1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
|
/*
* Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @library /test/lib
* @build jdk.test.lib.RandomFactory
* @run main BigIntegerTest
* @bug 4181191 4161971 4227146 4194389 4823171 4624738 4812225 4837946 4026465 8074460 8078672 8032027
* @summary tests methods in BigInteger (use -Dseed=X to set PRNG seed)
* @run main/timeout=400 BigIntegerTest
* @author madbot
* @key randomness
*/
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.Random;
import java.util.function.ToIntFunction;
import java.util.stream.Collectors;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.Stream;
import jdk.test.lib.RandomFactory;
/**
* This is a simple test class created to ensure that the results
* generated by BigInteger adhere to certain identities. Passing
* this test is a strong assurance that the BigInteger operations
* are working correctly.
*
* Four arguments may be specified which give the number of
* decimal digits you desire in the four batches of test numbers.
*
* The tests are performed on arrays of random numbers which are
* generated by a Random class as well as special cases which
* throw in boundary numbers such as 0, 1, maximum sized, etc.
*
*/
public class BigIntegerTest {
//
// Bit large number thresholds based on the int thresholds
// defined in BigInteger itself:
//
// KARATSUBA_THRESHOLD = 80 ints = 2560 bits
// TOOM_COOK_THRESHOLD = 240 ints = 7680 bits
// KARATSUBA_SQUARE_THRESHOLD = 128 ints = 4096 bits
// TOOM_COOK_SQUARE_THRESHOLD = 216 ints = 6912 bits
//
// SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20 ints = 640 bits
//
// BURNIKEL_ZIEGLER_THRESHOLD = 80 ints = 2560 bits
//
static final int BITS_KARATSUBA = 2560;
static final int BITS_TOOM_COOK = 7680;
static final int BITS_KARATSUBA_SQUARE = 4096;
static final int BITS_TOOM_COOK_SQUARE = 6912;
static final int BITS_SCHOENHAGE_BASE = 640;
static final int BITS_BURNIKEL_ZIEGLER = 2560;
static final int BITS_BURNIKEL_ZIEGLER_OFFSET = 1280;
static final int ORDER_SMALL = 60;
static final int ORDER_MEDIUM = 100;
// #bits for testing Karatsuba
static final int ORDER_KARATSUBA = 2760;
// #bits for testing Toom-Cook and Burnikel-Ziegler
static final int ORDER_TOOM_COOK = 8000;
// #bits for testing Karatsuba squaring
static final int ORDER_KARATSUBA_SQUARE = 4200;
// #bits for testing Toom-Cook squaring
static final int ORDER_TOOM_COOK_SQUARE = 7000;
static final int SIZE = 1000; // numbers per batch
private static Random random = RandomFactory.getRandom();
static boolean failure = false;
public static void constructor() {
int failCount = 0;
// --- guard condition tests for array indexing ---
int arrayLength = 23;
int halfLength = arrayLength/2;
byte[] array = new byte[arrayLength];
random.nextBytes(array);
int[][] offLen = new int[][] { // offset, length, num exceptions
{-1, arrayLength, 1}, // negative offset
{0, arrayLength, 0}, // OK
{1, arrayLength, 1}, // length overflow
{arrayLength - 1, 1, 0}, // OK
{arrayLength, 1, 1}, // offset overflow
{0, -1, 1}, // negative length
{halfLength, arrayLength - halfLength + 1, 1} // length overflow
};
// two's complement
for (int[] ol : offLen) {
int numExceptions = 0;
try {
BigInteger bi = new BigInteger(array, ol[0], ol[1]);
} catch (IndexOutOfBoundsException e) {
numExceptions++;
}
if (numExceptions != ol[2]) {
System.err.println("IndexOutOfBoundsException did not occur for "
+ " two's complement constructor with parameters offset "
+ ol[0] + " and length " + ol[1]);
failCount++;
}
}
// sign-magnitude
for (int[] ol : offLen) {
int numExceptions = 0;
try {
BigInteger bi = new BigInteger(1, array, ol[0], ol[1]);
} catch (IndexOutOfBoundsException e) {
numExceptions++;
}
if (numExceptions != ol[2]) {
System.err.println("IndexOutOfBoundsException did not occur for "
+ " sign-magnitude constructor with parameters offset "
+ ol[0] + " and length " + ol[1]);
failCount++;
}
}
// --- tests for creation of zero-valued BigIntegers ---
byte[] magZeroLength = new byte[0];
for (int signum = -1; signum <= 1; signum++) {
BigInteger bi = new BigInteger(signum, magZeroLength);
if (bi.compareTo(BigInteger.ZERO) != 0) {
System.err.println("A: Zero length BigInteger != 0 for signum " + signum);
failCount++;
}
}
for (int signum = -1; signum <= 1; signum++) {
BigInteger bi = new BigInteger(signum, magZeroLength, 0, 0);
if (bi.compareTo(BigInteger.ZERO) != 0) {
System.err.println("B: Zero length BigInteger != 0 for signum " + signum);
failCount++;
}
}
byte[] magNonZeroLength = new byte[42];
random.nextBytes(magNonZeroLength);
for (int signum = -1; signum <= 1; signum++) {
BigInteger bi = new BigInteger(signum, magNonZeroLength, 0, 0);
if (bi.compareTo(BigInteger.ZERO) != 0) {
System.err.println("C: Zero length BigInteger != 0 for signum " + signum);
