File: FormatMicroBenchmark.java

package info (click to toggle)
openjdk-11 11.0.4%2B11-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 757,028 kB
  • sloc: java: 5,016,041; xml: 1,191,974; cpp: 934,731; ansic: 555,697; sh: 24,299; objc: 12,703; python: 3,602; asm: 3,415; makefile: 2,772; awk: 351; sed: 172; perl: 114; jsp: 24; csh: 3
file content (926 lines) | stat: -rw-r--r-- 36,846 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
/*
 * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * @test
 * @bug 7050528
 * @summary Set of micro-benchmarks testing throughput of java.text.DecimalFormat.format()
 * @author Olivier Lagneau
 * @run main FormatMicroBenchmark
 */

/* This is a set of micro-benchmarks testing throughput of java.text.DecimalFormat.format().
 * It never fails.
 *
 * Usage and arguments:
 *  - Run with no argument skips the whole benchmark and exits.
 *  - Run with "-help" as first argument calls the usage() method and exits.
 *  - Run with "-doit" runs the benchmark with summary details.
 *  - Run with "-verbose" provides additional details on the run.
 *
 * Example run :
 *   java -Xms500m -Xmx500m -XX:NewSize=400m FormatMicroBenchmark -doit -verbose
 *
 * Running with jtreg:
 *  The jtreg header "run" tag options+args must be changed to avoid skipping
 *  the execution. here is an example of run options:
 *  "main/othervm -Xms500m -Xmx500m -XX:NewSize=400m FormatMicroBenchmark -doit"
 *
 * Note:
 *  - Vm options -Xms, -Xmx, -XX:NewSize must be set correctly for
 *    getting reliable numbers. Otherwise GC activity may corrupt results.
 *    As of jdk80b48 using "-Xms500m -Xmx500m -XX:NewSize=400m" covers
 *    all cases.
 *  - Optionally using "-Xlog:gc" option provides information that
 *    helps checking any GC activity while benches are run.
 *
 * Vm Options:
 *  - Vm options to use (as of jdk80b48):
 *     fast-path case :     -Xms128m -Xmx128m -XX:NewSize=100m
 *     non fast-path case:  -Xms500m -Xmx500m -XX:NewSize=400m
 *    or use worst case (non fast-path above) with both types of algorithm.
 *
 *  - use -Xlog:gc to verify memory consumption of the benchmarks.
 *    (See "Checking Memory Consumption" below).
 *
 * Description:
 *
 *  Fast-path algorithm for format(double...)  call stack is very different  of
 *  the standard call stack. Where the  standard algorithm for formating double
 *  uses internal class sun.misc.FloatingDecimal and its dtoa(double) method to
 *  provide digits,  fast-path embeds its own  algorithm for  binary to decimal
 *  string conversion.
 *
 *  FloatingDecimal always converts completely  the passed double to  a string.
 *  Fast-path converts  only to the needed digits  since it follows constraints
 *  on both the pattern rule,  the  DecimalFormat instance properties, and  the
 *  passed double.
 *
 *  Micro benchmarks below measure  the throughput for formating double  values
 *  using NumberFormat.format(double)  call stack.  The  standard DecimalFormat
 *  call stack as well as the  fast-path algorithm implementation are sensitive
 *  to the nature of the passed double values regarding throughput performance.
 *
 *  These benchmarks are useful both  for measuring the global performance gain
 *  of fast-path and to check that any modification done on fast-path algorithm
 *  does not bring any regression in the performance boost of fast-path.
 *
 *  Note  that these benchmarks  will provide numbers  without any knowledge of
 *  the  implementation of DecimalFormat class. So  to check regression any run
 *  should be compared to another reference run with  a previous JDK, wether or
 *  not this previous reference JDK contains fast-path implementation.
 *
 *  The eight benchmarks below are dedicated to measure throughput on different
 *  kinds of double that all fall in the fast-path case (all in Integer range):
 *
 *  - Integer case : used double values are all "integer-like" (ex: -12345.0).
 *    This is the benchFormatInteger micro-benchmark.
 *
 *  - Fractional case : double values are "fractional" (ex: -0.12345).
 *    This is the benchFormatFractional micro-benchmark.
 *
 *  - Small integral case : like Integer case but double values are all limited
 *    in their magnitude, from -500.0 to 500.0 if the number of iterations N is
 *    set to 500000.
 *    This is the benchFormatSmallIntegral micro-benchmark.
 *
 *  - Fractional All Nines : doubles values have fractional part that is very
