File: BigIntegerTest.java

package info (click to toggle)
openjdk-11 11.0.4%2B11-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 757,028 kB
  • sloc: java: 5,016,041; xml: 1,191,974; cpp: 934,731; ansic: 555,697; sh: 24,299; objc: 12,703; python: 3,602; asm: 3,415; makefile: 2,772; awk: 351; sed: 172; perl: 114; jsp: 24; csh: 3
file content (1356 lines) | stat: -rw-r--r-- 51,210 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
/*
 * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * @test
 * @library /test/lib
 * @build jdk.test.lib.RandomFactory
 * @run main BigIntegerTest
 * @bug 4181191 4161971 4227146 4194389 4823171 4624738 4812225 4837946 4026465 8074460 8078672 8032027
 * @summary tests methods in BigInteger (use -Dseed=X to set PRNG seed)
 * @run main/timeout=400 BigIntegerTest
 * @author madbot
 * @key randomness
 */

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.Random;
import java.util.function.ToIntFunction;
import java.util.stream.Collectors;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.Stream;
import jdk.test.lib.RandomFactory;

/**
 * This is a simple test class created to ensure that the results
 * generated by BigInteger adhere to certain identities. Passing
 * this test is a strong assurance that the BigInteger operations
 * are working correctly.
 *
 * Four arguments may be specified which give the number of
 * decimal digits you desire in the four batches of test numbers.
 *
 * The tests are performed on arrays of random numbers which are
 * generated by a Random class as well as special cases which
 * throw in boundary numbers such as 0, 1, maximum sized, etc.
 *
 */
public class BigIntegerTest {
    //
    // Bit large number thresholds based on the int thresholds
    // defined in BigInteger itself:
    //
    // KARATSUBA_THRESHOLD        = 80  ints = 2560 bits
    // TOOM_COOK_THRESHOLD        = 240 ints = 7680 bits
    // KARATSUBA_SQUARE_THRESHOLD = 128 ints = 4096 bits
    // TOOM_COOK_SQUARE_THRESHOLD = 216 ints = 6912 bits
    //
    // SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20 ints = 640 bits
    //
    // BURNIKEL_ZIEGLER_THRESHOLD = 80  ints = 2560 bits
    //
    static final int BITS_KARATSUBA = 2560;
    static final int BITS_TOOM_COOK = 7680;
    static final int BITS_KARATSUBA_SQUARE = 4096;
    static final int BITS_TOOM_COOK_SQUARE = 6912;
    static final int BITS_SCHOENHAGE_BASE = 640;
    static final int BITS_BURNIKEL_ZIEGLER = 2560;
    static final int BITS_BURNIKEL_ZIEGLER_OFFSET = 1280;

    static final int ORDER_SMALL = 60;
    static final int ORDER_MEDIUM = 100;
    // #bits for testing Karatsuba
    static final int ORDER_KARATSUBA = 2760;
    // #bits for testing Toom-Cook and Burnikel-Ziegler
    static final int ORDER_TOOM_COOK = 8000;
    // #bits for testing Karatsuba squaring
    static final int ORDER_KARATSUBA_SQUARE = 4200;
    // #bits for testing Toom-Cook squaring
    static final int ORDER_TOOM_COOK_SQUARE = 7000;

    static final int SIZE = 1000; // numbers per batch

    private static Random random = RandomFactory.getRandom();

    static boolean failure = false;

    public static void constructor() {
        int failCount = 0;

        // --- guard condition tests for array indexing ---

        int arrayLength = 23;
        int halfLength = arrayLength/2;
        byte[] array = new byte[arrayLength];
        random.nextBytes(array);

        int[][] offLen = new int[][] { // offset, length, num exceptions
            {-1, arrayLength, 1},                         // negative offset
            {0, arrayLength, 0},                          // OK
            {1, arrayLength, 1},                          // length overflow
            {arrayLength - 1, 1, 0},                      // OK
            {arrayLength, 1, 1},                          // offset overflow
            {0, -1, 1},                                   // negative length
            {halfLength, arrayLength - halfLength + 1, 1} // length overflow
        };

        // two's complement
        for (int[] ol : offLen) {
            int numExceptions = 0;
            try {
                BigInteger bi = new BigInteger(array, ol[0], ol[1]);
            } catch (IndexOutOfBoundsException e) {
                numExceptions++;
            }
            if (numExceptions != ol[2]) {
                System.err.println("IndexOutOfBoundsException did not occur for "
                    + " two's complement constructor with parameters offset "
                    + ol[0] + " and length " + ol[1]);
                failCount++;
            }
        }

        // sign-magnitude
        for (int[] ol : offLen) {
            int numExceptions = 0;
            try {
                BigInteger bi = new BigInteger(1, array, ol[0], ol[1]);
            } catch (IndexOutOfBoundsException e) {
                numExceptions++;
            }
            if (numExceptions != ol[2]) {
                System.err.println("IndexOutOfBoundsException did not occur for "
                    + " sign-magnitude constructor with parameters offset "
                    + ol[0] + " and length " + ol[1]);
                failCount++;
            }
        }

        // --- tests for creation of zero-valued BigIntegers ---

        byte[] magZeroLength = new byte[0];
        for (int signum = -1; signum <= 1; signum++) {
            BigInteger bi = new BigInteger(signum, magZeroLength);
            if (bi.compareTo(BigInteger.ZERO) != 0) {
                System.err.println("A: Zero length BigInteger != 0 for signum " + signum);
                failCount++;
            }
        }

        for (int signum = -1; signum <= 1; signum++) {
            BigInteger bi = new BigInteger(signum, magZeroLength, 0, 0);
            if (bi.compareTo(BigInteger.ZERO) != 0) {
                System.err.println("B: Zero length BigInteger != 0 for signum " + signum);
                failCount++;
            }
        }

        byte[] magNonZeroLength = new byte[42];
        random.nextBytes(magNonZeroLength);
        for (int signum = -1; signum <= 1; signum++) {
            BigInteger bi = new BigInteger(signum, magNonZeroLength, 0, 0);
            if (bi.compareTo(BigInteger.ZERO) != 0) {
                System.err.println("C: Zero length BigInteger != 0 for signum " + signum);
                failCount++;
            }
        }