failCount++;
}
}
// --- tests for accurate creation of non-zero BigIntegers ---
for (int i = 0; i < SIZE; i++) {
// create reference value via a different code path from those tested
BigInteger reference = new BigInteger(2 + random.nextInt(336), 4, random);
byte[] refArray = reference.toByteArray();
int refLen = refArray.length;
int factor = random.nextInt(5);
int objLen = refArray.length + factor*random.nextInt(refArray.length) + 1;
int offset = random.nextInt(objLen - refLen);
byte[] objArray = new byte[objLen];
System.arraycopy(refArray, 0, objArray, offset, refLen);
BigInteger twosComp = new BigInteger(objArray, offset, refLen);
if (twosComp.compareTo(reference) != 0) {
System.err.println("Two's-complement BigInteger not equal for offset " +
offset + " and length " + refLen);
failCount++;
}
boolean isNegative = random.nextBoolean();
BigInteger signMag = new BigInteger(isNegative ? -1 : 1, objArray, offset, refLen);
if (signMag.compareTo(isNegative ? reference.negate() : reference) != 0) {
System.err.println("Sign-magnitude BigInteger not equal for offset " +
offset + " and length " + refLen);
failCount++;
}
}
report("Constructor", failCount);
}
public static void pow(int order) {
int failCount1 = 0;
for (int i=0; i<SIZE; i++) {
// Test identity x^power == x*x*x ... *x
int power = random.nextInt(6) + 2;
BigInteger x = fetchNumber(order);
BigInteger y = x.pow(power);
BigInteger z = x;
for (int j=1; j<power; j++)
z = z.multiply(x);
if (!y.equals(z))
failCount1++;
}
report("pow for " + order + " bits", failCount1);
}
public static void square(int order) {
int failCount1 = 0;
for (int i=0; i<SIZE; i++) {
// Test identity x^2 == x*x
BigInteger x = fetchNumber(order);
BigInteger xx = x.multiply(x);
BigInteger x2 = x.pow(2);
if (!x2.equals(xx))
failCount1++;
}
report("square for " + order + " bits", failCount1);
}
private static void printErr(String msg) {
System.err.println(msg);
}
private static int checkResult(BigInteger expected, BigInteger actual,
String failureMessage) {
if (expected.compareTo(actual) != 0) {
printErr(failureMessage + " - expected: " + expected
+ ", actual: " + actual);
return 1;
}
return 0;
}
private static void squareRootSmall() {
int failCount = 0;
// A negative value should cause an exception.
BigInteger n = BigInteger.ONE.negate();
BigInteger s;
try {
s = n.sqrt();
// If sqrt() does not throw an exception that is a failure.
failCount++;
printErr("sqrt() of negative number did not throw an exception");
} catch (ArithmeticException expected) {
// A negative value should cause an exception and is not a failure.
}
// A zero value should return BigInteger.ZERO.
failCount += checkResult(BigInteger.ZERO, BigInteger.ZERO.sqrt(),
"sqrt(0) != BigInteger.ZERO");
// 1 <= value < 4 should return BigInteger.ONE.
long[] smalls = new long[] {1, 2, 3};
for (long small : smalls) {
failCount += checkResult(BigInteger.ONE,
BigInteger.valueOf(small).sqrt(), "sqrt("+small+") != 1");
}
report("squareRootSmall", failCount);
}
public static void squareRoot() {
squareRootSmall();
ToIntFunction<BigInteger> f = (n) -> {
int failCount = 0;
// square root of n^2 -> n
BigInteger n2 = n.pow(2);
failCount += checkResult(n, n2.sqrt(), "sqrt() n^2 -> n");
// square root of n^2 + 1 -> n
BigInteger n2up = n2.add(BigInteger.ONE);
failCount += checkResult(n, n2up.sqrt(), "sqrt() n^2 + 1 -> n");
// square root of (n + 1)^2 - 1 -> n
BigInteger up =
n.add(BigInteger.ONE).pow(2).subtract(BigInteger.ONE);
failCount += checkResult(n, up.sqrt(), "sqrt() (n + 1)^2 - 1 -> n");
// sqrt(n)^2 <= n
BigInteger s = n.sqrt();
if (s.multiply(s).compareTo(n) > 0) {
failCount++;
printErr("sqrt(n)^2 > n for n = " + n);
}
// (sqrt(n) + 1)^2 > n
if (s.add(BigInteger.ONE).pow(2).compareTo(n) <= 0) {
failCount++;
printErr("(sqrt(n) + 1)^2 <= n for n = " + n);
}
return failCount;
};
Stream.Builder<BigInteger> sb = Stream.builder();
int maxExponent = Double.MAX_EXPONENT + 1;
for (int i = 1; i <= maxExponent; i++) {
BigInteger p2 = BigInteger.ONE.shiftLeft(i);
sb.add(p2.subtract(BigInteger.ONE));
sb.add(p2);
sb.add(p2.add(BigInteger.ONE));
}
sb.add((new BigDecimal(Double.MAX_VALUE)).toBigInteger());
sb.add((new BigDecimal(Double.MAX_VALUE)).toBigInteger().add(BigInteger.ONE));
report("squareRoot for 2^N and 2^N - 1, 1 <= N <= Double.MAX_EXPONENT",
sb.build().collect(Collectors.summingInt(f)));
IntStream ints = random.ints(SIZE, 4, Integer.MAX_VALUE);
report("squareRoot for int", ints.mapToObj(x ->
BigInteger.valueOf(x)).collect(Collectors.summingInt(f)));
LongStream longs = random.longs(SIZE, (long)Integer.MAX_VALUE + 1L,
Long.MAX_VALUE);
report("squareRoot for long", longs.mapToObj(x ->
BigInteger.valueOf(x)).collect(Collectors.summingInt(f)));
DoubleStream doubles = random.doubles(SIZE,
