1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*
* Copyright (c) 2022, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2022 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "jvm_io.h"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#include "utilities/ostream.hpp"
#include "utilities/parseInteger.hpp"
#include "testutils.hpp"
#include "unittest.hpp"
template <typename T> const char* type_name();
template <> const char* type_name<uint64_t>() { return "uint64_t"; }
template <> const char* type_name<uint32_t>() { return "uint32_t"; }
template <> const char* type_name<int64_t>() { return "int64_t"; }
template <> const char* type_name<int32_t>() { return "int32_t"; }
//#define LOG(s, ...) LOG_HERE(s, __VA_ARGS__)
#define LOG(s, ...)
template <typename T>
static void do_test_valid(T expected_value, const char* pattern) {
LOG("%s: \"%s\", expect: " UINT64_FORMAT "(" UINT64_FORMAT_X ")", type_name<T>(), pattern,
(uint64_t)expected_value, (uint64_t)expected_value);
T value = 17;
char* end = nullptr;
stringStream ss;
ss.print_raw(pattern);
bool rc = parse_integer(ss.base(), &end, &value);
ASSERT_TRUE(rc);
ASSERT_EQ(value, expected_value);
rc = parse_integer(ss.base(), &value);
ASSERT_TRUE(rc);
ASSERT_EQ(value, expected_value);
// Now test with a trailing pattern.
// parse_memory_size() should return remainder pointer,
// parse_argument_memory_size() should flatly refuse to parse this.
ss.print(":-)");
rc = parse_integer(ss.base(), &end, &value);
ASSERT_TRUE(rc);
ASSERT_EQ(value, expected_value);
ASSERT_EQ(end, ss.base() + strlen(pattern));
EXPECT_STREQ(end, ":-)");
rc = parse_integer(ss.base(), &value);
ASSERT_FALSE(rc);
}
template <typename T>
static void test_valid(T value, bool hex, T scale, const char* unit) {
if ((std::numeric_limits<T>::max() / scale) >= value) {
T expected_result = value * scale;
stringStream ss;
if (hex) {
ss.print(UINT64_FORMAT_X "%s", (uint64_t)value, unit); // e.g. "0xFFFF"
} else {
ss.print(UINT64_FORMAT "%s", (uint64_t)value, unit); // e.g. "65535"
}
do_test_valid((T)expected_result, ss.base());
}
}
template <typename T>
static void test_valid_all_units(T value, bool hex) {
test_valid(value, hex, (T)1, "");
test_valid(value, hex, (T)K, "k");
test_valid(value, hex, (T)K, "K");
test_valid(value, hex, (T)M, "m");
test_valid(value, hex, (T)M, "M");
test_valid(value, hex, (T)G, "g");
test_valid(value, hex, (T)G, "G");
if (sizeof(T) > 4) {
test_valid(value, hex, (T)((uint64_t)G * 1024), "t");
test_valid(value, hex, (T)((uint64_t)G * 1024), "T");
}
}
template <typename T>
static void test_valid_all_power_of_twos() {
for (int hex = 0; hex < 3; hex ++) {
for (T i = 1; i != 0; i <<= 2) {
test_valid_all_units(i - 1, hex == 1);
test_valid_all_units(i, hex == 1);
test_valid_all_units(i + 1, hex == 1);
}
}
}
TEST(ParseMemorySize, positives) {
test_valid_all_power_of_twos<uint64_t>();
test_valid_all_power_of_twos<uint32_t>();
test_valid_all_power_of_twos<int64_t>();
test_valid_all_power_of_twos<int32_t>();
}
// Test invalids.
// Note that parse_argument_memory_size is more restrictive than parse_memory_size, because
// the latter accepts trailing content.
static void do_test_invalid_both(const char* pattern) {
uint64_t value = 4711;
char* end = nullptr;
LOG("%s\n", pattern);
bool rc = parse_integer(pattern, &end, &value);
EXPECT_FALSE(rc);
rc = parse_integer(pattern, &value);
EXPECT_FALSE(rc);
}
static void do_test_invalid_for_parse_arguments(const char* pattern) {
uint64_t value = 4711;
char* end = nullptr;
LOG("%s\n", pattern);
// The first overload parses until unrecognized chars are encountered, then
// returns pointer to string remainder.
bool rc = parse_integer(pattern, &end, &value);
ASSERT_TRUE(rc);
// The second overload parses everything; unrecognized chars will make it fail.
rc = parse_integer(pattern, &value);
ASSERT_FALSE(rc);
}
TEST(ParseMemorySize, negatives_both) {
do_test_invalid_both("");
do_test_invalid_both("abc");
do_test_invalid_for_parse_arguments("100 M"); // parse_memory_size would see "100", parse_argument_memory_size would reject it
do_test_invalid_for_parse_arguments("100X"); // parse_memory_size would see "100", parse_argument_memory_size would reject it
}
|