1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
/*
* Copyright 2015 Goldman Sachs.
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.TimeUnit;
@State(Scope.Thread)
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
public class SortingLongBenchmarkTestJMH {
private static final int QUICKSORT_THRESHOLD = 286;
private static final int MAX_RUN_COUNT = 67;
private static final int INSERTION_SORT_THRESHOLD = 47;
public static final int MAX_VALUE = 1_000_000;
@Param({"pairFlipZeroPairFlip", "descendingAscending", "zeroHi", "hiZeroLow", "hiFlatLow", "identical",
"randomDups", "randomNoDups", "sortedReversedSorted", "pairFlip", "endLessThan"})
public String listType;
private long[] array;
private static final int LIST_SIZE = 10_000_000;
public static final int NUMBER_OF_ITERATIONS = 10;
@Setup
public void setUp() {
Random random = new Random(123456789012345L);
this.array = new long[LIST_SIZE];
int threeQuarters = (int) (LIST_SIZE * 0.75);
if ("zeroHi".equals(this.listType)) {
for (int i = 0; i < threeQuarters; i++) {
this.array[i] = 0;
}
int k = 1;
for (int i = threeQuarters; i < LIST_SIZE; i++) {
this.array[i] = k;
k++;
}
}
else if ("hiFlatLow".equals(this.listType)) {
int oneThird = LIST_SIZE / 3;
for (int i = 0; i < oneThird; i++) {
this.array[i] = i;
}
int twoThirds = oneThird * 2;
int constant = oneThird - 1;
for (int i = oneThird; i < twoThirds; i++) {
this.array[i] = constant;
}
for (int i = twoThirds; i < LIST_SIZE; i++) {
this.array[i] = constant - i + twoThirds;
}
}
else if ("hiZeroLow".equals(this.listType)) {
int oneThird = LIST_SIZE / 3;
for (int i = 0; i < oneThird; i++) {
this.array[i] = i;
}
int twoThirds = oneThird * 2;
for (int i = oneThird; i < twoThirds; i++) {
this.array[i] = 0;
}
for (int i = twoThirds; i < LIST_SIZE; i++) {
this.array[i] = oneThird - i + twoThirds;
}
}
else if ("identical".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = 0;
}
}
else if ("randomDups".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = random.nextInt(1000);
}
}
else if ("randomNoDups".equals(this.listType)) {
Set<Integer> set = new HashSet<>();
while (set.size() < LIST_SIZE + 1) {
set.add(random.nextInt());
}
List<Integer> list = new ArrayList<>(LIST_SIZE);
list.addAll(set);
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = list.get(i);
}
}
else if ("sortedReversedSorted".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE / 2; i++) {
this.array[i] = i;
}
int num = 0;
for (int i = LIST_SIZE / 2; i < LIST_SIZE; i++) {
this.array[i] = LIST_SIZE - num;
num++;
}
}
else if ("pairFlip".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = i;
}
for (int i = 0; i < LIST_SIZE; i += 2) {
long temp = this.array[i];
this.array[i] = this.array[i + 1];
this.array[i + 1] = temp;
}
}
else if ("endLessThan".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE - 1; i++) {
this.array[i] = 3;
}
this.array[LIST_SIZE - 1] = 1;
}
else if ("pairFlipZeroPairFlip".equals(this.listType)) {
//pairflip
for (int i = 0; i < 64; i++) {
this.array[i] = i;
}
for (int i = 0; i < 64; i += 2) {
long temp = this.array[i];
this.array[i] = this.array[i + 1];
this.array[i + 1] = temp;
}
//zero
for (int i = 64; i < this.array.length - 64; i++) {
this.array[i] = 0;
}
//pairflip
for (int i = this.array.length - 64; i < this.array.length; i++) {
this.array[i] = i;
}
for (int i = this.array.length - 64; i < this.array.length; i += 2) {
long temp = this.array[i];
this.array[i] = this.array[i + 1];
this.array[i + 1] = temp;
}
}
else if ("pairFlipOneHundredPairFlip".equals(this.listType)) {
//10, 5
for (int i = 0; i < 64; i++) {
if (i % 2 == 0) {
this.array[i] = 10;
}
else {
this.array[i] = 5;
}
}
//100
for (int i = 64; i < this.array.length - 64; i++) {
this.array[i] = 100;
}
//10, 5
for (int i = this.array.length - 64; i < this.array.length; i++) {
if (i % 2 == 0) {
this.array[i] = 10;
}
else {
this.array[i] = 5;
}
}
}
}
@Warmup(iterations = 20)
@Measurement(iterations = 10)
@Benchmark
public void sortNewWay() {
for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
SortingLongTestJMH.sort(this.array, 0, this.array.length - 1, null, 0, 0);
}
}
@Warmup(iterations = 20)
@Measurement(iterations = 10)
@Benchmark
public void sortOldWay() {
for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
Arrays.sort(this.array);
}
}
/**
* Sorts the specified range of the array using the given
* workspace array slice if possible for merging
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
* @param work a workspace array (slice)
* @param workBase origin of usable space in work array
* @param workLen usable size of work array
*/
static void sort(long[] a, int left, int right,
long[] work, int workBase, int workLen) {
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
SortingLongTestJMH.sort(a, left, right, true);
return;
}
/*
* Index run[i] is the start of i-th run
* (ascending or descending sequence).