(double) Long.MAX_VALUE + 1.0, Math.sqrt(Double.MAX_VALUE));
report("squareRoot for double", doubles.mapToObj(x ->
BigDecimal.valueOf(x).toBigInteger()).collect(Collectors.summingInt(f)));
}
public static void squareRootAndRemainder() {
ToIntFunction<BigInteger> g = (n) -> {
int failCount = 0;
BigInteger n2 = n.pow(2);
// square root of n^2 -> n
BigInteger[] actual = n2.sqrtAndRemainder();
failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
failCount += checkResult(BigInteger.ZERO, actual[1],
"sqrtAndRemainder()[1]");
// square root of n^2 + 1 -> n
BigInteger n2up = n2.add(BigInteger.ONE);
actual = n2up.sqrtAndRemainder();
failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
failCount += checkResult(BigInteger.ONE, actual[1],
"sqrtAndRemainder()[1]");
// square root of (n + 1)^2 - 1 -> n
BigInteger up =
n.add(BigInteger.ONE).pow(2).subtract(BigInteger.ONE);
actual = up.sqrtAndRemainder();
failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
BigInteger r = up.subtract(n2);
failCount += checkResult(r, actual[1], "sqrtAndRemainder()[1]");
return failCount;
};
IntStream bits = random.ints(SIZE, 3, Short.MAX_VALUE);
report("sqrtAndRemainder", bits.mapToObj(x ->
BigInteger.valueOf(x)).collect(Collectors.summingInt(g)));
}
public static void arithmetic(int order) {
int failCount = 0;
for (int i=0; i<SIZE; i++) {
BigInteger x = fetchNumber(order);
while(x.compareTo(BigInteger.ZERO) != 1)
x = fetchNumber(order);
BigInteger y = fetchNumber(order/2);
while(x.compareTo(y) == -1)
y = fetchNumber(order/2);
if (y.equals(BigInteger.ZERO))
y = y.add(BigInteger.ONE);
// Test identity ((x/y))*y + x%y - x == 0
// using separate divide() and remainder()
BigInteger baz = x.divide(y);
baz = baz.multiply(y);
baz = baz.add(x.remainder(y));
baz = baz.subtract(x);
if (!baz.equals(BigInteger.ZERO))
failCount++;
}
report("Arithmetic I for " + order + " bits", failCount);
failCount = 0;
for (int i=0; i<100; i++) {
BigInteger x = fetchNumber(order);
while(x.compareTo(BigInteger.ZERO) != 1)
x = fetchNumber(order);
BigInteger y = fetchNumber(order/2);
while(x.compareTo(y) == -1)
y = fetchNumber(order/2);
if (y.equals(BigInteger.ZERO))
y = y.add(BigInteger.ONE);
// Test identity ((x/y))*y + x%y - x == 0
// using divideAndRemainder()
BigInteger baz[] = x.divideAndRemainder(y);
baz[0] = baz[0].multiply(y);
baz[0] = baz[0].add(baz[1]);
baz[0] = baz[0].subtract(x);
if (!baz[0].equals(BigInteger.ZERO))
failCount++;
}
report("Arithmetic II for " + order + " bits", failCount);
}
/**
* Sanity test for Karatsuba and 3-way Toom-Cook multiplication.
* For each of the Karatsuba and 3-way Toom-Cook multiplication thresholds,
* construct two factors each with a mag array one element shorter than the
* threshold, and with the most significant bit set and the rest of the bits
* random. Each of these numbers will therefore be below the threshold but
* if shifted left be above the threshold. Call the numbers 'u' and 'v' and
* define random shifts 'a' and 'b' in the range [1,32]. Then we have the
* identity
* <pre>
* (u << a)*(v << b) = (u*v) << (a + b)
* </pre>
* For Karatsuba multiplication, the right hand expression will be evaluated
* using the standard naive algorithm, and the left hand expression using
* the Karatsuba algorithm. For 3-way Toom-Cook multiplication, the right
* hand expression will be evaluated using Karatsuba multiplication, and the
* left hand expression using 3-way Toom-Cook multiplication.
*/
public static void multiplyLarge() {
int failCount = 0;
BigInteger base = BigInteger.ONE.shiftLeft(BITS_KARATSUBA - 32 - 1);
for (int i=0; i<SIZE; i++) {
BigInteger x = fetchNumber(BITS_KARATSUBA - 32 - 1);
BigInteger u = base.add(x);
int a = 1 + random.nextInt(31);
BigInteger w = u.shiftLeft(a);
BigInteger y = fetchNumber(BITS_KARATSUBA - 32 - 1);
BigInteger v = base.add(y);
int b = 1 + random.nextInt(32);
BigInteger z = v.shiftLeft(b);
BigInteger multiplyResult = u.multiply(v).shiftLeft(a + b);
BigInteger karatsubaMultiplyResult = w.multiply(z);
if (!multiplyResult.equals(karatsubaMultiplyResult)) {
failCount++;
}
}
report("multiplyLarge Karatsuba", failCount);
failCount = 0;
base = base.shiftLeft(BITS_TOOM_COOK - BITS_KARATSUBA);
for (int i=0; i<SIZE; i++) {
BigInteger x = fetchNumber(BITS_TOOM_COOK - 32 - 1);
BigInteger u = base.add(x);
BigInteger u2 = u.shiftLeft(1);
BigInteger y = fetchNumber(BITS_TOOM_COOK - 32 - 1);
BigInteger v = base.add(y);
BigInteger v2 = v.shiftLeft(1);
BigInteger multiplyResult = u.multiply(v).shiftLeft(2);
BigInteger toomCookMultiplyResult = u2.multiply(v2);
if (!multiplyResult.equals(toomCookMultiplyResult)) {
failCount++;
}
}
report("multiplyLarge Toom-Cook", failCount);
}
/**
* Sanity test for Karatsuba and 3-way Toom-Cook squaring.
