File: SortingIntBenchmarkTestJMH.java

package info (click to toggle)
openjdk-11 11.0.4%2B11-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 757,028 kB
  • sloc: java: 5,016,041; xml: 1,191,974; cpp: 934,731; ansic: 555,697; sh: 24,299; objc: 12,703; python: 3,602; asm: 3,415; makefile: 2,772; awk: 351; sed: 172; perl: 114; jsp: 24; csh: 3
file content (708 lines) | stat: -rw-r--r-- 25,448 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
/*
 * Copyright 2015 Goldman Sachs.
 * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.TimeUnit;

@State(Scope.Thread)
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
public class SortingIntBenchmarkTestJMH {
    private static final int QUICKSORT_THRESHOLD = 286;
    private static final int MAX_RUN_COUNT = 67;
    private static final int INSERTION_SORT_THRESHOLD = 47;
    public static final int MAX_VALUE = 1_000_000;

    @Param({"pairFlipZeroPairFlip", "pairFlipOneHundredPairFlip"
            , "zeroHi", "hiZeroLow", "hiFlatLow", "identical",
            "randomDups", "randomNoDups", "sortedReversedSorted", "pairFlip", "endLessThan"})

    public String listType;

    private int[] array;
    private static final int LIST_SIZE = 10_000_000;
    public static final int NUMBER_OF_ITERATIONS = 10;

    @Setup
    public void setUp() {
        Random random = new Random(123456789012345L);
        this.array = new int[LIST_SIZE];
        int threeQuarters = (int) (LIST_SIZE * 0.75);
        if ("zeroHi".equals(this.listType)) {
            for (int i = 0; i < threeQuarters; i++) {
                this.array[i] = 0;
            }
            int k = 1;
            for (int i = threeQuarters; i < LIST_SIZE; i++) {
                this.array[i] = k;
                k++;
            }
        }
        else if ("hiFlatLow".equals(this.listType)) {
            int oneThird = LIST_SIZE / 3;
            for (int i = 0; i < oneThird; i++) {
                this.array[i] = i;
            }
            int twoThirds = oneThird * 2;
            int constant = oneThird - 1;
            for (int i = oneThird; i < twoThirds; i++) {
                this.array[i] = constant;
            }
            for (int i = twoThirds; i < LIST_SIZE; i++) {
                this.array[i] = constant - i + twoThirds;
            }
        }
        else if ("hiZeroLow".equals(this.listType)) {
            int oneThird = LIST_SIZE / 3;
            for (int i = 0; i < oneThird; i++) {
                this.array[i] = i;
            }
            int twoThirds = oneThird * 2;
            for (int i = oneThird; i < twoThirds; i++) {
                this.array[i] = 0;
            }
            for (int i = twoThirds; i < LIST_SIZE; i++) {
                this.array[i] = oneThird - i + twoThirds;
            }
        }
        else if ("identical".equals(this.listType)) {
            for (int i = 0; i < LIST_SIZE; i++) {
                this.array[i] = 0;
            }
        }
        else if ("randomDups".equals(this.listType)) {
            for (int i = 0; i < LIST_SIZE; i++) {
                this.array[i] = random.nextInt(1000);
            }
        }
        else if ("randomNoDups".equals(this.listType)) {
            Set<Integer> set = new HashSet();
            while (set.size() < LIST_SIZE + 1) {
                set.add(random.nextInt());
            }
            List<Integer> list = new ArrayList<>(LIST_SIZE);
            list.addAll(set);
            for (int i = 0; i < LIST_SIZE; i++) {
                this.array[i] = list.get(i);
            }
        }
        else if ("sortedReversedSorted".equals(this.listType)) {
            for (int i = 0; i < LIST_SIZE / 2; i++) {
                this.array[i] = i;
            }
            int num = 0;
            for (int i = LIST_SIZE / 2; i < LIST_SIZE; i++) {
                this.array[i] = LIST_SIZE - num;
                num++;
            }
        }
        else if ("pairFlip".equals(this.listType)) {
            for (int i = 0; i < LIST_SIZE; i++) {
                this.array[i] = i;
            }
            for (int i = 0; i < LIST_SIZE; i += 2) {
                int temp = this.array[i];
                this.array[i] = this.array[i + 1];
                this.array[i + 1] = temp;
            }
        }
        else if ("endLessThan".equals(this.listType)) {
            for (int i = 0; i < LIST_SIZE - 1; i++) {
                this.array[i] = 3;
            }
            this.array[LIST_SIZE - 1] = 1;
        }
        else if ("pairFlipZeroPairFlip".equals(this.listType)) {
            //pairflip
            for (int i = 0; i < 64; i++) {
                this.array[i] = i;
            }
            for (int i = 0; i < 64; i += 2) {
                int temp = this.array[i];
                this.array[i] = this.array[i + 1];
                this.array[i + 1] = temp;
            }
            //zero
            for (int i = 64; i < this.array.length - 64; i++) {
                this.array[i] = 0;
            }
            //pairflip
            for (int i = this.array.length - 64; i < this.array.length; i++) {
                this.array[i] = i;
            }
            for (int i = this.array.length - 64; i < this.array.length; i += 2) {
                int temp = this.array[i];
                this.array[i] = this.array[i + 1];
                this.array[i + 1] = temp;
            }
        }
        else if ("pairFlipOneHundredPairFlip".equals(this.listType)) {
            //10, 5
            for (int i = 0; i < 64; i++) {
                if (i % 2 == 0) {
                    this.array[i] = 10;
                }
                else {
                    this.array[i] = 5;
                }
            }

