1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*
* Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 8072909
* @summary Test TimSort stack size on big arrays
* @key intermittent
* @library /lib/testlibrary /test/lib
* @modules java.management
* java.base/jdk.internal
* @build jdk.testlibrary.*
* @build TimSortStackSize2
* @run driver ClassFileInstaller sun.hotspot.WhiteBox
* sun.hotspot.WhiteBox$WhiteBoxPermission
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions
* -XX:+WhiteBoxAPI TimSortStackSize2
*/
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.function.Consumer;
import jdk.testlibrary.OutputAnalyzer;
import jdk.testlibrary.ProcessTools;
import jdk.testlibrary.Utils;
import sun.hotspot.WhiteBox;
public class TimSortStackSize2 {
public static void main(String[] args) {
if ( args == null || args.length == 0 ){
startMeWithArgs();
} else {
doTestOfTwoTimSorts(Integer.parseInt(args[0]));
}
}
private static void startMeWithArgs(){
/*
* big tests not for regular execution on all platforms:
* run main/othervm -Xmx8g TimSortStackSize2 1073741824
* run main/othervm -Xmx16g TimSortStackSize2 2147483644
*/
try {
Boolean compressedOops = WhiteBox.getWhiteBox()
.getBooleanVMFlag("UseCompressedOops");
long memory = (compressedOops == null || compressedOops) ? 385 : 770;
final String xmsValue = "-Xms" + memory + "m";
final String xmxValue = "-Xmx" + 2 * memory + "m";
System.out.printf("compressedOops: %s; Test will be started with \"%s %s\"%n",
compressedOops, xmsValue, xmxValue);
OutputAnalyzer output = ProcessTools.executeTestJava(xmsValue,
xmxValue,
"TimSortStackSize2",
"67108864");
System.out.println(output.getOutput());
output.shouldHaveExitValue(0);
} catch (Exception e) {
e.printStackTrace();
throw new RuntimeException(e);
}
}
private static void doTestOfTwoTimSorts(final int lengthOfTest){
boolean passed = doTest("TimSort", lengthOfTest,
(Integer [] a) -> Arrays.sort(a));
passed = doTest("ComparableTimSort", lengthOfTest, (Integer [] a) ->
Arrays.sort(a, (Object first, Object second) -> {
return ((Comparable<Object>)first).compareTo(second);
}))
&& passed;
if ( !passed ){
throw new RuntimeException();
}
}
private static boolean doTest(final String msg, final int lengthOfTest,
final Consumer<Integer[]> c){
Integer [] a = null;
try {
a = new TimSortStackSize2(lengthOfTest).createArray();
long begin = System.nanoTime();
c.accept(a);
long end = System.nanoTime();
System.out.println(msg + " OK. Time: " + (end - begin) + "ns");
} catch (ArrayIndexOutOfBoundsException e){
System.out.println(msg + " broken:");
e.printStackTrace();
return false;
} finally {
a = null;
}
return true;
}
private static final int MIN_MERGE = 32;
private final int minRun;
private final int length;
private final List<Long> runs = new ArrayList<Long>();
public TimSortStackSize2(final int len) {
this.length = len;
minRun = minRunLength(len);
fillRunsJDKWorstCase();
}
private static int minRunLength(int n) {
assert n >= 0;
int r = 0; // Becomes 1 if any 1 bits are shifted off
while (n >= MIN_MERGE) {
r |= (n & 1);
n >>= 1;
}
return n + r;
}
/**
* Adds a sequence x_1, ..., x_n of run lengths to <code>runs</code> such that:<br>
* 1. X = x_1 + ... + x_n <br>
* 2. x_j >= minRun for all j <br>
* 3. x_1 + ... + x_{j-2} < x_j < x_1 + ... + x_{j-1} for all j <br>
* These conditions guarantee that TimSort merges all x_j's one by one
* (resulting in X) using only merges on the second-to-last element.
* @param X The sum of the sequence that should be added to runs.
*/
private void generateJDKWrongElem(long X) {
for(long newTotal; X >= 2 * minRun + 1; X = newTotal) {
//Default strategy
newTotal = X / 2 + 1;
//Specialized strategies
if(3 * minRun + 3 <= X && X <= 4*minRun+1) {
// add x_1=MIN+1, x_2=MIN, x_3=X-newTotal to runs
newTotal = 2 * minRun + 1;
} else if (5 * minRun + 5 <= X && X <= 6 * minRun + 5) {
// add x_1=MIN+1, x_2=MIN, x_3=MIN+2, x_4=X-newTotal to runs
newTotal = 3 * minRun + 3;
} else if (8 * minRun + 9 <= X && X <= 10 * minRun + 9) {
// add x_1=MIN+1, x_2=MIN, x_3=MIN+2, x_4=2MIN+2, x_5=X-newTotal to runs
newTotal = 5 * minRun + 5;
} else if (13 * minRun + 15 <= X && X <= 16 * minRun + 17) {
// add x_1=MIN+1, x_2=MIN, x_3=MIN+2, x_4=2MIN+2, x_5=3MIN+4, x_6=X-newTotal to runs
newTotal = 8 * minRun + 9;
}
runs.add(0, X - newTotal);
}
runs.add(0, X);
}
/**
* Fills <code>runs</code> with a sequence of run lengths of the form<br>
* Y_n x_{n,1} x_{n,2} ... x_{n,l_n} <br>
* Y_{n-1} x_{n-1,1} x_{n-1,2} ... x_{n-1,l_{n-1}} <br>
* ... <br>
* Y_1 x_{1,1} x_{1,2} ... x_{1,l_1}<br>
* The Y_i's are chosen to satisfy the invariant throughout execution,
* but the x_{i,j}'s are merged (by <code>TimSort.mergeCollapse</code>)
* into an X_i that violates the invariant.
* X is the sum of all run lengths that will be added to <code>runs</code>.
*/
private void fillRunsJDKWorstCase() {
long runningTotal = 0;
long Y = minRun + 4;
long X = minRun;
while (runningTotal + Y + X <= length) {
runningTotal += X + Y;
generateJDKWrongElem(X);
runs.add(0, Y);
// X_{i+1} = Y_i + x_{i,1} + 1, since runs.get(1) = x_{i,1}
X = Y + runs.get(1) + 1;
// Y_{i+1} = X_{i+1} + Y_i + 1
Y += X + 1;
}
if (runningTotal + X <= length) {
runningTotal += X;
generateJDKWrongElem(X);
}
runs.add(length - runningTotal);
}
private Integer [] createArray() {
Integer [] a = new Integer[length];
Arrays.fill(a, 0);
int endRun = -1;
for (long len : runs) {
a[endRun += len] = 1;
}
a[length - 1] = 0;
return a;
}
}
|