1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
/*
* Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2020 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/metaspace/blockTree.hpp"
#include "memory/metaspace/counters.hpp"
#include "memory/resourceArea.hpp"
// #define LOG_PLEASE
#include "metaspaceGtestCommon.hpp"
using metaspace::BlockTree;
using metaspace::MemRangeCounter;
// Small helper. Given a 0-terminated array of sizes, a feeder buffer and a tree,
// add blocks of these sizes to the tree in the order they appear in the array.
static void create_nodes(const size_t sizes[], FeederBuffer& fb, BlockTree& bt) {
for (int i = 0; sizes[i] > 0; i ++) {
size_t s = sizes[i];
MetaWord* p = fb.get(s);
bt.add_block(p, s);
}
}
#define CHECK_BT_CONTENT(bt, expected_num, expected_size) { \
EXPECT_EQ(bt.count(), (unsigned)expected_num); \
EXPECT_EQ(bt.total_size(), (size_t)expected_size); \
if (expected_num == 0) { \
EXPECT_TRUE(bt.is_empty()); \
} else { \
EXPECT_FALSE(bt.is_empty()); \
} \
}
TEST_VM(metaspace, BlockTree_basic) {
BlockTree bt;
CHECK_BT_CONTENT(bt, 0, 0);
size_t real_size = 0;
MetaWord* p = NULL;
MetaWord arr[10000];
ASSERT_LE(BlockTree::MinWordSize, (size_t)6); // Sanity check. Adjust if Node is changed.
const size_t minws = BlockTree::MinWordSize;
// remove_block from empty tree should yield nothing
p = bt.remove_block(minws, &real_size);
EXPECT_NULL(p);
EXPECT_0(real_size);
CHECK_BT_CONTENT(bt, 0, 0);
// Add some blocks and retrieve them right away.
size_t sizes[] = {
minws, // smallest possible
minws + 10,
1024,
4711,
0
};
for (int i = 0; sizes[i] > 0; i++) {
bt.add_block(arr, sizes[i]);
CHECK_BT_CONTENT(bt, 1, sizes[i]);
DEBUG_ONLY(bt.verify();)
MetaWord* p = bt.remove_block(sizes[i], &real_size);
EXPECT_EQ(p, arr);
EXPECT_EQ(real_size, (size_t)sizes[i]);
CHECK_BT_CONTENT(bt, 0, 0);
}
}
// Helper for test_find_nearest_fit_with_tree.
// Out of an array of sizes return the closest upper match to a requested size.
// Returns SIZE_MAX if none found.
static size_t helper_find_nearest_fit(const size_t sizes[], size_t request_size) {
size_t best = SIZE_MAX;
for (int i = 0; sizes[i] > 0; i++) {
if (sizes[i] >= request_size && sizes[i] < best) {
best = sizes[i];
}
}
return best;
}
// Given a sequence of (0-terminated) sizes, add blocks of those sizes to the tree in the order given. Then, ask
// for a request size and check that it is the expected result.
static void test_find_nearest_fit_with_tree(const size_t sizes[], size_t request_size) {
BlockTree bt;
FeederBuffer fb(4 * K);
create_nodes(sizes, fb, bt);
DEBUG_ONLY(bt.verify();)
size_t expected_size = helper_find_nearest_fit(sizes, request_size);
size_t real_size = 0;
MetaWord* p = bt.remove_block(request_size, &real_size);
if (expected_size != SIZE_MAX) {
EXPECT_NOT_NULL(p);
EXPECT_EQ(real_size, expected_size);
} else {
EXPECT_NULL(p);
EXPECT_0(real_size);
}
LOG(SIZE_FORMAT ": " SIZE_FORMAT ".", request_size, real_size);
}
TEST_VM(metaspace, BlockTree_find_nearest_fit) {
// Test tree for test_find_nearest_fit looks like this
// 30
// / \
// / \
// / \
// 17 50
// / \ / \
// / \ / \
// 10 28 32 51
// \
// 35
static const size_t sizes[] = {
30, 17, 10, 28,
50, 32, 51, 35,
0 // stop
};
BlockTree bt;
FeederBuffer fb(4 * K);
create_nodes(sizes, fb, bt);
for (int i = BlockTree::MinWordSize; i <= 60; i ++) {
test_find_nearest_fit_with_tree(sizes, i);
}
}
// Test repeated adding and removing of blocks of the same size, which
// should exercise the list-part of the tree.