 *    close to "999" (decimal pattern), or "99" (currency pattern),
 *    or "0000...".
 *    This is the benchFormatFractionalAllNines micro-benchmark.
 *
 *  - All Nines : double values are such that both integral and fractional
 *    part consist only of '9' digits. None of these values are rounded up.
 *    This is the benchFormatAllNines micro-benchmark.
 *
 *  - Fair simple case : calling J the loop variable and iterating over
 *    the N number of iterations, used double values are computed as
 *    d = (double) J + J*seed
 *    where seed is a very small value that adds a fractional part and adds a
 *    small number to integral part. Provides fairly distributed double values.
 *    This is the benchFormatFairSimple micro-benchmark.
 *
 *  - Fair case : this is a combination of small integral case and fair simple
 *    case. Double values are limited in their magnitude but follow a parabolic
 *    curve y = x**2 / K, keeping large magnitude only for large values of J.
 *    The intent is trying to reproduce a distribution of double values as could
 *    be found in a business application, with most values in either the low
 *    range or the high range.
 *    This is the benchFormatFair micro-benchmark.
 *
 *  - Tie cases: values are very close to a tie case (iii...ii.fff5)
 *    That is the worst situation that can happen for Fast-path algorithm when
 *    considering throughput.
 *    This is the benchFormatTie micro-benchmark.
 *
 *  For  all  of  the micro-benchmarks,  the  throughput load   of the eventual
 *  additional computations inside the loop is calculated  prior to running the
 *  benchmark, and provided in the output.  That may be  useful since this load
 *  may vary for each architecture or machine configuration.
 *
 *  The "-verbose" flag,  when set, provides the  throughput  load numbers, the
 *  time spent for  each run of  a benchmark, as  well as an estimation  of the
 *  memory consumed  by the  runs.  Beware of  incremental  GCs, see  "Checking
 *  Memory  Consumption" section below. Every run   should be done with correct
 *  ms, mx, and NewSize vm options to get fully reliable numbers.
 *
 *  The output provides the  mean time needed for  a benchmark after the server
 *  jit compiler has done its optimization work if  any. Thus only the last but
 *  first three runs are taken into account in the time measurement (server jit
 *  compiler shows  to have  done full  optimization  in  most cases  after the
 *  second run, given a base number of iterations set to 500000).
 *
 *  The program cleans up memory (stabilizeMemory() method) between each run of
 *  the benchmarks to make sure that  no garbage collection activity happens in
 *  measurements. However that does not  preclude incremental GCs activity that
 *  may  happen during the micro-benchmark if  -Xms, -Xmx, and NewSize options
 *  have not been tuned and set correctly.
 *
 * Checking Memory Consumption:
 *
 *  For getting confidence  in the throughput numbers, there  must not give any
 *  GC activity during the benchmark runs. That  means that specific VM options
 *  related to memory must be tuned for any given implementation of the JDK.
 *
 *  Running with "-verbose" arguments will provide  clues of the memory consumed
 *  but  is   not enough,  since  any   unexpected  incremental  GC  may  lower
 *  artificially the estimation of the memory consumption.
 *
 *  Options to  set are -Xms, -Xmx,  -XX:NewSize, plus -Xlog:gc to evaluate
 *  correctly  the  values of  these options. When  running "-verbose", varying
 *  numbers reported for memory consumption may  indicate bad choices for these
 *  options.
 *
 *  For jdk80b25, fast-path shows a consuption of ~60Mbs for 500000 iterations
 *  while a jdk without fast-path will consume ~260Mbs for each benchmark run.
 *  Indeed these values will vary depending on the jdk used.
 *
 *  Correct option settings found jdk80b48 were :
 *     fast-path :     -Xms128m -Xmx128m -XX:NewSize=100m
 *     non fast-path : -Xms500m -Xmx500m -XX:NewSize=400m
 *  Greater values can be provided safely but not smaller ones.
 * ----------------------------------------------------------------------
 */

import java.util.*;
import java.text.NumberFormat;
import java.text.DecimalFormat;

public class FormatMicroBenchmark {

    // The number of times the bench method will be run (must be at least 4).
    private static final int NB_RUNS = 20;

