1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/*
* Copyright (c) 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "memory/allocation.hpp"
#include "runtime/os.hpp"
#include "utilities/unsigned5.hpp"
#include "unittest.hpp"
TEST_VM(unsigned5, max_encoded_in_length) {
int maxlen = UNSIGNED5::MAX_LENGTH;
EXPECT_EQ(maxlen, 5);
for (int i = 0; i <= 190; i++) {
uint32_t interesting = i;
EXPECT_EQ(UNSIGNED5::encoded_length(interesting), 1);
EXPECT_EQ(UNSIGNED5::encoded_length(~interesting), maxlen);
}
for (int len = 1; len <= maxlen; len++) {
uint32_t interesting = UNSIGNED5::max_encoded_in_length(len);
EXPECT_EQ(UNSIGNED5::encoded_length(interesting-1), len);
EXPECT_EQ(UNSIGNED5::encoded_length(interesting), len);
if (len < 5) {
EXPECT_EQ(UNSIGNED5::encoded_length(interesting+1), len+1);
EXPECT_EQ(UNSIGNED5::encoded_length(interesting*2), len+1);
}
const int offset = -123;
const int good_limit = offset + len;
const int bad_limit = good_limit - 1;
EXPECT_TRUE(UNSIGNED5::fits_in_limit(interesting, offset, good_limit));
EXPECT_TRUE(!UNSIGNED5::fits_in_limit(interesting, offset, bad_limit));
}
}
// Call FN on a nice list of "interesting" uint32_t values to encode/decode.
// For each length in [1..5], the maximum encodable value of that
// length is "interesting", as are one more and one less than that
// value. For each nybble (aligned 4-bit field) of a uint32_t, each
// possible value (in [0..15]) stored in that nybble is "interesting".
// Also "interesting" are some other values created by perturbing
// lower bits of that nybble-bearing number, by subtracting a power
// of -7 (up to -7^7). That makes just over 1000 distinct numbers.
//
// Calls to this function are repeatable, so you can call it to pack
// an output array, and then call it again to read an input array
// verifying that the retrieved values match the stored ones.
template<typename FN>
inline int enumerate_cases(FN fn) {
// boundary values around the maximum encoded in each byte-length
for (int len = 1; len <= 5; len++) {
uint32_t interesting = UNSIGNED5::max_encoded_in_length(len);
int res = fn(interesting-1);
if (res) return res;
res = fn(interesting);
if (res) return res;
if (interesting < (uint32_t)-1) {
res = fn(interesting+1);
if (res) return res;
}
}
// for each nybble, for each value in the nybble
for (uint32_t npos = 0; npos < 32; npos += 4) {
for (uint32_t nval = 0; nval <= 15; nval++) {
uint32_t interesting = nval << npos;
int res = fn(interesting);
if (res) return res;
// mix in some crazy-looking values: powers of -7 to -7^7
for (int pon7 = 1; pon7 < 1000000; pon7 *= -7) {
uint32_t interesting2 = interesting - pon7;
res = fn(interesting2);
if (res) return res;
}
}
}
return 0;
}
TEST_VM(unsigned5, transcode_single) {
const int limit = UNSIGNED5::MAX_LENGTH;
u_char buffer[limit + 1];
auto each_case = [&](uint32_t value) -> uint32_t {
//printf("case %08X len=%d\n", value, UNSIGNED5::encoded_length(value));
int offset = 0;
UNSIGNED5::write_uint(value, buffer, offset, limit);
int length = offset;
EXPECT_TRUE(length <= UNSIGNED5::MAX_LENGTH);
EXPECT_EQ(length, UNSIGNED5::encoded_length(value)) << "for value=" << value;
buffer[length] = 0;
offset = 0;
uint32_t check = UNSIGNED5::read_uint(buffer, offset, limit);
EXPECT_EQ(offset, length) << "for value=" << value;
EXPECT_EQ(value, check);
return 0;
};
auto z = enumerate_cases(each_case);
EXPECT_TRUE(!z);
}
static int count_cases() {
int case_count = 0;
auto inc_case_count = [&](uint32_t){ ++case_count; return 0; };
enumerate_cases(inc_case_count);
return case_count;
}
TEST_VM(unsigned5, transcode_multiple) {
int case_count = count_cases();
const int limit = 200;
ASSERT_TRUE(limit < case_count*UNSIGNED5::MAX_LENGTH);
u_char buffer[limit + 1];
//printf("%d cases total\n", case_count); //1166 cases total
for (int sublimit = limit - 20; sublimit < limit; sublimit++) {
int offset = 0;
int count = 0;
// write each number into an array
auto write_case = [&](uint32_t value) -> uint32_t {
if (!UNSIGNED5::fits_in_limit(value, offset, sublimit))
return value|1;
UNSIGNED5::write_uint(value, buffer, offset, sublimit);
count++;
return 0;
};
auto done = enumerate_cases(write_case);
EXPECT_TRUE(done) << "must have hit the sublimit";
EXPECT_TRUE(count < case_count);
int length = offset;