* This test is analogous to {@link AbstractMethodError#multiplyLarge}
* with both factors being equal. The squaring methods will not be tested
* unless the <code>bigInteger.multiply(bigInteger)</code> tests whether
* the parameter is the same instance on which the method is being invoked
* and calls <code>square()</code> accordingly.
*/
public static void squareLarge() {
int failCount = 0;
BigInteger base = BigInteger.ONE.shiftLeft(BITS_KARATSUBA_SQUARE - 32 - 1);
for (int i=0; i<SIZE; i++) {
BigInteger x = fetchNumber(BITS_KARATSUBA_SQUARE - 32 - 1);
BigInteger u = base.add(x);
int a = 1 + random.nextInt(31);
BigInteger w = u.shiftLeft(a);
BigInteger squareResult = u.multiply(u).shiftLeft(2*a);
BigInteger karatsubaSquareResult = w.multiply(w);
if (!squareResult.equals(karatsubaSquareResult)) {
failCount++;
}
}
report("squareLarge Karatsuba", failCount);
failCount = 0;
base = base.shiftLeft(BITS_TOOM_COOK_SQUARE - BITS_KARATSUBA_SQUARE);
for (int i=0; i<SIZE; i++) {
BigInteger x = fetchNumber(BITS_TOOM_COOK_SQUARE - 32 - 1);
BigInteger u = base.add(x);
int a = 1 + random.nextInt(31);
BigInteger w = u.shiftLeft(a);
BigInteger squareResult = u.multiply(u).shiftLeft(2*a);
BigInteger toomCookSquareResult = w.multiply(w);
if (!squareResult.equals(toomCookSquareResult)) {
failCount++;
}
}
report("squareLarge Toom-Cook", failCount);
}
/**
* Sanity test for Burnikel-Ziegler division. The Burnikel-Ziegler division
* algorithm is used when each of the dividend and the divisor has at least
* a specified number of ints in its representation. This test is based on
* the observation that if {@code w = u*pow(2,a)} and {@code z = v*pow(2,b)}
* where {@code abs(u) > abs(v)} and {@code a > b && b > 0}, then if
* {@code w/z = q1*z + r1} and {@code u/v = q2*v + r2}, then
* {@code q1 = q2*pow(2,a-b)} and {@code r1 = r2*pow(2,b)}. The test
* ensures that {@code v} is just under the B-Z threshold, that {@code z} is
* over the threshold and {@code w} is much larger than {@code z}. This
* implies that {@code u/v} uses the standard division algorithm and
* {@code w/z} uses the B-Z algorithm. The results of the two algorithms
* are then compared using the observation described in the foregoing and
* if they are not equal a failure is logged.
*/
public static void divideLarge() {
int failCount = 0;
BigInteger base = BigInteger.ONE.shiftLeft(BITS_BURNIKEL_ZIEGLER + BITS_BURNIKEL_ZIEGLER_OFFSET - 33);
for (int i=0; i<SIZE; i++) {
BigInteger addend = new BigInteger(BITS_BURNIKEL_ZIEGLER + BITS_BURNIKEL_ZIEGLER_OFFSET - 34, random);
BigInteger v = base.add(addend);
BigInteger u = v.multiply(BigInteger.valueOf(2 + random.nextInt(Short.MAX_VALUE - 1)));
if(random.nextBoolean()) {
u = u.negate();
}
if(random.nextBoolean()) {
v = v.negate();
}
int a = BITS_BURNIKEL_ZIEGLER_OFFSET + random.nextInt(16);
int b = 1 + random.nextInt(16);
BigInteger w = u.multiply(BigInteger.ONE.shiftLeft(a));
BigInteger z = v.multiply(BigInteger.ONE.shiftLeft(b));
BigInteger[] divideResult = u.divideAndRemainder(v);
divideResult[0] = divideResult[0].multiply(BigInteger.ONE.shiftLeft(a - b));
divideResult[1] = divideResult[1].multiply(BigInteger.ONE.shiftLeft(b));
BigInteger[] bzResult = w.divideAndRemainder(z);
if (divideResult[0].compareTo(bzResult[0]) != 0 ||
divideResult[1].compareTo(bzResult[1]) != 0) {
failCount++;
}
}
report("divideLarge", failCount);
}
public static void bitCount() {
int failCount = 0;
for (int i=0; i<SIZE*10; i++) {
int x = random.nextInt();
BigInteger bigX = BigInteger.valueOf((long)x);
int bit = (x < 0 ? 0 : 1);
int tmp = x, bitCount = 0;
for (int j=0; j<32; j++) {
bitCount += ((tmp & 1) == bit ? 1 : 0);
tmp >>= 1;
}
if (bigX.bitCount() != bitCount) {
//System.err.println(x+": "+bitCount+", "+bigX.bitCount());
failCount++;
}
}
report("Bit Count", failCount);
}
public static void bitLength() {
int failCount = 0;
for (int i=0; i<SIZE*10; i++) {
int x = random.nextInt();
BigInteger bigX = BigInteger.valueOf((long)x);
int signBit = (x < 0 ? 0x80000000 : 0);
int tmp = x, bitLength, j;
for (j=0; j<32 && (tmp & 0x80000000)==signBit; j++)
tmp <<= 1;
bitLength = 32 - j;
if (bigX.bitLength() != bitLength) {
//System.err.println(x+": "+bitLength+", "+bigX.bitLength());
failCount++;
}
}
report("BitLength", failCount);
}
public static void bitOps(int order) {