        // --- tests for accurate creation of non-zero BigIntegers ---

        for (int i = 0; i < SIZE; i++) {
            // create reference value via a different code path from those tested
            BigInteger reference = new BigInteger(2 + random.nextInt(336), 4, random);

            byte[] refArray = reference.toByteArray();
            int refLen = refArray.length;
            int factor = random.nextInt(5);
            int objLen = refArray.length + factor*random.nextInt(refArray.length) + 1;
            int offset = random.nextInt(objLen - refLen);
            byte[] objArray = new byte[objLen];
            System.arraycopy(refArray, 0, objArray, offset, refLen);

            BigInteger twosComp = new BigInteger(objArray, offset, refLen);
            if (twosComp.compareTo(reference) != 0) {
                System.err.println("Two's-complement BigInteger not equal for offset " +
                        offset + " and length " + refLen);
                failCount++;
            }

            boolean isNegative = random.nextBoolean();
            BigInteger signMag = new BigInteger(isNegative ? -1 : 1, objArray, offset, refLen);
            if (signMag.compareTo(isNegative ? reference.negate() : reference) != 0) {
                System.err.println("Sign-magnitude BigInteger not equal for offset " +
                        offset + " and length " + refLen);
                failCount++;
            }
        }

        report("Constructor", failCount);
    }

    public static void pow(int order) {
        int failCount1 = 0;

        for (int i=0; i<SIZE; i++) {
            // Test identity x^power == x*x*x ... *x
            int power = random.nextInt(6) + 2;
            BigInteger x = fetchNumber(order);
            BigInteger y = x.pow(power);
            BigInteger z = x;

            for (int j=1; j<power; j++)
                z = z.multiply(x);

            if (!y.equals(z))
                failCount1++;
        }
        report("pow for " + order + " bits", failCount1);
    }

    public static void square(int order) {
        int failCount1 = 0;

        for (int i=0; i<SIZE; i++) {
            // Test identity x^2 == x*x
            BigInteger x  = fetchNumber(order);
            BigInteger xx = x.multiply(x);
            BigInteger x2 = x.pow(2);

            if (!x2.equals(xx))
                failCount1++;
        }
        report("square for " + order + " bits", failCount1);
    }

    private static void printErr(String msg) {
        System.err.println(msg);
    }

    private static int checkResult(BigInteger expected, BigInteger actual,
        String failureMessage) {
        if (expected.compareTo(actual) != 0) {
            printErr(failureMessage + " - expected: " + expected
                + ", actual: " + actual);
            return 1;
        }
        return 0;
    }

    private static void squareRootSmall() {
        int failCount = 0;

        // A negative value should cause an exception.
        BigInteger n = BigInteger.ONE.negate();
        BigInteger s;
        try {
            s = n.sqrt();
            // If sqrt() does not throw an exception that is a failure.
            failCount++;
            printErr("sqrt() of negative number did not throw an exception");
        } catch (ArithmeticException expected) {
            // A negative value should cause an exception and is not a failure.
        }

        // A zero value should return BigInteger.ZERO.
        failCount += checkResult(BigInteger.ZERO, BigInteger.ZERO.sqrt(),
            "sqrt(0) != BigInteger.ZERO");

        // 1 <= value < 4 should return BigInteger.ONE.
        long[] smalls = new long[] {1, 2, 3};
        for (long small : smalls) {
            failCount += checkResult(BigInteger.ONE,
                BigInteger.valueOf(small).sqrt(), "sqrt("+small+") != 1");
        }

        report("squareRootSmall", failCount);
    }

    public static void squareRoot() {
        squareRootSmall();

        ToIntFunction<BigInteger> f = (n) -> {
            int failCount = 0;

            // square root of n^2 -> n
            BigInteger n2 = n.pow(2);
            failCount += checkResult(n, n2.sqrt(), "sqrt() n^2 -> n");

            // square root of n^2 + 1 -> n
            BigInteger n2up = n2.add(BigInteger.ONE);
            failCount += checkResult(n, n2up.sqrt(), "sqrt() n^2 + 1 -> n");

            // square root of (n + 1)^2 - 1 -> n
            BigInteger up =
                n.add(BigInteger.ONE).pow(2).subtract(BigInteger.ONE);
            failCount += checkResult(n, up.sqrt(), "sqrt() (n + 1)^2 - 1 -> n");

            // sqrt(n)^2 <= n
            BigInteger s = n.sqrt();
            if (s.multiply(s).compareTo(n) > 0) {
                failCount++;
                printErr("sqrt(n)^2 > n for n = " + n);
            }

            // (sqrt(n) + 1)^2 > n
            if (s.add(BigInteger.ONE).pow(2).compareTo(n) <= 0) {
                failCount++;
                printErr("(sqrt(n) + 1)^2 <= n for n = " + n);
            }

            return failCount;
        };

        Stream.Builder<BigInteger> sb = Stream.builder();
        int maxExponent = Double.MAX_EXPONENT + 1;
        for (int i = 1; i <= maxExponent; i++) {
            BigInteger p2 = BigInteger.ONE.shiftLeft(i);
            sb.add(p2.subtract(BigInteger.ONE));
            sb.add(p2);
            sb.add(p2.add(BigInteger.ONE));
        }
        sb.add((new BigDecimal(Double.MAX_VALUE)).toBigInteger());
        sb.add((new BigDecimal(Double.MAX_VALUE)).toBigInteger().add(BigInteger.ONE));
        report("squareRoot for 2^N and 2^N - 1, 1 <= N <= Double.MAX_EXPONENT",
            sb.build().collect(Collectors.summingInt(f)));

        IntStream ints = random.ints(SIZE, 4, Integer.MAX_VALUE);
        report("squareRoot for int", ints.mapToObj(x ->
            BigInteger.valueOf(x)).collect(Collectors.summingInt(f)));