    // The bench* methods below all iterates over [-MAX_RANGE , +MAX_RANGE] integer values.
    private static final int MAX_RANGE = 500000;

    // Flag for more details on each bench run (default is no).
    private static boolean Verbose = false;

    // Should we really execute the benches ? (no by default).
    private static boolean DoIt = false;

    // Prints out a message describing how to run the program.
    private static void usage() {
        System.out.println(
            "This is a set of micro-benchmarks testing throughput of " +
            "java.text.DecimalFormat.format(). It never fails.\n\n" +
            "Usage and arguments:\n" +
            " - Run with no argument skips the whole benchmark and exits.\n" +
            " - Run with \"-help\" as first argument prints this message and exits.\n" +
            " - Run with \"-doit\" runs the benchmark with summary details.\n" +
            " - Run with \"-verbose\" provides additional details on the run.\n\n" +
            "Example run :\n" +
            "   java -Xms500m -Xmx500m -XX:NewSize=400m FormatMicroBenchmark -doit -verbose\n\n" +
            "Note: \n" +
            " - Vm options -Xms, -Xmx, -XX:NewSize must be set correctly for \n" +
            "   getting reliable numbers. Otherwise GC activity may corrupt results.\n" +
            "   As of jdk80b48 using \"-Xms500m -Xmx500m -XX:NewSize=400m\" covers \n" +
            "   all cases.\n" +
            " - Optionally using \"-Xlog:gc\" option provides information that \n" +
            "   helps checking any GC activity while benches are run.\n\n" +
            "Look at the heading comments and description in source code for " +
            "detailed information.\n");
    }

    /* We will call stabilizeMemory before each call of benchFormat***().
     * This in turn tries to clean up as much memory as possible.
     * As a safe bound we limit number of System.gc() calls to 10,
     * but most of the time two calls to System.gc() will be enough.
     * If memory reporting is asked for, the method returns the difference
     * of free memory between entering an leaving the method.
     */
    private static long stabilizeMemory(boolean reportConsumedMemory) {
        final long oneMegabyte = 1024L * 1024L;

        long refMemory = 0;
        long initialMemoryLeft = Runtime.getRuntime().freeMemory();
        long currMemoryLeft = initialMemoryLeft;
        int nbGCCalls = 0;

        do {
            nbGCCalls++;

            refMemory = currMemoryLeft;
            System.gc();
            currMemoryLeft = Runtime.getRuntime().freeMemory();

        } while ((Math.abs(currMemoryLeft - refMemory) > oneMegabyte) &&
                 (nbGCCalls < 10));

        if (Verbose &&
            reportConsumedMemory)
            System.out.println("Memory consumed by previous run : " +
                               (currMemoryLeft - initialMemoryLeft)/oneMegabyte + "Mbs.");

        return currMemoryLeft;
    }


    // ---------- Integer only based bench --------------------
    private static final String INTEGER_BENCH = "benchFormatInteger";
    private static String benchFormatInteger(NumberFormat nf) {
        String str = "";
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++)
            str = nf.format((double) j);
        return str;
    }

    // This reproduces the throughput load added in benchFormatInteger
    static double integerThroughputLoad() {
        double d = 0.0d;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = (double) j;
        }
        return d;
    }

    // Runs integerThroughputLoad and calculate its mean load
    static void calculateIntegerThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = integerThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }


        if (Verbose)
            System.out.println(
               "calculated throughput load for " + INTEGER_BENCH +
               " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- Fractional only based bench --------------------
    private static final String FRACTIONAL_BENCH = "benchFormatFractional";
    private static String benchFormatFractional(NumberFormat nf) {
        String str = "";
        double floatingN = 1.0d / (double) MAX_RANGE;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++)
            str = nf.format(floatingN * (double) j);
        return str;
    }

    // This reproduces the throughput load added in benchFormatFractional
    static double fractionalThroughputLoad() {
        double d = 0.0d;
        double floatingN = 1.0d / (double) MAX_RANGE;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = floatingN * (double) j;
        }
        return d;
    }