int failCount1 = 0, failCount2 = 0, failCount3 = 0;
for (int i=0; i<SIZE*5; i++) {
BigInteger x = fetchNumber(order);
BigInteger y;
// Test setBit and clearBit (and testBit)
if (x.signum() < 0) {
y = BigInteger.valueOf(-1);
for (int j=0; j<x.bitLength(); j++)
if (!x.testBit(j))
y = y.clearBit(j);
} else {
y = BigInteger.ZERO;
for (int j=0; j<x.bitLength(); j++)
if (x.testBit(j))
y = y.setBit(j);
}
if (!x.equals(y))
failCount1++;
// Test flipBit (and testBit)
y = BigInteger.valueOf(x.signum()<0 ? -1 : 0);
for (int j=0; j<x.bitLength(); j++)
if (x.signum()<0 ^ x.testBit(j))
y = y.flipBit(j);
if (!x.equals(y))
failCount2++;
}
report("clearBit/testBit for " + order + " bits", failCount1);
report("flipBit/testBit for " + order + " bits", failCount2);
for (int i=0; i<SIZE*5; i++) {
BigInteger x = fetchNumber(order);
// Test getLowestSetBit()
int k = x.getLowestSetBit();
if (x.signum() == 0) {
if (k != -1)
failCount3++;
} else {
BigInteger z = x.and(x.negate());
int j;
for (j=0; j<z.bitLength() && !z.testBit(j); j++)
;
if (k != j)
failCount3++;
}
}
report("getLowestSetBit for " + order + " bits", failCount3);
}
public static void bitwise(int order) {
// Test identity x^y == x|y &~ x&y
int failCount = 0;
for (int i=0; i<SIZE; i++) {
BigInteger x = fetchNumber(order);
BigInteger y = fetchNumber(order);
BigInteger z = x.xor(y);
BigInteger w = x.or(y).andNot(x.and(y));
if (!z.equals(w))
failCount++;
}
report("Logic (^ | & ~) for " + order + " bits", failCount);
// Test identity x &~ y == ~(~x | y)
failCount = 0;
for (int i=0; i<SIZE; i++) {
BigInteger x = fetchNumber(order);
BigInteger y = fetchNumber(order);
BigInteger z = x.andNot(y);
BigInteger w = x.not().or(y).not();
if (!z.equals(w))
failCount++;
}
report("Logic (&~ | ~) for " + order + " bits", failCount);
}
public static void shift(int order) {
int failCount1 = 0;
int failCount2 = 0;
int failCount3 = 0;
for (int i=0; i<100; i++) {
BigInteger x = fetchNumber(order);
int n = Math.abs(random.nextInt()%200);
if (!x.shiftLeft(n).equals
(x.multiply(BigInteger.valueOf(2L).pow(n))))
failCount1++;
BigInteger y[] =x.divideAndRemainder(BigInteger.valueOf(2L).pow(n));
BigInteger z = (x.signum()<0 && y[1].signum()!=0
? y[0].subtract(BigInteger.ONE)
: y[0]);
BigInteger b = x.shiftRight(n);
if (!b.equals(z)) {
System.err.println("Input is "+x.toString(2));
System.err.println("shift is "+n);
System.err.println("Divided "+z.toString(2));
System.err.println("Shifted is "+b.toString(2));
if (b.toString().equals(z.toString()))
System.err.println("Houston, we have a problem.");
failCount2++;
}
if (!x.shiftLeft(n).shiftRight(n).equals(x))
failCount3++;
}
report("baz shiftLeft for " + order + " bits", failCount1);
report("baz shiftRight for " + order + " bits", failCount2);
report("baz shiftLeft/Right for " + order + " bits", failCount3);
}
public static void divideAndRemainder(int order) {
int failCount1 = 0;
for (int i=0; i<SIZE; i++) {
BigInteger x = fetchNumber(order).abs();
while(x.compareTo(BigInteger.valueOf(3L)) != 1)
x = fetchNumber(order).abs();
BigInteger z = x.divide(BigInteger.valueOf(2L));
BigInteger y[] = x.divideAndRemainder(x);
if (!y[0].equals(BigInteger.ONE)) {
failCount1++;
System.err.println("fail1 x :"+x);
System.err.println(" y :"+y);
}
else if (!y[1].equals(BigInteger.ZERO)) {
failCount1++;
System.err.println("fail2 x :"+x);
System.err.println(" y :"+y);
}
y = x.divideAndRemainder(z);
if (!y[0].equals(BigInteger.valueOf(2))) {
failCount1++;
System.err.println("fail3 x :"+x);
System.err.println(" y :"+y);
}
}
report("divideAndRemainder for " + order + " bits", failCount1);
}
public static void stringConv() {
int failCount = 0;
// Generic string conversion.
for (int i=0; i<100; i++) {
byte xBytes[] = new byte[Math.abs(random.nextInt())%100+1];
random.nextBytes(xBytes);
BigInteger x = new BigInteger(xBytes);
for (int radix=Character.MIN_RADIX; radix < Character.MAX_RADIX; radix++) {
String result = x.toString(radix);
BigInteger test = new BigInteger(result, radix);
if (!test.equals(x)) {
failCount++;
System.err.println("BigInteger toString: "+x);
System.err.println("Test: "+test);
System.err.println(radix);
}
}
}
// String conversion straddling the Schoenhage algorithm crossover
// threshold, and at twice and four times the threshold.