        LongStream longs = random.longs(SIZE, (long)Integer.MAX_VALUE + 1L,
            Long.MAX_VALUE);
        report("squareRoot for long", longs.mapToObj(x ->
            BigInteger.valueOf(x)).collect(Collectors.summingInt(f)));

        DoubleStream doubles = random.doubles(SIZE,
            (double) Long.MAX_VALUE + 1.0, Math.sqrt(Double.MAX_VALUE));
        report("squareRoot for double", doubles.mapToObj(x ->
            BigDecimal.valueOf(x).toBigInteger()).collect(Collectors.summingInt(f)));
    }

    public static void squareRootAndRemainder() {
        ToIntFunction<BigInteger> g = (n) -> {
            int failCount = 0;
            BigInteger n2 = n.pow(2);

            // square root of n^2 -> n
            BigInteger[] actual = n2.sqrtAndRemainder();
            failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
            failCount += checkResult(BigInteger.ZERO, actual[1],
                "sqrtAndRemainder()[1]");

            // square root of n^2 + 1 -> n
            BigInteger n2up = n2.add(BigInteger.ONE);
            actual = n2up.sqrtAndRemainder();
            failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
            failCount += checkResult(BigInteger.ONE, actual[1],
                "sqrtAndRemainder()[1]");

            // square root of (n + 1)^2 - 1 -> n
            BigInteger up =
                n.add(BigInteger.ONE).pow(2).subtract(BigInteger.ONE);
            actual = up.sqrtAndRemainder();
            failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
            BigInteger r = up.subtract(n2);
            failCount += checkResult(r, actual[1], "sqrtAndRemainder()[1]");

            return failCount;
        };

        IntStream bits = random.ints(SIZE, 3, Short.MAX_VALUE);
        report("sqrtAndRemainder", bits.mapToObj(x ->
            BigInteger.valueOf(x)).collect(Collectors.summingInt(g)));
    }

    public static void arithmetic(int order) {
        int failCount = 0;

        for (int i=0; i<SIZE; i++) {
            BigInteger x = fetchNumber(order);
            while(x.compareTo(BigInteger.ZERO) != 1)
                x = fetchNumber(order);
            BigInteger y = fetchNumber(order/2);
            while(x.compareTo(y) == -1)
                y = fetchNumber(order/2);
            if (y.equals(BigInteger.ZERO))
                y = y.add(BigInteger.ONE);

            // Test identity ((x/y))*y + x%y - x == 0
            // using separate divide() and remainder()
            BigInteger baz = x.divide(y);
            baz = baz.multiply(y);
            baz = baz.add(x.remainder(y));
            baz = baz.subtract(x);
            if (!baz.equals(BigInteger.ZERO))
                failCount++;
        }
        report("Arithmetic I for " + order + " bits", failCount);

        failCount = 0;
        for (int i=0; i<100; i++) {
            BigInteger x = fetchNumber(order);
            while(x.compareTo(BigInteger.ZERO) != 1)
                x = fetchNumber(order);
            BigInteger y = fetchNumber(order/2);
            while(x.compareTo(y) == -1)
                y = fetchNumber(order/2);
            if (y.equals(BigInteger.ZERO))
                y = y.add(BigInteger.ONE);

            // Test identity ((x/y))*y + x%y - x == 0
            // using divideAndRemainder()
            BigInteger baz[] = x.divideAndRemainder(y);
            baz[0] = baz[0].multiply(y);
            baz[0] = baz[0].add(baz[1]);
            baz[0] = baz[0].subtract(x);
            if (!baz[0].equals(BigInteger.ZERO))
                failCount++;
        }
        report("Arithmetic II for " + order + " bits", failCount);
    }

    /**
     * Sanity test for Karatsuba and 3-way Toom-Cook multiplication.
     * For each of the Karatsuba and 3-way Toom-Cook multiplication thresholds,
     * construct two factors each with a mag array one element shorter than the
     * threshold, and with the most significant bit set and the rest of the bits
     * random. Each of these numbers will therefore be below the threshold but
     * if shifted left be above the threshold. Call the numbers 'u' and 'v' and
     * define random shifts 'a' and 'b' in the range [1,32]. Then we have the
     * identity
     * <pre>
     * (u << a)*(v << b) = (u*v) << (a + b)
     * </pre>
     * For Karatsuba multiplication, the right hand expression will be evaluated
     * using the standard naive algorithm, and the left hand expression using
     * the Karatsuba algorithm. For 3-way Toom-Cook multiplication, the right
     * hand expression will be evaluated using Karatsuba multiplication, and the
     * left hand expression using 3-way Toom-Cook multiplication.
     */
    public static void multiplyLarge() {
        int failCount = 0;

        BigInteger base = BigInteger.ONE.shiftLeft(BITS_KARATSUBA - 32 - 1);
        for (int i=0; i<SIZE; i++) {
            BigInteger x = fetchNumber(BITS_KARATSUBA - 32 - 1);
            BigInteger u = base.add(x);
            int a = 1 + random.nextInt(31);
            BigInteger w = u.shiftLeft(a);

            BigInteger y = fetchNumber(BITS_KARATSUBA - 32 - 1);
            BigInteger v = base.add(y);
            int b = 1 + random.nextInt(32);
            BigInteger z = v.shiftLeft(b);

            BigInteger multiplyResult = u.multiply(v).shiftLeft(a + b);
            BigInteger karatsubaMultiplyResult = w.multiply(z);

            if (!multiplyResult.equals(karatsubaMultiplyResult)) {
                failCount++;
            }
        }

        report("multiplyLarge Karatsuba", failCount);

        failCount = 0;
        base = base.shiftLeft(BITS_TOOM_COOK - BITS_KARATSUBA);
        for (int i=0; i<SIZE; i++) {
            BigInteger x = fetchNumber(BITS_TOOM_COOK - 32 - 1);
            BigInteger u = base.add(x);
            BigInteger u2 = u.shiftLeft(1);
            BigInteger y = fetchNumber(BITS_TOOM_COOK - 32 - 1);
            BigInteger v = base.add(y);
            BigInteger v2 = v.shiftLeft(1);