    // Runs fractionalThroughputLoad and calculate its mean load
    static void calculateFractionalThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = fractionalThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
        System.out.println(
            "calculated throughput load for " + FRACTIONAL_BENCH +
            " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- An Small Integral bench --------------------
    //  that limits the magnitude of tested double values
    private static final String SMALL_INTEGRAL_BENCH = "benchFormatSmallIntegral";
    private static String benchFormatSmallIntegral(NumberFormat nf) {
        String str = "";
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++)
            str = nf.format(((double) j) / 1000.0d);
        return str;
    }

    // This reproduces the throughput load added in benchFormatSmallIntegral
    static double smallIntegralThroughputLoad() {
        double d = 0.0d;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = (double) j / 1000.0d;
        }
        return d;
    }

    // Runs small_integralThroughputLoad and calculate its mean load
    static void calculateSmallIntegralThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = smallIntegralThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
        System.out.println(
            "calculated throughput load for " + SMALL_INTEGRAL_BENCH +
            " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- A fair and simple bench --------------------
    private static final String FAIR_SIMPLE_BENCH = "benchFormatFairSimple";
    private static String benchFormatFairSimple(NumberFormat nf, boolean isCurrency) {
        String str = "";
        double seed = isCurrency ?  0.0010203040506070809 : 0.00010203040506070809;
        double d = (double) -MAX_RANGE;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = d  + 1.0d + seed;
            str = nf.format(d);
        }
        return str;
    }

    // This reproduces the throughput load added in benchFormatFairSimple
    static double fairSimpleThroughputLoad() {
        double seed =  0.00010203040506070809;
        double delta = 0.0d;
        double d = (double) -MAX_RANGE;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = d + 1.0d + seed;
        }
        return d;
    }

    // Runs fairThroughputLoad and calculate its mean load
    static void calculateFairSimpleThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = fairSimpleThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
        System.out.println(
            "calculated throughput load for " + FAIR_SIMPLE_BENCH +
            " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- Fractional part is only made of nines bench --------------
    private static final String FRACTIONAL_ALL_NINES_BENCH = "benchFormatFractionalAllNines";
    private static String benchFormatFractionalAllNines(NumberFormat nf, boolean isCurrency) {
        String str = "";
        double fractionalEven = isCurrency ?  0.993000001 : 0.99930000001;
        double fractionalOdd  = isCurrency ?  0.996000001 : 0.99960000001;
        double fractional;
        double d;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            if ((j & 1) == 0)
                fractional = fractionalEven;
            else
                fractional = fractionalOdd;
            if ( j >= 0)
                d = (double ) j + fractional;
            else d = (double) j - fractional;
            str = nf.format(d);
        }
        return str;
    }

    // This reproduces the throughput load added in benchFormatFractionalAllNines
    static double fractionalAllNinesThroughputLoad() {
        double fractionalEven = 0.99930000001;
        double fractionalOdd  = 0.99960000001;
        double fractional;
        double d = 0.0d;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            if ((j & 1) == 0)
                fractional = fractionalEven;
            else fractional = fractionalOdd;
            if ( j >= 0)
                d = (double ) j + fractional;
            else d = (double) j - fractional;
        }
        return d;
    }

    // Runs fractionalAllNinesThroughputLoad and calculate its mean load
    static void calculateFractionalAllNinesThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = fractionalAllNinesThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
            System.out.println(
               "calculated throughput load for " + FRACTIONAL_ALL_NINES_BENCH +
               " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- Number is only made of nines bench --------------
    private static final String ALL_NINES_BENCH = "benchFormatAllNines";
    private static String benchFormatAllNines(NumberFormat nf, boolean isCurrency) {
        String str = "";
        double[] decimaAllNines =
            {9.9993, 99.9993, 999.9993, 9999.9993, 99999.9993,
             999999.9993, 9999999.9993, 99999999.9993, 999999999.9993};
        double[] currencyAllNines =
            {9.993, 99.993, 999.993, 9999.993, 99999.993,
             999999.993, 9999999.993, 99999999.993, 999999999.993};
        double[] valuesArray = (isCurrency) ? currencyAllNines : decimaAllNines;
        double seed = 1.0 / (double) MAX_RANGE;
        double d;
        int id;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            id = (j >=  0) ? j % 9 : -j % 9;
            if ((j & 1) == 0)
                d = valuesArray[id] + id * seed;
            else
                d = valuesArray[id] - id * seed;
            str = nf.format(d);
        }
        return str;
    }