            //100
            for (int i = 64; i < this.array.length - 64; i++) {
                this.array[i] = 100;
            }

            //10, 5
            for (int i = this.array.length - 64; i < this.array.length; i++) {
                if (i % 2 == 0) {
                    this.array[i] = 10;
                }
                else {
                    this.array[i] = 5;
                }
            }
        }
    }

    @Warmup(iterations = 20)
    @Measurement(iterations = 10)
    @Benchmark
    public void sortNewWay() {
        for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
            SortingIntTestJMH.sort(this.array, 0, this.array.length - 1, null, 0, 0);
        }
    }

    @Warmup(iterations = 20)
    @Measurement(iterations = 10)
    @Benchmark
    public void sortCurrentWay() {
        for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
            Arrays.sort(this.array);
        }
    }

    static void sort(int[] a, int left, int right,
                     int[] work, int workBase, int workLen) {
        // Use Quicksort on small arrays
        if (right - left < QUICKSORT_THRESHOLD) {
            SortingIntTestJMH.sort(a, left, right, true);
            return;
        }

         /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         */
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0;
        run[0] = left;

        // Check if the array is nearly sorted
        for (int k = left; k < right; run[count] = k) {
            while (k < right && a[k] == a[k + 1])
                k++;
            if (k == right) break;
            if (a[k] < a[k + 1]) { // ascending
                while (++k <= right && a[k - 1] <= a[k]) ;
            }
            else if (a[k] > a[k + 1]) { // descending
                while (++k <= right && a[k - 1] >= a[k]) ;
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    int t = a[lo];
                    a[lo] = a[hi];
                    a[hi] = t;
                }
            }
            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
                count--;
            }
            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             */
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // Check special cases
        // Implementation note: variable "right" is increased by 1.
        if (run[count] == right++) {
            run[++count] = right;
        }
        if (count <= 1) { // The array is already sorted
            return;
        }

        // Determine alternation base for merge
        byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1) {
        }

        // Use or create temporary array b for merging
        int[] b;                 // temp array; alternates with a
        int ao, bo;                 // array offsets from 'left'
        int blen = right - left; // space needed for b
        if (work == null || workLen < blen || workBase + blen > work.length) {
            work = new int[blen];
            workBase = 0;
        }
        if (odd == 0) {
            System.arraycopy(a, left, work, workBase, blen);
            b = a;
            bo = 0;
            a = work;
            ao = workBase - left;
        }
        else {
            b = work;
            ao = 0;
            bo = workBase - left;
        }

        // Merging
        for (int last; count > 1; count = last) {
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
                        b[i + bo] = a[p++ + ao];
                    }
                    else {
                        b[i + bo] = a[q++ + ao];
                    }
                }
                run[++last] = hi;
            }
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                     b[i + bo] = a[i + ao]
                        ) {
                }
                run[++last] = right;
            }
            int[] t = a;
            a = b;
            b = t;
            int o = ao;
            ao = bo;
            bo = o;
        }
    }

    private static void sort(int[] a, int left, int right, boolean leftmost) {
        int length = right - left + 1;