            BigInteger multiplyResult = u.multiply(v).shiftLeft(2);
            BigInteger toomCookMultiplyResult = u2.multiply(v2);

            if (!multiplyResult.equals(toomCookMultiplyResult)) {
                failCount++;
            }
        }

        report("multiplyLarge Toom-Cook", failCount);
    }

    /**
     * Sanity test for Karatsuba and 3-way Toom-Cook squaring.
     * This test is analogous to {@link AbstractMethodError#multiplyLarge}
     * with both factors being equal. The squaring methods will not be tested
     * unless the <code>bigInteger.multiply(bigInteger)</code> tests whether
     * the parameter is the same instance on which the method is being invoked
     * and calls <code>square()</code> accordingly.
     */
    public static void squareLarge() {
        int failCount = 0;

        BigInteger base = BigInteger.ONE.shiftLeft(BITS_KARATSUBA_SQUARE - 32 - 1);
        for (int i=0; i<SIZE; i++) {
            BigInteger x = fetchNumber(BITS_KARATSUBA_SQUARE - 32 - 1);
            BigInteger u = base.add(x);
            int a = 1 + random.nextInt(31);
            BigInteger w = u.shiftLeft(a);

            BigInteger squareResult = u.multiply(u).shiftLeft(2*a);
            BigInteger karatsubaSquareResult = w.multiply(w);

            if (!squareResult.equals(karatsubaSquareResult)) {
                failCount++;
            }
        }

        report("squareLarge Karatsuba", failCount);

        failCount = 0;
        base = base.shiftLeft(BITS_TOOM_COOK_SQUARE - BITS_KARATSUBA_SQUARE);
        for (int i=0; i<SIZE; i++) {
            BigInteger x = fetchNumber(BITS_TOOM_COOK_SQUARE - 32 - 1);
            BigInteger u = base.add(x);
            int a = 1 + random.nextInt(31);
            BigInteger w = u.shiftLeft(a);

            BigInteger squareResult = u.multiply(u).shiftLeft(2*a);
            BigInteger toomCookSquareResult = w.multiply(w);

            if (!squareResult.equals(toomCookSquareResult)) {
                failCount++;
            }
        }

        report("squareLarge Toom-Cook", failCount);
    }

    /**
     * Sanity test for Burnikel-Ziegler division.  The Burnikel-Ziegler division
     * algorithm is used when each of the dividend and the divisor has at least
     * a specified number of ints in its representation.  This test is based on
     * the observation that if {@code w = u*pow(2,a)} and {@code z = v*pow(2,b)}
     * where {@code abs(u) > abs(v)} and {@code a > b && b > 0}, then if
     * {@code w/z = q1*z + r1} and {@code u/v = q2*v + r2}, then
     * {@code q1 = q2*pow(2,a-b)} and {@code r1 = r2*pow(2,b)}.  The test
     * ensures that {@code v} is just under the B-Z threshold, that {@code z} is
     * over the threshold and {@code w} is much larger than {@code z}. This
     * implies that {@code u/v} uses the standard division algorithm and
     * {@code w/z} uses the B-Z algorithm.  The results of the two algorithms
     * are then compared using the observation described in the foregoing and
     * if they are not equal a failure is logged.
     */
    public static void divideLarge() {
        int failCount = 0;

        BigInteger base = BigInteger.ONE.shiftLeft(BITS_BURNIKEL_ZIEGLER + BITS_BURNIKEL_ZIEGLER_OFFSET - 33);
        for (int i=0; i<SIZE; i++) {
            BigInteger addend = new BigInteger(BITS_BURNIKEL_ZIEGLER + BITS_BURNIKEL_ZIEGLER_OFFSET - 34, random);
            BigInteger v = base.add(addend);

            BigInteger u = v.multiply(BigInteger.valueOf(2 + random.nextInt(Short.MAX_VALUE - 1)));

            if(random.nextBoolean()) {
                u = u.negate();
            }
            if(random.nextBoolean()) {
                v = v.negate();
            }

            int a = BITS_BURNIKEL_ZIEGLER_OFFSET + random.nextInt(16);
            int b = 1 + random.nextInt(16);
            BigInteger w = u.multiply(BigInteger.ONE.shiftLeft(a));
            BigInteger z = v.multiply(BigInteger.ONE.shiftLeft(b));

            BigInteger[] divideResult = u.divideAndRemainder(v);
            divideResult[0] = divideResult[0].multiply(BigInteger.ONE.shiftLeft(a - b));
            divideResult[1] = divideResult[1].multiply(BigInteger.ONE.shiftLeft(b));
            BigInteger[] bzResult = w.divideAndRemainder(z);

            if (divideResult[0].compareTo(bzResult[0]) != 0 ||
                    divideResult[1].compareTo(bzResult[1]) != 0) {
                failCount++;
            }
        }

        report("divideLarge", failCount);
    }

    public static void bitCount() {
        int failCount = 0;

        for (int i=0; i<SIZE*10; i++) {
            int x = random.nextInt();
            BigInteger bigX = BigInteger.valueOf((long)x);
            int bit = (x < 0 ? 0 : 1);
            int tmp = x, bitCount = 0;
            for (int j=0; j<32; j++) {
                bitCount += ((tmp & 1) == bit ? 1 : 0);
                tmp >>= 1;
            }

            if (bigX.bitCount() != bitCount) {
                //System.err.println(x+": "+bitCount+", "+bigX.bitCount());
                failCount++;
            }
        }
        report("Bit Count", failCount);
    }

    public static void bitLength() {
        int failCount = 0;

        for (int i=0; i<SIZE*10; i++) {
            int x = random.nextInt();
            BigInteger bigX = BigInteger.valueOf((long)x);
            int signBit = (x < 0 ? 0x80000000 : 0);
            int tmp = x, bitLength, j;
            for (j=0; j<32 && (tmp & 0x80000000)==signBit; j++)
                tmp <<= 1;
            bitLength = 32 - j;

            if (bigX.bitLength() != bitLength) {
                //System.err.println(x+": "+bitLength+", "+bigX.bitLength());
                failCount++;
            }
        }

        report("BitLength", failCount);
    }

    public static void bitOps(int order) {
        int failCount1 = 0, failCount2 = 0, failCount3 = 0;

        for (int i=0; i<SIZE*5; i++) {
            BigInteger x = fetchNumber(order);
            BigInteger y;