    // This reproduces the throughput load added in benchFormatAllNines
    static double allNinesThroughputLoad() {
        double[] decimaAllNines =
            {9.9993, 99.9993, 999.9993, 9999.9993, 99999.9993,
             999999.9993, 9999999.9993, 99999999.9993, 999999999.9993};
        double[] valuesArray = decimaAllNines;
        double seed = 1.0 / (double) MAX_RANGE;
        double d = 0.0d;
        int id;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            id = (j >=  0) ? j % 9 : -j % 9;
            if ((j & 1) == 0)
                d = valuesArray[id] + id * seed;
            else
                d = valuesArray[id] - id * seed;
        }
        return d;
    }

    // Runs allNinesThroughputLoad and calculate its mean load
    static void calculateAllNinesThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = allNinesThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
            System.out.println(
               "calculated throughput load for " + ALL_NINES_BENCH +
               " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }



    // --- A fair bench trying (hopefully) to reproduce business applicatons  ---

    /*  benchFormatFair uses the following formula :
     *   y = F(x) = sign(x) * x**2 * ((1000/MAX_RANGE)**2).
     *
     *  which converts in the loop as (if j is the loop index) :
     *   x = double(j)
     *   k = 1000.0d * double(MAX_RANGE)
     *   y = sign(j) * x**2 * k**2
     *
     *  This is a flattened parabolic curve where only the j values
     *  in [-1000, 1000] will provide y results in [-1, +1] interval,
     *  and for abs(j) >= 1000 the result y will be greater than 1.
     *
     *  The difference with benchFormatSmallIntegral is that since y results
     *  follow a parabolic curve the magnitude of y grows much more rapidly
     *  and closer to j values when abs(j) >= 1000:
     *   - for |j| < 1000,  SmallIntegral(j) < 1.0 and fair(j) < 1.0
     *   - for j in [1000, 10000[
     *      SmallIntegral(j) is in [1, 10[
     *      Fair(j) is in [4, 400[
     *   - for j in [10000,100000[
     *      SmallIntegral(j) is in [10, 100[
     *      Fair(j) is in [400,40000[
     *   - for j in [100000,1000000[
     *      SmallIntegral(j) is in [100, 1000[
     *      Fair(j) is in [40000, 4000000[
     *
     *  Since double values for j less than 100000 provide only 4 digits in the
     *  integral, values greater than 250000 provide at least 6 digits, and 500000
     *  computes to 1000000, the distribution is roughly half with less than 5
     *  digits and half with at least 6 digits in the integral part.
     *
     *  Compared to FairSimple bench, this represents an application where 20% of
     *  the double values to format are less than 40000.0 absolute value.
     *
     *  Fair(j) is close to the magnitude of j when j > 100000 and is hopefully
     *  more representative of what may be found in general in business apps.
     *  (assumption : there will be mainly either small or large values, and
     *   less values in middle range).
     *
     *  We could get even more precise distribution of values using formula :
     *   y = sign(x) * abs(x)**n * ((1000 / MAX_RANGE)**n) where n > 2,
     *  or even well-known statistics function to fine target such distribution,
     *  but we have considred that the throughput load for calculating y would
     *  then be too high. We thus restrain the use of a power of 2 formula.
     */

    private static final String FAIR_BENCH = "benchFormatFair";
    private static String benchFormatFair(NumberFormat nf) {
        String str = "";
        double k = 1000.0d / (double) MAX_RANGE;
        k *= k;

        double d;
        double absj;
        double jPowerOf2;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            absj = (double) j;
            jPowerOf2 = absj * absj;
            d = k * jPowerOf2;
            if (j < 0) d = -d;
            str = nf.format(d);
        }
        return str;
    }