        // Use insertion sort on tiny arrays
        if (length < INSERTION_SORT_THRESHOLD) {
            if (leftmost) {
                /*
                 * Traditional (without sentinel) insertion sort,
                 * optimized for server VM, is used in case of
                 * the leftmost part.
                 */
                for (int i = left, j = i; i < right; j = ++i) {
                    int ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }
            }
            else {
                /*
                 * Skip the longest ascending sequence.
                 */
                do {
                    if (left >= right) {
                        return;
                    }
                }
                while (a[++left] >= a[left - 1]);

                /*
                 * Every element from adjoining part plays the role
                 * of sentinel, therefore this allows us to avoid the
                 * left range check on each iteration. Moreover, we use
                 * the more optimized algorithm, so called pair insertion
                 * sort, which is faster (in the context of Quicksort)
                 * than traditional implementation of insertion sort.
                 */
                for (int k = left; ++left <= right; k = ++left) {
                    int a1 = a[k], a2 = a[left];

                    if (a1 < a2) {
                        a2 = a1;
                        a1 = a[left];
                    }
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

                    while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }
                int last = a[right];

                while (last < a[--right]) {
                    a[right + 1] = a[right];
                }
                a[right + 1] = last;
            }
            return;
        }

        // Inexpensive approximation of length / 7
        int seventh = (length >> 3) + (length >> 6) + 1;

        /*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         */
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

        // Sort these elements using insertion sort
        if (a[e2] < a[e1]) {
            int t = a[e2];
            a[e2] = a[e1];
            a[e1] = t;
        }

        if (a[e3] < a[e2]) {
            int t = a[e3];
            a[e3] = a[e2];
            a[e2] = t;
            if (t < a[e1]) {
                a[e2] = a[e1];
                a[e1] = t;
            }
        }
        if (a[e4] < a[e3]) {
            int t = a[e4];
            a[e4] = a[e3];
            a[e3] = t;
            if (t < a[e2]) {
                a[e3] = a[e2];
                a[e2] = t;
                if (t < a[e1]) {
                    a[e2] = a[e1];
                    a[e1] = t;
                }
            }
        }
        if (a[e5] < a[e4]) {
            int t = a[e5];
            a[e5] = a[e4];
            a[e4] = t;
            if (t < a[e3]) {
                a[e4] = a[e3];
                a[e3] = t;
                if (t < a[e2]) {
                    a[e3] = a[e2];
                    a[e2] = t;
                    if (t < a[e1]) {
                        a[e2] = a[e1];
                        a[e1] = t;
                    }
                }
            }
        }

        // Pointers
        int less = left;  // The index of the first element of center part
        int great = right; // The index before the first element of right part

        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
            /*
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
            int pivot1 = a[e2];
            int pivot2 = a[e4];

            /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
            a[e2] = a[left];
            a[e4] = a[right];

            /*
             * Skip elements, which are less or greater than pivot values.
             */
            while (a[++less] < pivot1) {
            }
            while (a[--great] > pivot2) {
            }

            /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)      <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            outer:
            for (int k = less - 1; ++k <= great; ) {
                int ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                }
                else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    }
                    else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

            // Swap pivots into their final positions
            a[left] = a[less - 1];
            a[less - 1] = pivot1;
            a[right] = a[great + 1];
            a[great + 1] = pivot2;

            // Sort left and right parts recursively, excluding known pivots
            SortingIntTestJMH.sort(a, left, less - 2, leftmost);
            SortingIntTestJMH.sort(a, great + 2, right, false);

            /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    int ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    }
                    else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            a[less] = pivot1;
                            ++less;
                        }
                        else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            SortingIntTestJMH.sort(a, less, great, false);
        }
        else { // Partitioning with one pivot
            /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
            int pivot = a[e3];

            /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
            for (int k = less; k <= great; ++k) {
                if (a[k] == pivot) {
                    continue;
                }
                int ak = a[k];
                if (ak < pivot) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                }
                else { // a[k] > pivot - Move a[k] to right part
                    while (a[great] > pivot) {
                        --great;
                    }
                    if (a[great] < pivot) { // a[great] <= pivot
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    }
                    else { // a[great] == pivot
                        /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                        a[k] = pivot;
                    }
                    a[great] = ak;
                    --great;
                }
            }

            /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             */
            SortingIntTestJMH.sort(a, left, less - 1, leftmost);
            SortingIntTestJMH.sort(a, great + 1, right, false);
        }
    }

    private static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
}