimal.valueOf(ROUND_HALF_DOWN, -5), BigDecimal.valueOf(0, -5)},
            {d,         e,      BigDecimal.valueOf(ROUND_HALF_EVEN, -5), BigDecimal.valueOf(0, -5)},
        };

        for(BigDecimal tc[] : testCases) {
            int scale = tc[2].scale();
            int rm = tc[2].unscaledValue().intValue();

            BigDecimal quotient = tc[0].divide(tc[1], scale, rm);
            if (!quotient.equals(tc[3])) {
                failures++;
                System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] +
                                   " scale " + scale + " rounding mode " + RoundingMode.valueOf(rm) +
                                   "; expected " + tc[3] + " got " + quotient);
            }
        }

        // 6876282
        BigDecimal[][] testCases2 = {
            // { dividend, divisor, expected quotient }
            { new BigDecimal(3090), new BigDecimal(7), new BigDecimal(441) },
            { new BigDecimal("309000000000000000000000"), new BigDecimal("700000000000000000000"),
              new BigDecimal(441) },
            { new BigDecimal("962.430000000000"), new BigDecimal("8346463.460000000000"),
              new BigDecimal("0.000115309916") },
            { new BigDecimal("18446744073709551631"), new BigDecimal("4611686018427387909"),
              new BigDecimal(4) },
            { new BigDecimal("18446744073709551630"), new BigDecimal("4611686018427387909"),
              new BigDecimal(4) },
            { new BigDecimal("23058430092136939523"), new BigDecimal("4611686018427387905"),
              new BigDecimal(5) },
            { new BigDecimal("-18446744073709551661"), new BigDecimal("-4611686018427387919"),
              new BigDecimal(4) },
            { new BigDecimal("-18446744073709551660"), new BigDecimal("-4611686018427387919"),
              new BigDecimal(4) },
        };

        for (BigDecimal test[] : testCases2) {
            BigDecimal quo = test[0].divide(test[1], RoundingMode.HALF_UP);
            if (!quo.equals(test[2])) {
                failures++;
                System.err.println("Unexpected quotient from " + test[0] + " / " + test[1] +
                                   " rounding mode HALF_UP" +
                                   "; expected " + test[2] + " got " + quo);
            }
        }
        return failures;
    }

    private static int divideByOneTests() {
        int failures = 0;

        //problematic divisor: one with scale 17
        BigDecimal one = BigDecimal.ONE.setScale(17);
        RoundingMode rounding = RoundingMode.UNNECESSARY;

        long[][] unscaledAndScale = new long[][] {
            { Long.MAX_VALUE,  17},
            {-Long.MAX_VALUE,  17},
            { Long.MAX_VALUE,   0},
            {-Long.MAX_VALUE,   0},
            { Long.MAX_VALUE, 100},
            {-Long.MAX_VALUE, 100}
        };

        for (long[] uas : unscaledAndScale) {
            long unscaled = uas[0];
            int scale = (int)uas[1];

            BigDecimal noRound = null;
            try {
                noRound = BigDecimal.valueOf(unscaled, scale).
                    divide(one, RoundingMode.UNNECESSARY);
            } catch (ArithmeticException e) {
                failures++;
                System.err.println("ArithmeticException for value " + unscaled
                    + " and scale " + scale + " without rounding");
            }

            BigDecimal roundDown = null;
            try {
                roundDown = BigDecimal.valueOf(unscaled, scale).
                        divide(one, RoundingMode.DOWN);
            } catch (ArithmeticException e) {
                failures++;
                System.err.println("ArithmeticException for value " + unscaled
                    + " and scale " + scale + " with rounding down");
            }

            if (noRound != null && roundDown != null
                && noRound.compareTo(roundDown) != 0) {
                failures++;
                System.err.println("Equality failure for value " + unscaled
                        + " and scale " + scale);
            }
        }

        return failures;
    }

    public static void main(String argv[]) {
        int failures = 0;

        failures += powersOf2and5();
        failures += nonTerminating();
        failures += properScaleTests();
        failures += trailingZeroTests();
        failures += scaledRoundedDivideTests();
        failures += divideByOneTests();

        if (failures > 0) {
            throw new RuntimeException("Incurred " + failures +
                                       " failures while testing division.");
        }
    }
}