for (int k = 0; k <= 2; k++) {
int factor = 1 << k;
int upper = factor * BITS_SCHOENHAGE_BASE + 33;
int lower = upper - 35;
for (int bits = upper; bits >= lower; bits--) {
for (int i = 0; i < 50; i++) {
BigInteger x = BigInteger.ONE.shiftLeft(bits - 1).or(new BigInteger(bits - 2, random));
for (int radix = Character.MIN_RADIX; radix < Character.MAX_RADIX; radix++) {
String result = x.toString(radix);
BigInteger test = new BigInteger(result, radix);
if (!test.equals(x)) {
failCount++;
System.err.println("BigInteger toString: " + x);
System.err.println("Test: " + test);
System.err.println(radix);
}
}
}
}
}
report("String Conversion", failCount);
}
public static void byteArrayConv(int order) {
int failCount = 0;
for (int i=0; i<SIZE; i++) {
BigInteger x = fetchNumber(order);
while (x.equals(BigInteger.ZERO))
x = fetchNumber(order);
BigInteger y = new BigInteger(x.toByteArray());
if (!x.equals(y)) {
failCount++;
System.err.println("orig is "+x);
System.err.println("new is "+y);
}
}
report("Array Conversion for " + order + " bits", failCount);
}
public static void modInv(int order) {
int failCount = 0, successCount = 0, nonInvCount = 0;
for (int i=0; i<SIZE; i++) {
BigInteger x = fetchNumber(order);
while(x.equals(BigInteger.ZERO))
x = fetchNumber(order);
BigInteger m = fetchNumber(order).abs();
while(m.compareTo(BigInteger.ONE) != 1)
m = fetchNumber(order).abs();
try {
BigInteger inv = x.modInverse(m);
BigInteger prod = inv.multiply(x).remainder(m);
if (prod.signum() == -1)
prod = prod.add(m);
if (prod.equals(BigInteger.ONE))
successCount++;
else
failCount++;
} catch(ArithmeticException e) {
nonInvCount++;
}
}
report("Modular Inverse for " + order + " bits", failCount);
}
public static void modExp(int order1, int order2) {
int failCount = 0;
for (int i=0; i<SIZE/10; i++) {
BigInteger m = fetchNumber(order1).abs();
while(m.compareTo(BigInteger.ONE) != 1)
m = fetchNumber(order1).abs();
BigInteger base = fetchNumber(order2);
BigInteger exp = fetchNumber(8).abs();
BigInteger z = base.modPow(exp, m);
BigInteger w = base.pow(exp.intValue()).mod(m);
if (!z.equals(w)) {
System.err.println("z is "+z);
System.err.println("w is "+w);
System.err.println("mod is "+m);
System.err.println("base is "+base);
System.err.println("exp is "+exp);
failCount++;
}
}
report("Exponentiation I for " + order1 + " and " +
order2 + " bits", failCount);
}
// This test is based on Fermat's theorem
// which is not ideal because base must not be multiple of modulus
// and modulus must be a prime or pseudoprime (Carmichael number)
public static void modExp2(int order) {
int failCount = 0;
for (int i=0; i<10; i++) {
BigInteger m = new BigInteger(100, 5, random);
while(m.compareTo(BigInteger.ONE) != 1)
m = new BigInteger(100, 5, random);
BigInteger exp = m.subtract(BigInteger.ONE);
BigInteger base = fetchNumber(order).abs();
while(base.compareTo(m) != -1)
base = fetchNumber(order).abs();
while(base.equals(BigInteger.ZERO))
base = fetchNumber(order).abs();
BigInteger one = base.modPow(exp, m);
if (!one.equals(BigInteger.ONE)) {
System.err.println("m is "+m);
System.err.println("base is "+base);
System.err.println("exp is "+exp);
failCount++;
}
}
report("Exponentiation II for " + order + " bits", failCount);
}
private static final int[] mersenne_powers = {
521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,
21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433,
1257787, 1398269, 2976221, 3021377, 6972593, 13466917 };
private static final long[] carmichaels = {
561,1105,1729,2465,2821,6601,8911,10585,15841,29341,41041,46657,52633,
62745,63973,75361,101101,115921,126217,162401,172081,188461,252601,
278545,294409,314821,334153,340561,399001,410041,449065,488881,512461,
225593397919L };
// Note: testing the larger ones takes too long.
private static final int NUM_MERSENNES_TO_TEST = 7;
// Note: this constant used for computed Carmichaels, not the array above
private static final int NUM_CARMICHAELS_TO_TEST = 5;
private static final String[] customer_primes = {
"120000000000000000000000000000000019",
"633825300114114700748351603131",
"1461501637330902918203684832716283019651637554291",
"779626057591079617852292862756047675913380626199",
"857591696176672809403750477631580323575362410491",
"910409242326391377348778281801166102059139832131",
"929857869954035706722619989283358182285540127919",
"961301750640481375785983980066592002055764391999",
"1267617700951005189537696547196156120148404630231",
"1326015641149969955786344600146607663033642528339" };
private static final BigInteger ZERO = BigInteger.ZERO;
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TWO = new BigInteger("2");
private static final BigInteger SIX = new BigInteger("6");
private static final BigInteger TWELVE = new BigInteger("12");
private static final BigInteger EIGHTEEN = new BigInteger("18");
public static void prime() {
BigInteger p1, p2, c1;
int failCount = 0;
// Test consistency
for(int i=0; i<10; i++) {
p1 = BigInteger.probablePrime(100, random);
if (!p1.isProbablePrime(100)) {
System.err.println("Consistency "+p1.toString(16));
failCount++;
}
}
// Test some known Mersenne primes (2^n)-1
// The array holds the exponents, not the numbers being tested
for (int i=0; i<NUM_MERSENNES_TO_TEST; i++) {
p1 = new BigInteger("2");
p1 = p1.pow(mersenne_powers[i]);
p1 = p1.subtract(BigInteger.ONE);
if (!p1.isProbablePrime(100)) {
System.err.println("Mersenne prime "+i+ " failed.");
failCount++;
}
}
// Test some primes reported by customers as failing in the past
for (int i=0; i<customer_primes.length; i++) {
p1 = new BigInteger(customer_primes[i]);
if (!p1.isProbablePrime(100)) {
System.err.println("Customer prime "+i+ " failed.");
failCount++;
}
}
// Test some known Carmichael numbers.