TEST_VM(metaspace, BlockTree_basic_siblings)
{
BlockTree bt;
FeederBuffer fb(4 * K);
CHECK_BT_CONTENT(bt, 0, 0);
const size_t test_size = BlockTree::MinWordSize;
const int num = 10;
for (int i = 0; i < num; i++) {
bt.add_block(fb.get(test_size), test_size);
CHECK_BT_CONTENT(bt, i + 1, (i + 1) * test_size);
}
DEBUG_ONLY(bt.verify();)
for (int i = num; i > 0; i --) {
size_t real_size = 4711;
MetaWord* p = bt.remove_block(test_size, &real_size);
EXPECT_TRUE(fb.is_valid_pointer(p));
EXPECT_EQ(real_size, (size_t)test_size);
CHECK_BT_CONTENT(bt, i - 1, (i - 1) * test_size);
}
}
#ifdef ASSERT
TEST_VM(metaspace, BlockTree_print_test) {
static const size_t sizes[] = {
30, 17, 10, 28,
50, 32, 51, 35,
0 // stop
};
BlockTree bt;
FeederBuffer fb(4 * K);
create_nodes(sizes, fb, bt);
ResourceMark rm;
stringStream ss;
bt.print_tree(&ss);
LOG("%s", ss.as_string());
}
// Test that an overwritten node would result in an assert and a printed tree
TEST_VM_ASSERT_MSG(metaspace, BlockTree_overwriter_test, ".*failed: Invalid node") {
static const size_t sizes1[] = { 30, 17, 0 };
static const size_t sizes2[] = { 12, 12, 0 };
BlockTree bt;
FeederBuffer fb(4 * K);
// some nodes...
create_nodes(sizes1, fb, bt);
// a node we will break...
MetaWord* p_broken = fb.get(12);
bt.add_block(p_broken, 12);
// some more nodes...
create_nodes(sizes2, fb, bt);
// overwrite node memory (only the very first byte), then verify tree.
// Verification should catch the broken canary, print the tree,
// then assert.
LOG("Will break node at " PTR_FORMAT ".", p2i(p_broken));
tty->print_cr("Death test, please ignore the following \"Invalid node\" printout.");
*((char*)p_broken) = '\0';
bt.verify();
}
#endif
class BlockTreeTest {
FeederBuffer _fb;
BlockTree _bt[2];
MemRangeCounter _cnt[2];
RandSizeGenerator _rgen;
#define CHECK_COUNTERS \
CHECK_BT_CONTENT(_bt[0], _cnt[0].count(), _cnt[0].total_size()) \
CHECK_BT_CONTENT(_bt[1], _cnt[1].count(), _cnt[1].total_size())
#define CHECK_COUNTERS_ARE_0 \
CHECK_BT_CONTENT(_bt[0], 0, 0) \
CHECK_BT_CONTENT(_bt[1], 0, 0)
#ifdef ASSERT
void verify_trees() {
_bt[0].verify();
_bt[1].verify();
}
#endif
enum feeding_pattern_t {
scatter = 1,
left_right = 2,
right_left = 3
};
// Feed the whole feeder buffer to the trees, according to feeding_pattern.
void feed_all(feeding_pattern_t feeding_pattern) {
MetaWord* p = NULL;
unsigned added = 0;
// If we feed in small graining, we cap the number of blocks to limit test duration.
const unsigned max_blocks = 2000;
size_t old_feeding_size = feeding_pattern == right_left ? _rgen.max() : _rgen.min();
do {
size_t s = 0;
switch (feeding_pattern) {
case scatter:
// fill completely random
s =_rgen.get();
break;
case left_right:
// fill in ascending order to provoke a misformed tree.
s = MIN2(_rgen.get(), old_feeding_size);
old_feeding_size = s;
break;
case right_left:
// same, but descending.