*/
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0;
run[0] = left;
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
while (k < right && a[k] == a[k + 1])
k++;
if (k == right) break;
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]) ;
}
else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]) ;
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
long t = a[lo];
a[lo] = a[hi];
a[hi] = t;
}
}
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
count--;
}
/*
* The array is not highly structured,
* use Quicksort instead of merge sort.
*/
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
}
// Check special cases
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) {
run[++count] = right;
}
if (count <= 1) { // The array is already sorted
return;
}
// Determine alternation base for merge
byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1) {
}
// Use or create temporary array b for merging
long[] b; // temp array; alternates with a
int ao, bo; // array offsets from 'left'
int blen = right - left; // space needed for b
if (work == null || workLen < blen || workBase + blen > work.length) {
work = new long[blen];
workBase = 0;
}
if (odd == 0) {
System.arraycopy(a, left, work, workBase, blen);
b = a;
bo = 0;
a = work;
ao = workBase - left;
}
else {
b = work;
ao = 0;
bo = workBase - left;
}
// Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
b[i + bo] = a[p++ + ao];
}
else {
b[i + bo] = a[q++ + ao];
}
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i + bo] = a[i + ao]
) {
}
run[++last] = right;
}
long[] t = a;
a = b;
b = t;
int o = ao;
ao = bo;
bo = o;
}
}
/**
* Sorts the specified range of the array by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
* @param leftmost indicates if this part is the leftmost in the range
*/
private static void sort(long[] a, int left, int right, boolean leftmost) {
int length = right - left + 1;
// Use insertion sort on tiny arrays
if (length < INSERTION_SORT_THRESHOLD) {
if (leftmost) {
/*
* Traditional (without sentinel) insertion sort,
* optimized for server VM, is used in case of
* the leftmost part.
*/
for (int i = left, j = i; i < right; j = ++i) {
long ai = a[i + 1];
while (ai < a[j]) {
a[j + 1] = a[j];
if (j-- == left) {
break;
}
}
a[j + 1] = ai;
}
}
else {
/*
* Skip the longest ascending sequence.
*/
do {
if (left >= right) {
return;
}
}
while (a[++left] >= a[left - 1]);
/*
* Every element from adjoining part plays the role
* of sentinel, therefore this allows us to avoid the
* left range check on each iteration. Moreover, we use
* the more optimized algorithm, so called pair insertion
* sort, which is faster (in the context of Quicksort)
* than traditional implementation of insertion sort.
*/
for (int k = left; ++left <= right; k = ++left) {
long a1 = a[k], a2 = a[left];
if (a1 < a2) {
a2 = a1;
a1 = a[left];
}
while (a1 < a[--k]) {
a[k + 2] = a[k];
}
a[++k + 1] = a1;
while (a2 < a[--k]) {
a[k + 1] = a[k];
}
a[k + 1] = a2;
}
long last = a[right];
while (last < a[--right]) {
a[right + 1] = a[right];
}
a[right + 1] = last;
}
return;
}
// Inexpensive approximation of length / 7
int seventh = (length >> 3) + (length >> 6) + 1;
/*
* Sort five evenly spaced elements around (and including) the
* center element in the range. These elements will be used for
* pivot selection as described below. The choice for spacing
* these elements was empirically determined to work well on
* a wide variety of inputs.
*/
int e3 = (left + right) >>> 1; // The midpoint
int e2 = e3 - seventh;
int e1 = e2 - seventh;
int e4 = e3 + seventh;
int e5 = e4 + seventh;
// Sort these elements using insertion sort
if (a[e2] < a[e1]) {
long t = a[e2];
a[e2] = a[e1];
a[e1] = t;
}
if (a[e3] < a[e2]) {
long t = a[e3];
a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) {
a[e2] = a[e1];
a[e1] = t;
}
}
if (a[e4] < a[e3]) {
long t = a[e4];
a[e4] = a[e3];
a[e3] = t;
if (t < a[e2]) {
a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) {
a[e2] = a[e1];
a[e1] = t;
}
}
}
if (a[e5] < a[e4]) {
long t = a[e5];
a[e5] = a[e4];
a[e4] = t;
if (t < a[e3]) {
a[e4] = a[e3];
a[e3] = t;
if (t < a[e2]) {
a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) {
a[e2] = a[e1];
a[e1] = t;
}
}
}
}
// Pointers
int less = left; // The index of the first element of center part
int great = right; // The index before the first element of right part
if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*/
long pivot1 = a[e2];
long pivot2 = a[e4];
/*
* The first and the last elements to be sorted are moved to the
* locations formerly occupied by the pivots. When partitioning
* is complete, the pivots are swapped back into their final
* positions, and excluded from subsequent sorting.