    // This is the exact throughput load added in benchFormatFair
    static double fairThroughputLoad() {
        double k = 1000.0d / (double) MAX_RANGE;
        k *= k;

        double d = 0.0d;
        double absj;
        double jPowerOf2;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            absj = (double) j;
            jPowerOf2 = absj * absj;
            d = k * jPowerOf2;
            if (j < 0) d = -d;
        }
        return d;
    }

    // Runs fairThroughputLoad and calculate its mean load
    static void calculateFairThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = fairThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
            System.out.println(
               "calculated throughput load for " + FAIR_BENCH +
               " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- All double values are very close to a tie --------------------
    // i.e. like 123.1235 (for decimal case) or 123.125 (for currency case).

    private static final String TIE_BENCH = "benchFormatTie";
    private static String benchFormatTie(NumberFormat nf, boolean isCurrency) {
        double d;
        String str = "";
        double fractionaScaling = (isCurrency) ? 1000.0d : 10000.0d;
        int fixedFractionalPart = (isCurrency) ? 125 : 1235;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = (((double) j * fractionaScaling) +
                 (double) fixedFractionalPart) / fractionaScaling;
            str = nf.format(d);
        }
        return str;
    }

    // This is the exact throughput load added in benchFormatTie
    static double tieThroughputLoad(boolean isCurrency) {
        double d = 0.0d;
        double fractionaScaling = (isCurrency) ? 1000.0d : 10000.0d;
        int fixedFractionalPart = (isCurrency) ? 125 : 1235;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = (((double) j * fractionaScaling) +
                 (double) fixedFractionalPart) / fractionaScaling;
        }
        return d;
    }

    // Runs tieThroughputLoad and calculate its mean load
    static void calculateTieThroughputLoad(boolean isCurrency) {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = tieThroughputLoad(isCurrency);
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
            System.out.println(
               "calculated throughput load for " + TIE_BENCH +
               " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }


    // Print statistics for passed times results of benchName.
    static void printPerfResults(long[] times, String benchName) {
        int nbBenches = times.length;

        long totalTimeSpent = 0;
        long meanTimeSpent;

        double variance = 0;
        double standardDeviation = 0;

        // Calculates mean spent time
        for (int i = 1; i <= nbBenches; i++)
            totalTimeSpent += times[i-1];
        meanTimeSpent = totalTimeSpent / nbBenches;

        // Calculates standard deviation
        for (int j = 1; j <= nbBenches; j++)
            variance += Math.pow(((double)times[j-1] - (double)meanTimeSpent), 2);
        variance = variance / (double) times.length;
        standardDeviation = Math.sqrt(variance) / meanTimeSpent;

        // Print result and statistics for benchName
        System.out.println(
           "Statistics (starting at 4th bench) for bench " + benchName +
           "\n for last " + nbBenches +
           " runs out of " + NB_RUNS +
           " , each with 2x" + MAX_RANGE + " format(double) calls : " +
           "\n  mean exec time = " + meanTimeSpent + " microseconds" +
           "\n  standard deviation = " + String.format("%.3f", standardDeviation) + "% \n");
    }

    public static void main(String[] args) {

        if (args.length >= 1) {
            // Parse args, just checks expected ones. Ignore others or dups.
            if (args[0].equals("-help")) {
                usage();
                return;
            }

            for (String s : args) {
                if (s.equals("-doit"))
                    DoIt = true;
                else if (s.equals("-verbose"))
                    Verbose = true;
            }
        } else {
            // No arguments, skips the benchmarks and exits.
            System.out.println(
                "Test skipped with success by default. See -help for details.");
            return;
        }

        if (!DoIt) {
            if (Verbose)
                usage();
            System.out.println(
                "Test skipped and considered successful.");
            return;
        }

        System.out.println("Single Threaded micro benchmark evaluating " +
                           "the throughput of java.text.DecimalFormat.format() call stack.\n");

        String fooString = "";