s = MAX2(_rgen.get(), old_feeding_size);
old_feeding_size = s;
break;
}
// Get a block from the feeder buffer; feed it alternatingly to either tree.
p = _fb.get(s);
if (p != NULL) {
int which = added % 2;
added++;
_bt[which].add_block(p, s);
_cnt[which].add(s);
CHECK_COUNTERS
}
} while (p != NULL && added < max_blocks);
DEBUG_ONLY(verify_trees();)
// Trees should contain the same number of nodes (+-1)
EXPECT_TRUE(_bt[0].count() == _bt[1].count() ||
_bt[0].count() == _bt[1].count() + 1);
}
void ping_pong_loop(int iterations) {
// We loop and in each iteration randomly retrieve a block from one tree and add it to another.
for (int i = 0; i < iterations; i++) {
int taker = 0;
int giver = 1;
if ((os::random() % 10) > 5) {
giver = 0; taker = 1;
}
size_t s =_rgen.get();
size_t real_size = 0;
MetaWord* p = _bt[giver].remove_block(s, &real_size);
if (p != NULL) {
ASSERT_TRUE(_fb.is_valid_range(p, real_size));
ASSERT_GE(real_size, s);
_bt[taker].add_block(p, real_size);
_cnt[giver].sub(real_size);
_cnt[taker].add(real_size);
CHECK_COUNTERS;
}
#ifdef ASSERT
if (true) {//i % 1000 == 0) {
verify_trees();
}
#endif
}
}
// Drain the trees. While draining, observe the order of the drained items.
void drain_all() {
for (int which = 0; which < 2; which++) {
BlockTree* bt = _bt + which;
size_t last_size = 0;
while (!bt->is_empty()) {
// We only query for the minimal size. Actually returned size should be
// monotonously growing since remove_block should always return the closest fit.
size_t real_size = 4711;
MetaWord* p = bt->remove_block(BlockTree::MinWordSize, &real_size);
ASSERT_TRUE(_fb.is_valid_range(p, real_size));
ASSERT_GE(real_size, last_size);
last_size = real_size;
_cnt[which].sub(real_size);
CHECK_COUNTERS;
DEBUG_ONLY(bt->verify();)
}
}
}
void test(feeding_pattern_t feeding_pattern) {
CHECK_COUNTERS_ARE_0
feed_all(feeding_pattern);
LOG("Blocks in circulation: bt1=%d:" SIZE_FORMAT ", bt2=%d:" SIZE_FORMAT ".",
_bt[0].count(), _bt[0].total_size(),
_bt[1].count(), _bt[1].total_size());
ping_pong_loop(5000);
LOG("After Pingpong: bt1=%d:" SIZE_FORMAT ", bt2=%d:" SIZE_FORMAT ".",
_bt[0].count(), _bt[0].total_size(),
_bt[1].count(), _bt[1].total_size());
drain_all();
CHECK_COUNTERS_ARE_0
}
public:
BlockTreeTest(size_t min_word_size, size_t max_word_size) :
_fb(2 * M),
_bt(),
_rgen(min_word_size, max_word_size)
{
CHECK_COUNTERS;
DEBUG_ONLY(verify_trees();)
}
void test_scatter() { test(scatter); }
void test_right_left() { test(right_left); }
void test_left_right() { test(left_right); }
};
#define DO_TEST(name, feedingpattern, min, max) \
TEST_VM(metaspace, BlockTree_##name##_##feedingpattern) { \
BlockTreeTest btt(min, max); \
btt.test_##feedingpattern(); \
}
#define DO_TEST_ALL_PATTERNS(name, min, max) \
DO_TEST(name, scatter, min, max) \
DO_TEST(name, right_left, min, max) \
DO_TEST(name, left_right, min, max)
DO_TEST_ALL_PATTERNS(wide, BlockTree::MinWordSize, 128 * K);
DO_TEST_ALL_PATTERNS(narrow, BlockTree::MinWordSize, 16)
DO_TEST_ALL_PATTERNS(129, BlockTree::MinWordSize, 129)
DO_TEST_ALL_PATTERNS(4K, BlockTree::MinWordSize, 4*K)
|