            // Test setBit and clearBit (and testBit)
            if (x.signum() < 0) {
                y = BigInteger.valueOf(-1);
                for (int j=0; j<x.bitLength(); j++)
                    if (!x.testBit(j))
                        y = y.clearBit(j);
            } else {
                y = BigInteger.ZERO;
                for (int j=0; j<x.bitLength(); j++)
                    if (x.testBit(j))
                        y = y.setBit(j);
            }
            if (!x.equals(y))
                failCount1++;

            // Test flipBit (and testBit)
            y = BigInteger.valueOf(x.signum()<0 ? -1 : 0);
            for (int j=0; j<x.bitLength(); j++)
                if (x.signum()<0  ^  x.testBit(j))
                    y = y.flipBit(j);
            if (!x.equals(y))
                failCount2++;
        }
        report("clearBit/testBit for " + order + " bits", failCount1);
        report("flipBit/testBit for " + order + " bits", failCount2);

        for (int i=0; i<SIZE*5; i++) {
            BigInteger x = fetchNumber(order);

            // Test getLowestSetBit()
            int k = x.getLowestSetBit();
            if (x.signum() == 0) {
                if (k != -1)
                    failCount3++;
            } else {
                BigInteger z = x.and(x.negate());
                int j;
                for (j=0; j<z.bitLength() && !z.testBit(j); j++)
                    ;
                if (k != j)
                    failCount3++;
            }
        }
        report("getLowestSetBit for " + order + " bits", failCount3);
    }

    public static void bitwise(int order) {

        // Test identity x^y == x|y &~ x&y
        int failCount = 0;
        for (int i=0; i<SIZE; i++) {
            BigInteger x = fetchNumber(order);
            BigInteger y = fetchNumber(order);
            BigInteger z = x.xor(y);
            BigInteger w = x.or(y).andNot(x.and(y));
            if (!z.equals(w))
                failCount++;
        }
        report("Logic (^ | & ~) for " + order + " bits", failCount);

        // Test identity x &~ y == ~(~x | y)
        failCount = 0;
        for (int i=0; i<SIZE; i++) {
            BigInteger x = fetchNumber(order);
            BigInteger y = fetchNumber(order);
            BigInteger z = x.andNot(y);
            BigInteger w = x.not().or(y).not();
            if (!z.equals(w))
                failCount++;
        }
        report("Logic (&~ | ~) for " + order + " bits", failCount);
    }

    public static void shift(int order) {
        int failCount1 = 0;
        int failCount2 = 0;
        int failCount3 = 0;

        for (int i=0; i<100; i++) {
            BigInteger x = fetchNumber(order);
            int n = Math.abs(random.nextInt()%200);

            if (!x.shiftLeft(n).equals
                (x.multiply(BigInteger.valueOf(2L).pow(n))))
                failCount1++;

            BigInteger y[] =x.divideAndRemainder(BigInteger.valueOf(2L).pow(n));
            BigInteger z = (x.signum()<0 && y[1].signum()!=0
                            ? y[0].subtract(BigInteger.ONE)
                            : y[0]);

            BigInteger b = x.shiftRight(n);

            if (!b.equals(z)) {
                System.err.println("Input is "+x.toString(2));
                System.err.println("shift is "+n);

                System.err.println("Divided "+z.toString(2));
                System.err.println("Shifted is "+b.toString(2));
                if (b.toString().equals(z.toString()))
                    System.err.println("Houston, we have a problem.");
                failCount2++;
            }

            if (!x.shiftLeft(n).shiftRight(n).equals(x))
                failCount3++;
        }
        report("baz shiftLeft for " + order + " bits", failCount1);
        report("baz shiftRight for " + order + " bits", failCount2);
        report("baz shiftLeft/Right for " + order + " bits", failCount3);
    }

    public static void divideAndRemainder(int order) {
        int failCount1 = 0;

        for (int i=0; i<SIZE; i++) {
            BigInteger x = fetchNumber(order).abs();
            while(x.compareTo(BigInteger.valueOf(3L)) != 1)
                x = fetchNumber(order).abs();
            BigInteger z = x.divide(BigInteger.valueOf(2L));
            BigInteger y[] = x.divideAndRemainder(x);
            if (!y[0].equals(BigInteger.ONE)) {
                failCount1++;
                System.err.println("fail1 x :"+x);
                System.err.println("      y :"+y);
            }
            else if (!y[1].equals(BigInteger.ZERO)) {
                failCount1++;
                System.err.println("fail2 x :"+x);
                System.err.println("      y :"+y);
            }

            y = x.divideAndRemainder(z);
            if (!y[0].equals(BigInteger.valueOf(2))) {
                failCount1++;
                System.err.println("fail3 x :"+x);
                System.err.println("      y :"+y);
            }
        }
        report("divideAndRemainder for " + order + " bits", failCount1);
    }

    public static void stringConv() {
        int failCount = 0;

        // Generic string conversion.
        for (int i=0; i<100; i++) {
            byte xBytes[] = new byte[Math.abs(random.nextInt())%100+1];
            random.nextBytes(xBytes);
            BigInteger x = new BigInteger(xBytes);

            for (int radix=Character.MIN_RADIX; radix < Character.MAX_RADIX; radix++) {
                String result = x.toString(radix);
                BigInteger test = new BigInteger(result, radix);
                if (!test.equals(x)) {
                    failCount++;
                    System.err.println("BigInteger toString: "+x);
                    System.err.println("Test: "+test);
                    System.err.println(radix);
                }
            }
        }