*/
a[e2] = a[left];
a[e4] = a[right];
/*
* Skip elements, which are less or greater than pivot values.
*/
while (a[++less] < pivot1) {
}
while (a[--great] > pivot2) {
}
/*
* Partitioning:
*
* left part center part right part
* +--------------------------------------------------------------+
* | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 |
* +--------------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part.
*/
outer:
for (int k = less - 1; ++k <= great; ) {
long ak = a[k];
if (ak < pivot1) { // Move a[k] to left part
a[k] = a[less];
/*
* Here and below we use "a[i] = b; i++;" instead
* of "a[i++] = b;" due to performance issue.
*/
a[less] = ak;
++less;
}
else if (ak > pivot2) { // Move a[k] to right part
while (a[great] > pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] < pivot1) { // a[great] <= pivot2
a[k] = a[less];
a[less] = a[great];
++less;
}
else { // pivot1 <= a[great] <= pivot2
a[k] = a[great];
}
/*
* Here and below we use "a[i] = b; i--;" instead
* of "a[i--] = b;" due to performance issue.
*/
a[great] = ak;
--great;
}
}
// Swap pivots into their final positions
a[left] = a[less - 1];
a[less - 1] = pivot1;
a[right] = a[great + 1];
a[great + 1] = pivot2;
// Sort left and right parts recursively, excluding known pivots
SortingLongTestJMH.sort(a, left, less - 2, leftmost);
SortingLongTestJMH.sort(a, great + 2, right, false);
/*
* If center part is too large (comprises > 4/7 of the array),
* swap internal pivot values to ends.
*/
if (less < e1 && e5 < great) {
/*
* Skip elements, which are equal to pivot values.
*/
while (a[less] == pivot1) {
++less;
}
while (a[great] == pivot2) {
--great;
}
/*
* Partitioning:
*
* left part center part right part
* +----------------------------------------------------------+
* | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 |
* +----------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (*, less) == pivot1
* pivot1 < all in [less, k) < pivot2
* all in (great, *) == pivot2
*
* Pointer k is the first index of ?-part.
*/
outer:
for (int k = less - 1; ++k <= great; ) {
long ak = a[k];
if (ak == pivot1) { // Move a[k] to left part
a[k] = a[less];
a[less] = ak;
++less;
}
else if (ak == pivot2) { // Move a[k] to right part
while (a[great] == pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] == pivot1) { // a[great] < pivot2
a[k] = a[less];
/*
* Even though a[great] equals to pivot1, the
* assignment a[less] = pivot1 may be incorrect,
* if a[great] and pivot1 are floating-point zeros
* of different signs. Therefore in float and
* double sorting methods we have to use more
* accurate assignment a[less] = a[great].
*/
a[less] = pivot1;
++less;
}
else { // pivot1 < a[great] < pivot2
a[k] = a[great];
}
a[great] = ak;
--great;
}
}
}
// Sort center part recursively
SortingLongTestJMH.sort(a, less, great, false);
}
else { // Partitioning with one pivot
/*
* Use the third of the five sorted elements as pivot.
* This value is inexpensive approximation of the median.
*/
long pivot = a[e3];
/*
* Partitioning degenerates to the traditional 3-way
* (or "Dutch National Flag") schema:
*
* left part center part right part
* +-------------------------------------------------+
* | < pivot | == pivot | ? | > pivot |
* +-------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part.
*/
for (int k = less; k <= great; ++k) {
if (a[k] == pivot) {
continue;
}
long ak = a[k];
if (ak < pivot) { // Move a[k] to left part
a[k] = a[less];
a[less] = ak;
++less;
}
else { // a[k] > pivot - Move a[k] to right part
while (a[great] > pivot) {
--great;
}
if (a[great] < pivot) { // a[great] <= pivot
a[k] = a[less];
a[less] = a[great];
++less;
}
else { // a[great] == pivot
/*
* Even though a[great] equals to pivot, the
* assignment a[k] = pivot may be incorrect,
* if a[great] and pivot are floating-point
* zeros of different signs. Therefore in float
* and double sorting methods we have to use
* more accurate assignment a[k] = a[great].
*/
a[k] = pivot;
}
a[great] = ak;
--great;
}
}
/*
* Sort left and right parts recursively.
* All elements from center part are equal
* and, therefore, already sorted.
*/
SortingLongTestJMH.sort(a, left, less - 1, leftmost);
SortingLongTestJMH.sort(a, great + 1, right, false);
}
}
private static void swap(long[] arr, int i, int j) {
long tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
}
|