for (int i=0; i<carmichaels.length; i++) {
c1 = BigInteger.valueOf(carmichaels[i]);
if(c1.isProbablePrime(100)) {
System.err.println("Carmichael "+i+ " reported as prime.");
failCount++;
}
}
// Test some computed Carmichael numbers.
// Numbers of the form (6k+1)(12k+1)(18k+1) are Carmichael numbers if
// each of the factors is prime
int found = 0;
BigInteger f1 = new BigInteger(40, 100, random);
while (found < NUM_CARMICHAELS_TO_TEST) {
BigInteger k = null;
BigInteger f2, f3;
f1 = f1.nextProbablePrime();
BigInteger[] result = f1.subtract(ONE).divideAndRemainder(SIX);
if (result[1].equals(ZERO)) {
k = result[0];
f2 = k.multiply(TWELVE).add(ONE);
if (f2.isProbablePrime(100)) {
f3 = k.multiply(EIGHTEEN).add(ONE);
if (f3.isProbablePrime(100)) {
c1 = f1.multiply(f2).multiply(f3);
if (c1.isProbablePrime(100)) {
System.err.println("Computed Carmichael "
+c1.toString(16));
failCount++;
}
found++;
}
}
}
f1 = f1.add(TWO);
}
// Test some composites that are products of 2 primes
for (int i=0; i<50; i++) {
p1 = BigInteger.probablePrime(100, random);
p2 = BigInteger.probablePrime(100, random);
c1 = p1.multiply(p2);
if (c1.isProbablePrime(100)) {
System.err.println("Composite failed "+c1.toString(16));
failCount++;
}
}
for (int i=0; i<4; i++) {
p1 = BigInteger.probablePrime(600, random);
p2 = BigInteger.probablePrime(600, random);
c1 = p1.multiply(p2);
if (c1.isProbablePrime(100)) {
System.err.println("Composite failed "+c1.toString(16));
failCount++;
}
}
report("Prime", failCount);
}
private static final long[] primesTo100 = {
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
};
private static final long[] aPrimeSequence = {
1999999003L, 1999999013L, 1999999049L, 1999999061L, 1999999081L,
1999999087L, 1999999093L, 1999999097L, 1999999117L, 1999999121L,
1999999151L, 1999999171L, 1999999207L, 1999999219L, 1999999271L,
1999999321L, 1999999373L, 1999999423L, 1999999439L, 1999999499L,
1999999553L, 1999999559L, 1999999571L, 1999999609L, 1999999613L,
1999999621L, 1999999643L, 1999999649L, 1999999657L, 1999999747L,
1999999763L, 1999999777L, 1999999811L, 1999999817L, 1999999829L,
1999999853L, 1999999861L, 1999999871L, 1999999873
};
public static void nextProbablePrime() throws Exception {
int failCount = 0;
BigInteger p1, p2, p3;
p1 = p2 = p3 = ZERO;
// First test nextProbablePrime on the low range starting at zero
for (int i=0; i<primesTo100.length; i++) {
p1 = p1.nextProbablePrime();
if (p1.longValue() != primesTo100[i]) {
System.err.println("low range primes failed");
System.err.println("p1 is "+p1);
System.err.println("expected "+primesTo100[i]);
failCount++;
}
}
// Test nextProbablePrime on a relatively small, known prime sequence
p1 = BigInteger.valueOf(aPrimeSequence[0]);
for (int i=1; i<aPrimeSequence.length; i++) {
p1 = p1.nextProbablePrime();
if (p1.longValue() != aPrimeSequence[i]) {
System.err.println("prime sequence failed");
failCount++;
}
}
// Next, pick some large primes, use nextProbablePrime to find the
// next one, and make sure there are no primes in between
for (int i=0; i<100; i+=10) {
p1 = BigInteger.probablePrime(50 + i, random);
p2 = p1.add(ONE);
p3 = p1.nextProbablePrime();
while(p2.compareTo(p3) < 0) {
if (p2.isProbablePrime(100)){
System.err.println("nextProbablePrime failed");
System.err.println("along range "+p1.toString(16));
System.err.println("to "+p3.toString(16));
failCount++;
break;
}
p2 = p2.add(ONE);
}
}
report("nextProbablePrime", failCount);
}
public static void serialize() throws Exception {
int failCount = 0;
String bitPatterns[] = {
"ffffffff00000000ffffffff00000000ffffffff00000000",
"ffffffffffffffffffffffff000000000000000000000000",
"ffffffff0000000000000000000000000000000000000000",
"10000000ffffffffffffffffffffffffffffffffffffffff",
"100000000000000000000000000000000000000000000000",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"-ffffffff00000000ffffffff00000000ffffffff00000000",
"-ffffffffffffffffffffffff000000000000000000000000",
"-ffffffff0000000000000000000000000000000000000000",
"-10000000ffffffffffffffffffffffffffffffffffffffff",
"-100000000000000000000000000000000000000000000000",
"-aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
};
for(int i = 0; i < bitPatterns.length; i++) {
BigInteger b1 = new BigInteger(bitPatterns[i], 16);
BigInteger b2 = null;
File f = new File("serialtest");
try (FileOutputStream fos = new FileOutputStream(f)) {
try (ObjectOutputStream oos = new ObjectOutputStream(fos)) {
oos.writeObject(b1);
oos.flush();
}
try (FileInputStream fis = new FileInputStream(f);
ObjectInputStream ois = new ObjectInputStream(fis))
{
b2 = (BigInteger)ois.readObject();
}
if (!b1.equals(b2) ||
!b1.equals(b1.or(b2))) {
failCount++;
System.err.println("Serialized failed for hex " +
b1.toString(16));
}
}
f.delete();
}
for(int i=0; i<10; i++) {
BigInteger b1 = fetchNumber(random.nextInt(100));
BigInteger b2 = null;
File f = new File("serialtest");
try (FileOutputStream fos = new FileOutputStream(f)) {
try (ObjectOutputStream oos = new ObjectOutputStream(fos)) {
oos.writeObject(b1);
oos.flush();
}
try (FileInputStream fis = new FileInputStream(f);
ObjectInputStream ois = new ObjectInputStream(fis))
{
b2 = (BigInteger)ois.readObject();
}
}
if (!b1.equals(b2) ||
!b1.equals(b1.or(b2)))
failCount++;
f.delete();
}
report("Serialize", failCount);
}
/**
* Main to interpret arguments and run several tests.