        // String conversion straddling the Schoenhage algorithm crossover
        // threshold, and at twice and four times the threshold.
        for (int k = 0; k <= 2; k++) {
            int factor = 1 << k;
            int upper = factor * BITS_SCHOENHAGE_BASE + 33;
            int lower = upper - 35;

            for (int bits = upper; bits >= lower; bits--) {
                for (int i = 0; i < 50; i++) {
                    BigInteger x = BigInteger.ONE.shiftLeft(bits - 1).or(new BigInteger(bits - 2, random));

                    for (int radix = Character.MIN_RADIX; radix < Character.MAX_RADIX; radix++) {
                        String result = x.toString(radix);
                        BigInteger test = new BigInteger(result, radix);
                        if (!test.equals(x)) {
                            failCount++;
                            System.err.println("BigInteger toString: " + x);
                            System.err.println("Test: " + test);
                            System.err.println(radix);
                        }
                    }
                }
            }
        }

        report("String Conversion", failCount);
    }

    public static void byteArrayConv(int order) {
        int failCount = 0;

        for (int i=0; i<SIZE; i++) {
            BigInteger x = fetchNumber(order);
            while (x.equals(BigInteger.ZERO))
                x = fetchNumber(order);
            BigInteger y = new BigInteger(x.toByteArray());
            if (!x.equals(y)) {
                failCount++;
                System.err.println("orig is "+x);
                System.err.println("new is "+y);
            }
        }
        report("Array Conversion for " + order + " bits", failCount);
    }

    public static void modInv(int order) {
        int failCount = 0, successCount = 0, nonInvCount = 0;

        for (int i=0; i<SIZE; i++) {
            BigInteger x = fetchNumber(order);
            while(x.equals(BigInteger.ZERO))
                x = fetchNumber(order);
            BigInteger m = fetchNumber(order).abs();
            while(m.compareTo(BigInteger.ONE) != 1)
                m = fetchNumber(order).abs();

            try {
                BigInteger inv = x.modInverse(m);
                BigInteger prod = inv.multiply(x).remainder(m);

                if (prod.signum() == -1)
                    prod = prod.add(m);

                if (prod.equals(BigInteger.ONE))
                    successCount++;
                else
                    failCount++;
            } catch(ArithmeticException e) {
                nonInvCount++;
            }
        }
        report("Modular Inverse for " + order + " bits", failCount);
    }

    public static void modExp(int order1, int order2) {
        int failCount = 0;

        for (int i=0; i<SIZE/10; i++) {
            BigInteger m = fetchNumber(order1).abs();
            while(m.compareTo(BigInteger.ONE) != 1)
                m = fetchNumber(order1).abs();
            BigInteger base = fetchNumber(order2);
            BigInteger exp = fetchNumber(8).abs();

            BigInteger z = base.modPow(exp, m);
            BigInteger w = base.pow(exp.intValue()).mod(m);
            if (!z.equals(w)) {
                System.err.println("z is "+z);
                System.err.println("w is "+w);
                System.err.println("mod is "+m);
                System.err.println("base is "+base);
                System.err.println("exp is "+exp);
                failCount++;
            }
        }
        report("Exponentiation I for " + order1 + " and " +
               order2 + " bits", failCount);
    }

    // This test is based on Fermat's theorem
    // which is not ideal because base must not be multiple of modulus
    // and modulus must be a prime or pseudoprime (Carmichael number)
    public static void modExp2(int order) {
        int failCount = 0;

        for (int i=0; i<10; i++) {
            BigInteger m = new BigInteger(100, 5, random);
            while(m.compareTo(BigInteger.ONE) != 1)
                m = new BigInteger(100, 5, random);
            BigInteger exp = m.subtract(BigInteger.ONE);
            BigInteger base = fetchNumber(order).abs();
            while(base.compareTo(m) != -1)
                base = fetchNumber(order).abs();
            while(base.equals(BigInteger.ZERO))
                base = fetchNumber(order).abs();

            BigInteger one = base.modPow(exp, m);
            if (!one.equals(BigInteger.ONE)) {
                System.err.println("m is "+m);
                System.err.println("base is "+base);
                System.err.println("exp is "+exp);
                failCount++;
            }
        }
        report("Exponentiation II for " + order + " bits", failCount);
    }

    private static final int[] mersenne_powers = {
        521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,
        21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433,
        1257787, 1398269, 2976221, 3021377, 6972593, 13466917 };

    private static final long[] carmichaels = {
      561,1105,1729,2465,2821,6601,8911,10585,15841,29341,41041,46657,52633,
      62745,63973,75361,101101,115921,126217,162401,172081,188461,252601,
      278545,294409,314821,334153,340561,399001,410041,449065,488881,512461,
      225593397919L };

    // Note: testing the larger ones takes too long.
    private static final int NUM_MERSENNES_TO_TEST = 7;
    // Note: this constant used for computed Carmichaels, not the array above
    private static final int NUM_CARMICHAELS_TO_TEST = 5;

    private static final String[] customer_primes = {
        "120000000000000000000000000000000019",
        "633825300114114700748351603131",
        "1461501637330902918203684832716283019651637554291",
        "779626057591079617852292862756047675913380626199",
        "857591696176672809403750477631580323575362410491",
        "910409242326391377348778281801166102059139832131",
        "929857869954035706722619989283358182285540127919",
        "961301750640481375785983980066592002055764391999",
        "1267617700951005189537696547196156120148404630231",
        "1326015641149969955786344600146607663033642528339" };

    private static final BigInteger ZERO = BigInteger.ZERO;
    private static final BigInteger ONE = BigInteger.ONE;
    private static final BigInteger TWO = new BigInteger("2");
    private static final BigInteger SIX = new BigInteger("6");
    private static final BigInteger TWELVE = new BigInteger("12");
    private static final BigInteger EIGHTEEN = new BigInteger("18");

    public static void prime() {
        BigInteger p1, p2, c1;
        int failCount = 0;

        // Test consistency
        for(int i=0; i<10; i++) {
            p1 = BigInteger.probablePrime(100, random);
            if (!p1.isProbablePrime(100)) {
                System.err.println("Consistency "+p1.toString(16));
                failCount++;
            }
        }