EXPECT_TRUE(length <= sublimit && length + UNSIGNED5::MAX_LENGTH > sublimit)
<< "length=" << length << " sublimit=" << sublimit;
for (int i = length; i <= sublimit; i++) {
buffer[i] = 0;
}
if (sublimit == limit-1) {
UNSIGNED5::print_count(case_count + 1, &buffer[0], sublimit);
}
//printf("encoded %d values in %d bytes: [[%s]]\n", count, length, buffer);
// now read it all back
offset = 0;
int count2 = 0;
auto read_back_case = [&](uint32_t value) -> uint32_t {
int clen = UNSIGNED5::check_length(buffer, offset, sublimit);
if (clen == 0) return value|1;
EXPECT_EQ(clen, UNSIGNED5::encoded_length(value));
int begin = offset;
uint32_t check = UNSIGNED5::read_uint(buffer, offset, sublimit);
EXPECT_EQ(offset, begin + clen);
EXPECT_EQ(value, check);
count2++;
return 0;
};
auto done2 = enumerate_cases(read_back_case);
EXPECT_EQ(done, done2);
EXPECT_EQ(count, count2);
EXPECT_EQ(offset, length);
}
}
inline void init_ints(int len, int* ints) {
for (int i = 0; i < len; i++) {
ints[i] = (i * ((i&2) ? i : 1001)) ^ -(i & 1);
}
}
struct MyReaderHelper {
uint8_t operator()(char* a, int i) const { return a[i]; }
};
using MyReader = UNSIGNED5::Reader<char*, int, MyReaderHelper>;
TEST_VM(unsigned5, reader) {
const int LEN = 100;
int ints[LEN];
init_ints(LEN, ints);
int i;
UNSIGNED5::Sizer<> szr;
for (i = 0; i < LEN; i++) {
szr.accept_uint(ints[i]);
}
//printf("count=%d, size=%d\n", szr.count(), szr.position());
char buf[LEN * UNSIGNED5::MAX_LENGTH + 1];
int buflen;
{
int pos = 0;
for (int i = 0; i < LEN; i++) {
UNSIGNED5::write_uint(ints[i], buf, pos, 0);
}
EXPECT_TRUE(pos+1 < (int)sizeof(buf)) << pos;
buflen = pos;
buf[buflen] = 0;
}
EXPECT_EQ(szr.position(), buflen);
MyReader r1(buf);
i = 0;
while (r1.has_next()) {
int x = r1.next_uint();
int y = ints[i++];
ASSERT_EQ(x, y) << i;
}
ASSERT_EQ(i, LEN);
MyReader r2(buf, buflen / 2);
i = 0;
while (r2.has_next()) {
int x = r2.next_uint();
int y = ints[i++];
ASSERT_EQ(x, y) << i;
}
ASSERT_TRUE(i < LEN);
// copy from reader to writer
UNSIGNED5::Reader<char*,int> r3(buf);
int array_limit = 1;
char* array = new char[array_limit + 1];
auto array_grow = [&](int){
array[array_limit] = 0;
auto oal = array_limit;
array_limit += 10;
//printf("growing array from %d to %d\n", oal, array_limit);
auto na = new char[array_limit + 1];
strcpy(na, array);
array = na;
};
UNSIGNED5::Writer<char*,int> w3(array, array_limit);
while (r3.has_next()) {
w3.accept_grow(r3.next_uint(), array_grow);
}
w3.end_byte(); // we always allocated one more than the limit!
std::string buf_s(buf, buflen);
std::string arr_s(array, strlen(array));
ASSERT_EQ(buf_s, arr_s);
// try printing:
{
char stbuf[1000];
stringStream st(stbuf, sizeof(stbuf)-1);
UNSIGNED5::Reader<char*,int> printer(buf);
printer.print_on(&st, 4, "(", ")");
std::string st_s(st.base(), st.size());
char buf2[sizeof(stbuf)];
os::snprintf_checked(buf2, sizeof(buf2), "(%d %d %d %d)", ints[0], ints[1], ints[2], ints[3]);
std::string exp_s(buf2, strlen(buf2));
ASSERT_EQ(exp_s, st_s);
}
}
// Here is some object code to look at if we want to do a manual
// study. One could find the build file named test_unsigned5.o.cmdline
// and hand-edit the command line to produce assembly code in
// test_unsigned5.s.
//
// Or, given the two empty "fence functions", one could do a
// quick scan like this:
//
// $ objdump -D $(find build/*release -name test_unsigned5.o) \
// | sed -n /start_code_quality/,/end_code_quality/p \
// | egrep -B10 bswap # or grep -B20 cfi_endproc
void start_code_quality_unsigned5() { }
uint32_t code_quality_max_encoded_in_length(int i) {
return UNSIGNED5::max_encoded_in_length(i); // should compile like 5-switch
}
int code_quality_encoded_length(uint32_t x) {
return UNSIGNED5::encoded_length(x); // should compile to 4-way comparison
}
int code_quality_check_length(char* a) {
return UNSIGNED5::check_length(a, 0); // should compile with fast-path
}
int code_quality_read_int(char* a) {
int i = 0;
return UNSIGNED5::read_uint(a, i, 0); // should compile with fast-path
}
int code_quality_int_reader(char* a) {
MyReader r1(a);
if (!r1.has_next()) return -1;
return r1.next_uint();
}
int code_quality_int_sizer(int* a, int n) {
UNSIGNED5::Sizer<> s;
for (int i = 0; i < n; i++) s.accept_uint(a[i]);
return s.position();
}
void end_code_quality_unsigned5() { }
|