*
* Up to three arguments may be given to specify the SIZE of BigIntegers
* used for call parameters 1, 2, and 3. The SIZE is interpreted as
* the maximum number of decimal digits that the parameters will have.
*
*/
public static void main(String[] args) throws Exception {
// Some variables for sizing test numbers in bits
int order1 = ORDER_MEDIUM;
int order2 = ORDER_SMALL;
int order3 = ORDER_KARATSUBA;
int order4 = ORDER_TOOM_COOK;
if (args.length >0)
order1 = (int)((Integer.parseInt(args[0]))* 3.333);
if (args.length >1)
order2 = (int)((Integer.parseInt(args[1]))* 3.333);
if (args.length >2)
order3 = (int)((Integer.parseInt(args[2]))* 3.333);
if (args.length >3)
order4 = (int)((Integer.parseInt(args[3]))* 3.333);
constructor();
prime();
nextProbablePrime();
arithmetic(order1); // small numbers
arithmetic(order3); // Karatsuba range
arithmetic(order4); // Toom-Cook / Burnikel-Ziegler range
divideAndRemainder(order1); // small numbers
divideAndRemainder(order3); // Karatsuba range
divideAndRemainder(order4); // Toom-Cook / Burnikel-Ziegler range
pow(order1);
pow(order3);
pow(order4);
square(ORDER_MEDIUM);
square(ORDER_KARATSUBA_SQUARE);
square(ORDER_TOOM_COOK_SQUARE);
squareRoot();
squareRootAndRemainder();
bitCount();
bitLength();
bitOps(order1);
bitwise(order1);
shift(order1);
byteArrayConv(order1);
modInv(order1); // small numbers
modInv(order3); // Karatsuba range
modInv(order4); // Toom-Cook / Burnikel-Ziegler range
modExp(order1, order2);
modExp2(order1);
stringConv();
serialize();
multiplyLarge();
squareLarge();
divideLarge();
if (failure)
throw new RuntimeException("Failure in BigIntegerTest.");
}
/*
* Get a random or boundary-case number. This is designed to provide
* a lot of numbers that will find failure points, such as max sized
* numbers, empty BigIntegers, etc.
*
* If order is less than 2, order is changed to 2.
*/
private static BigInteger fetchNumber(int order) {
boolean negative = random.nextBoolean();
int numType = random.nextInt(7);
BigInteger result = null;
if (order < 2) order = 2;
switch (numType) {
case 0: // Empty
result = BigInteger.ZERO;
break;
case 1: // One
result = BigInteger.ONE;
break;
case 2: // All bits set in number
int numBytes = (order+7)/8;
byte[] fullBits = new byte[numBytes];
for(int i=0; i<numBytes; i++)
fullBits[i] = (byte)0xff;
int excessBits = 8*numBytes - order;
fullBits[0] &= (1 << (8-excessBits)) - 1;
result = new BigInteger(1, fullBits);
break;
case 3: // One bit in number
result = BigInteger.ONE.shiftLeft(random.nextInt(order));
break;
case 4: // Random bit density
byte[] val = new byte[(order+7)/8];
int iterations = random.nextInt(order);
for (int i=0; i<iterations; i++) {
int bitIdx = random.nextInt(order);
val[bitIdx/8] |= 1 << (bitIdx%8);
}
result = new BigInteger(1, val);
break;
case 5: // Runs of consecutive ones and zeros
result = ZERO;
int remaining = order;
int bit = random.nextInt(2);
while (remaining > 0) {
int runLength = Math.min(remaining, random.nextInt(order));
result = result.shiftLeft(runLength);
if (bit > 0)
result = result.add(ONE.shiftLeft(runLength).subtract(ONE));
remaining -= runLength;
bit = 1 - bit;
}
break;
default: // random bits
result = new BigInteger(order, random);
}
if (negative)
result = result.negate();
return result;
}
static void report(String testName, int failCount) {
System.err.println(testName+": " +
(failCount==0 ? "Passed":"Failed("+failCount+")"));
if (failCount > 0)
failure = true;
}
}
|