        // Test some known Mersenne primes (2^n)-1
        // The array holds the exponents, not the numbers being tested
        for (int i=0; i<NUM_MERSENNES_TO_TEST; i++) {
            p1 = new BigInteger("2");
            p1 = p1.pow(mersenne_powers[i]);
            p1 = p1.subtract(BigInteger.ONE);
            if (!p1.isProbablePrime(100)) {
                System.err.println("Mersenne prime "+i+ " failed.");
                failCount++;
            }
        }

        // Test some primes reported by customers as failing in the past
        for (int i=0; i<customer_primes.length; i++) {
            p1 = new BigInteger(customer_primes[i]);
            if (!p1.isProbablePrime(100)) {
                System.err.println("Customer prime "+i+ " failed.");
                failCount++;
            }
        }

        // Test some known Carmichael numbers.
        for (int i=0; i<carmichaels.length; i++) {
            c1 = BigInteger.valueOf(carmichaels[i]);
            if(c1.isProbablePrime(100)) {
                System.err.println("Carmichael "+i+ " reported as prime.");
                failCount++;
            }
        }

        // Test some computed Carmichael numbers.
        // Numbers of the form (6k+1)(12k+1)(18k+1) are Carmichael numbers if
        // each of the factors is prime
        int found = 0;
        BigInteger f1 = new BigInteger(40, 100, random);
        while (found < NUM_CARMICHAELS_TO_TEST) {
            BigInteger k = null;
            BigInteger f2, f3;
            f1 = f1.nextProbablePrime();
            BigInteger[] result = f1.subtract(ONE).divideAndRemainder(SIX);
            if (result[1].equals(ZERO)) {
                k = result[0];
                f2 = k.multiply(TWELVE).add(ONE);
                if (f2.isProbablePrime(100)) {
                    f3 = k.multiply(EIGHTEEN).add(ONE);
                    if (f3.isProbablePrime(100)) {
                        c1 = f1.multiply(f2).multiply(f3);
                        if (c1.isProbablePrime(100)) {
                            System.err.println("Computed Carmichael "
                                               +c1.toString(16));
                            failCount++;
                        }
                        found++;
                    }
                }
            }
            f1 = f1.add(TWO);
        }

        // Test some composites that are products of 2 primes
        for (int i=0; i<50; i++) {
            p1 = BigInteger.probablePrime(100, random);
            p2 = BigInteger.probablePrime(100, random);
            c1 = p1.multiply(p2);
            if (c1.isProbablePrime(100)) {
                System.err.println("Composite failed "+c1.toString(16));
                failCount++;
            }
        }

        for (int i=0; i<4; i++) {
            p1 = BigInteger.probablePrime(600, random);
            p2 = BigInteger.probablePrime(600, random);
            c1 = p1.multiply(p2);
            if (c1.isProbablePrime(100)) {
                System.err.println("Composite failed "+c1.toString(16));
                failCount++;
            }
        }

        report("Prime", failCount);
    }

    private static final long[] primesTo100 = {
        2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
    };

    private static final long[] aPrimeSequence = {
        1999999003L, 1999999013L, 1999999049L, 1999999061L, 1999999081L,
        1999999087L, 1999999093L, 1999999097L, 1999999117L, 1999999121L,
        1999999151L, 1999999171L, 1999999207L, 1999999219L, 1999999271L,
        1999999321L, 1999999373L, 1999999423L, 1999999439L, 1999999499L,
        1999999553L, 1999999559L, 1999999571L, 1999999609L, 1999999613L,
        1999999621L, 1999999643L, 1999999649L, 1999999657L, 1999999747L,
        1999999763L, 1999999777L, 1999999811L, 1999999817L, 1999999829L,
        1999999853L, 1999999861L, 1999999871L, 1999999873
    };

    public static void nextProbablePrime() throws Exception {
        int failCount = 0;
        BigInteger p1, p2, p3;
        p1 = p2 = p3 = ZERO;

        // First test nextProbablePrime on the low range starting at zero
        for (int i=0; i<primesTo100.length; i++) {
            p1 = p1.nextProbablePrime();
            if (p1.longValue() != primesTo100[i]) {
                System.err.println("low range primes failed");
                System.err.println("p1 is "+p1);
                System.err.println("expected "+primesTo100[i]);
                failCount++;
            }
        }

        // Test nextProbablePrime on a relatively small, known prime sequence
        p1 = BigInteger.valueOf(aPrimeSequence[0]);
        for (int i=1; i<aPrimeSequence.length; i++) {
            p1 = p1.nextProbablePrime();
            if (p1.longValue() != aPrimeSequence[i]) {
                System.err.println("prime sequence failed");
                failCount++;
            }
        }

        // Next, pick some large primes, use nextProbablePrime to find the
        // next one, and make sure there are no primes in between
        for (int i=0; i<100; i+=10) {
            p1 = BigInteger.probablePrime(50 + i, random);
            p2 = p1.add(ONE);
            p3 = p1.nextProbablePrime();
            while(p2.compareTo(p3) < 0) {
                if (p2.isProbablePrime(100)){
                    System.err.println("nextProbablePrime failed");
                    System.err.println("along range "+p1.toString(16));
                    System.err.println("to "+p3.toString(16));
                    failCount++;
                    break;
                }
                p2 = p2.add(ONE);
            }
        }

        report("nextProbablePrime", failCount);
    }

    public static void serialize() throws Exception {
        int failCount = 0;

        String bitPatterns[] = {
             "ffffffff00000000ffffffff00000000ffffffff00000000",
             "ffffffffffffffffffffffff000000000000000000000000",
             "ffffffff0000000000000000000000000000000000000000",
             "10000000ffffffffffffffffffffffffffffffffffffffff",
             "100000000000000000000000000000000000000000000000",
             "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
            "-ffffffff00000000ffffffff00000000ffffffff00000000",
            "-ffffffffffffffffffffffff000000000000000000000000",
            "-ffffffff0000000000000000000000000000000000000000",
            "-10000000ffffffffffffffffffffffffffffffffffffffff",
            "-100000000000000000000000000000000000000000000000",
            "-aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
        };

        for(int i = 0; i < bitPatterns.length; i++) {
            BigInteger b1 = new BigInteger(bitPatterns[i], 16);
            BigInteger b2 = null;