        // Run benches for decimal instance
        DecimalFormat df = (DecimalFormat) NumberFormat.getInstance(Locale.US);
        System.out.println("Running with a decimal instance of DecimalFormat.");

        calculateIntegerThroughputLoad();
        fooString =
            BenchType.INTEGER_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateFractionalThroughputLoad();
        fooString =
            BenchType.FRACTIONAL_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateSmallIntegralThroughputLoad();
        fooString =
            BenchType.SMALL_INTEGRAL_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateFractionalAllNinesThroughputLoad();
        fooString =
            BenchType.FRACTIONAL_ALL_NINES_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateAllNinesThroughputLoad();
        fooString =
            BenchType.ALL_NINES_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateFairSimpleThroughputLoad();
        fooString =
            BenchType.FAIR_SIMPLE_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateFairThroughputLoad();
        fooString =
            BenchType.FAIR_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateTieThroughputLoad(false);
        fooString =
            BenchType.TIE_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        // Run benches for currency instance
        DecimalFormat cf = (DecimalFormat) NumberFormat.getCurrencyInstance(Locale.US);
        System.out.println("Running with a currency instance of DecimalFormat.");

        calculateIntegerThroughputLoad();
        fooString =
            BenchType.INTEGER_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateFractionalThroughputLoad();
        fooString =
            BenchType.FRACTIONAL_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateSmallIntegralThroughputLoad();
        fooString =
            BenchType.SMALL_INTEGRAL_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateFractionalAllNinesThroughputLoad();
        fooString =
            BenchType.FRACTIONAL_ALL_NINES_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateAllNinesThroughputLoad();
        fooString =
            BenchType.ALL_NINES_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateFairSimpleThroughputLoad();
        fooString =
            BenchType.FAIR_SIMPLE_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateFairThroughputLoad();
        fooString =
            BenchType.FAIR_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateTieThroughputLoad(false);
        fooString =
            BenchType.TIE_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

    }

    // This class to factorise what would be duplicated otherwise.
    static enum BenchType {

        INTEGER_BENCH("benchFormatInteger"),
        FRACTIONAL_BENCH("benchFormatFractional"),
        SMALL_INTEGRAL_BENCH("benchFormatSmallIntegral"),
        FAIR_SIMPLE_BENCH("benchFormatFairSimple"),
        FRACTIONAL_ALL_NINES_BENCH("benchFormatFractionalAllNines"),
        ALL_NINES_BENCH("benchFormatAllNines"),
        FAIR_BENCH("benchFormatFair"),
        TIE_BENCH("benchFormatTie");

        private final String name;

        BenchType(String name) {
            this.name = name;
        }

        String runBenchAndPrintStatistics(int nbRuns,
                         NumberFormat nf,
                         boolean isCurrency) {

            // We eliminate the first 3 runs in the time measurements
            // to let C2 do complete compilation and optimization work.
            long[] elapsedTimes = new long[nbRuns - 3];

            System.out.println("Now running " + nbRuns + " times bench " + name);

            String str = "";
            for (int i = 1; i <= nbRuns; i++) {

                stabilizeMemory(false);
                long startTime = System.nanoTime();

                switch(this) {
                case INTEGER_BENCH :
                    str = benchFormatInteger(nf);
                    break;
                case FRACTIONAL_BENCH :
                    str = benchFormatFractional(nf);
                    break;
                case SMALL_INTEGRAL_BENCH :
                    str = benchFormatSmallIntegral(nf);
                    break;
                case FRACTIONAL_ALL_NINES_BENCH :
                    str = benchFormatFractionalAllNines(nf, isCurrency);
                    break;
                case ALL_NINES_BENCH :
                    str = benchFormatAllNines(nf, isCurrency);
                    break;
                case FAIR_SIMPLE_BENCH :
                    str = benchFormatFairSimple(nf, isCurrency);
                    break;
                case FAIR_BENCH :
                    str = benchFormatFair(nf);
                    break;
                case TIE_BENCH :
                    str = benchFormatTie(nf, isCurrency);
                    break;

                default:
                }


                long estimatedTime = System.nanoTime() - startTime;
                if (i > 3)
                    elapsedTimes[i-4] = estimatedTime / 1000;

                if (Verbose)
                    System.out.println(
                                       "calculated time for " + name +
                                       " bench " + i + " is = " +
                                       (estimatedTime / 1000) + " microseconds");
                else System.out.print(".");

                stabilizeMemory(true);
            }

            System.out.println(name + " Done.");

            printPerfResults(elapsedTimes, name);

            return str;
        }
    }

}