            File f = new File("serialtest");

            try (FileOutputStream fos = new FileOutputStream(f)) {
                try (ObjectOutputStream oos = new ObjectOutputStream(fos)) {
                    oos.writeObject(b1);
                    oos.flush();
                }

                try (FileInputStream fis = new FileInputStream(f);
                     ObjectInputStream ois = new ObjectInputStream(fis))
                {
                    b2 = (BigInteger)ois.readObject();
                }

                if (!b1.equals(b2) ||
                    !b1.equals(b1.or(b2))) {
                    failCount++;
                    System.err.println("Serialized failed for hex " +
                                       b1.toString(16));
                }
            }
            f.delete();
        }

        for(int i=0; i<10; i++) {
            BigInteger b1 = fetchNumber(random.nextInt(100));
            BigInteger b2 = null;
            File f = new File("serialtest");
            try (FileOutputStream fos = new FileOutputStream(f)) {
                try (ObjectOutputStream oos = new ObjectOutputStream(fos)) {
                    oos.writeObject(b1);
                    oos.flush();
                }

                try (FileInputStream fis = new FileInputStream(f);
                     ObjectInputStream ois = new ObjectInputStream(fis))
                {
                    b2 = (BigInteger)ois.readObject();
                }
            }

            if (!b1.equals(b2) ||
                !b1.equals(b1.or(b2)))
                failCount++;
            f.delete();
        }

        report("Serialize", failCount);
    }

    /**
     * Main to interpret arguments and run several tests.
     *
     * Up to three arguments may be given to specify the SIZE of BigIntegers
     * used for call parameters 1, 2, and 3. The SIZE is interpreted as
     * the maximum number of decimal digits that the parameters will have.
     *
     */
    public static void main(String[] args) throws Exception {
        // Some variables for sizing test numbers in bits
        int order1 = ORDER_MEDIUM;
        int order2 = ORDER_SMALL;
        int order3 = ORDER_KARATSUBA;
        int order4 = ORDER_TOOM_COOK;

        if (args.length >0)
            order1 = (int)((Integer.parseInt(args[0]))* 3.333);
        if (args.length >1)
            order2 = (int)((Integer.parseInt(args[1]))* 3.333);
        if (args.length >2)
            order3 = (int)((Integer.parseInt(args[2]))* 3.333);
        if (args.length >3)
            order4 = (int)((Integer.parseInt(args[3]))* 3.333);

        constructor();

        prime();
        nextProbablePrime();

        arithmetic(order1);   // small numbers
        arithmetic(order3);   // Karatsuba range
        arithmetic(order4);   // Toom-Cook / Burnikel-Ziegler range

        divideAndRemainder(order1);   // small numbers
        divideAndRemainder(order3);   // Karatsuba range
        divideAndRemainder(order4);   // Toom-Cook / Burnikel-Ziegler range

        pow(order1);
        pow(order3);
        pow(order4);

        square(ORDER_MEDIUM);
        square(ORDER_KARATSUBA_SQUARE);
        square(ORDER_TOOM_COOK_SQUARE);

        squareRoot();
        squareRootAndRemainder();

        bitCount();
        bitLength();
        bitOps(order1);
        bitwise(order1);

        shift(order1);

        byteArrayConv(order1);

        modInv(order1);   // small numbers
        modInv(order3);   // Karatsuba range
        modInv(order4);   // Toom-Cook / Burnikel-Ziegler range

        modExp(order1, order2);
        modExp2(order1);

        stringConv();
        serialize();

        multiplyLarge();
        squareLarge();
        divideLarge();

        if (failure)
            throw new RuntimeException("Failure in BigIntegerTest.");
    }

    /*
     * Get a random or boundary-case number. This is designed to provide
     * a lot of numbers that will find failure points, such as max sized
     * numbers, empty BigIntegers, etc.
     *
     * If order is less than 2, order is changed to 2.
     */
    private static BigInteger fetchNumber(int order) {
        boolean negative = random.nextBoolean();
        int numType = random.nextInt(7);
        BigInteger result = null;
        if (order < 2) order = 2;

        switch (numType) {
            case 0: // Empty
                result = BigInteger.ZERO;
                break;

            case 1: // One
                result = BigInteger.ONE;
                break;

            case 2: // All bits set in number
                int numBytes = (order+7)/8;
                byte[] fullBits = new byte[numBytes];
                for(int i=0; i<numBytes; i++)
                    fullBits[i] = (byte)0xff;
                int excessBits = 8*numBytes - order;
                fullBits[0] &= (1 << (8-excessBits)) - 1;
                result = new BigInteger(1, fullBits);
                break;

            case 3: // One bit in number
                result = BigInteger.ONE.shiftLeft(random.nextInt(order));
                break;

            case 4: // Random bit density
                byte[] val = new byte[(order+7)/8];
                int iterations = random.nextInt(order);
                for (int i=0; i<iterations; i++) {
                    int bitIdx = random.nextInt(order);
                    val[bitIdx/8] |= 1 << (bitIdx%8);
                }
                result = new BigInteger(1, val);
                break;
            case 5: // Runs of consecutive ones and zeros
                result = ZERO;
                int remaining = order;
                int bit = random.nextInt(2);
                while (remaining > 0) {
                    int runLength = Math.min(remaining, random.nextInt(order));
                    result = result.shiftLeft(runLength);
                    if (bit > 0)
                        result = result.add(ONE.shiftLeft(runLength).subtract(ONE));
                    remaining -= runLength;
                    bit = 1 - bit;
                }
                break;

            default: // random bits
                result = new BigInteger(order, random);
        }

        if (negative)
            result = result.negate();

        return result;
    }

    static void report(String testName, int failCount) {
        System.err.println(testName+": " +
                           (failCount==0 ? "Passed":"Failed("+failCount+")"));
        if (failCount > 0)
            failure = true;
    }
}