1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
import java.awt.*;
import java.awt.geom.*;
import java.math.*;
import java.util.*;
/*
* @test
* @bug 8176501
* @summary This tests thousands of shapes and makes sure a high-precision bounding box fits inside the
* results of Path2D.getBounds(PathIterator)
* @run main GetBounds2DPrecisionTest
*/
public class GetBounds2DPrecisionTest {
public static void main(String[] args) {
String msg1 = testSmallCubics();
if (msg1 != null) {
System.out.println("testSmallCubics: "+msg1);
} else {
System.out.println("testSmallCubics: passed");
}
if (msg1 != null)
throw new RuntimeException("One or more tests failed; see System.out output for details.");
}
/**
* @return a String describing the failure, or null if this test passed.
*/
private static String testSmallCubics() {
int failureCtr = 0;
for(int a = 0; a < 1000; a++) {
CubicCurve2D cubicCurve2D = createSmallCubic(a);
if (!test(a, cubicCurve2D, getHorizontalEdges(cubicCurve2D)))
failureCtr++;
}
if (failureCtr > 0)
return failureCtr+" tests failed; see System.out for details";
return null;
}
private static CubicCurve2D createSmallCubic(int trial) {
Random random = new Random(trial);
double cx1 = random.nextDouble() * 10 - 5;
double cy1 = random.nextDouble();
double cx2 = random.nextDouble() * 10 - 5;
double cy2 = random.nextDouble();
return new CubicCurve2D.Double(0, 0, cx1, cy1, cx2, cy2, 0, 1);
}
/**
* This returns true if the shape's getBounds2D() method returns a bounding box whose
* left & right edges matches or exceeds the horizontalEdges arguments.
*/
private static boolean test(int trial, Shape shape, BigDecimal[] horizontalEdges) {
Rectangle2D bounds_doublePrecision = shape.getBounds2D();
Rectangle2D bounds_bigDecimalPrecision = new Rectangle2D.Double(
horizontalEdges[0].doubleValue(),
bounds_doublePrecision.getY(),
horizontalEdges[1].subtract(horizontalEdges[0]).doubleValue(),
bounds_doublePrecision.getHeight() );
boolean pass = true;
if (bounds_doublePrecision.getMinX() > bounds_bigDecimalPrecision.getMinX()) {
pass = false;
String x1a = toUniformString(bounds_bigDecimalPrecision.getX());
String x1b = toComparisonString(x1a, toUniformString(bounds_doublePrecision.getX()));
System.out.println("Left expected:\t"+x1a);
System.out.println("Left observed:\t"+x1b);
}
if (bounds_doublePrecision.getMaxX() < bounds_bigDecimalPrecision.getMaxX()) {
pass = false;
String x2a = toUniformString(bounds_bigDecimalPrecision.getMaxX());
String x2b = toComparisonString(x2a, toUniformString(bounds_doublePrecision.getMaxX()));
System.out.println("Right expected:\t"+x2a);
System.out.println("Right observed:\t"+x2b);
}
if (!pass)
System.out.println("\ttrial "+trial +" failed ("+toString(shape)+")");
return pass;
}
/**
* Return the left and right edges in high precision
*/
private static BigDecimal[] getHorizontalEdges(CubicCurve2D curve) {
double cx1 = curve.getCtrlX1();
double cx2 = curve.getCtrlX2();
BigDecimal[] coeff = new BigDecimal[4];
BigDecimal[] deriv_coeff = new BigDecimal[3];
BigDecimal[] tExtrema = new BigDecimal[2];
// coeff[3] = -lastX + 3.0 * coords[0] - 3.0 * coords[2] + coords[4];
// coeff[2] = 3.0 * lastX - 6.0 * coords[0] + 3.0 * coords[2];
// coeff[1] = -3.0 * lastX + 3.0 * coords[0];
// coeff[0] = lastX;
coeff[3] = new BigDecimal(3).multiply(new BigDecimal(cx1)).add( new BigDecimal(-3).multiply(new BigDecimal(cx2)) );
coeff[2] = new BigDecimal(-6).multiply(new BigDecimal(cx1)).add(new BigDecimal(3).multiply(new BigDecimal(cx2)));
coeff[1] = new BigDecimal(3).multiply(new BigDecimal(cx1));
coeff[0] = BigDecimal.ZERO;
deriv_coeff[0] = coeff[1];
deriv_coeff[1] = new BigDecimal(2.0).multiply( coeff[2] );
deriv_coeff[2] = new BigDecimal(3.0).multiply( coeff[3] );
int tExtremaCount = solveQuadratic(deriv_coeff, tExtrema);
BigDecimal leftX = BigDecimal.ZERO;
BigDecimal rightX = BigDecimal.ZERO;
for (int i = 0; i < tExtremaCount; i++) {
BigDecimal t = tExtrema[i];
if (t.compareTo( BigDecimal.ZERO ) > 0 && t.compareTo(BigDecimal.ONE) < 0) {
BigDecimal x = coeff[0].add( t.multiply(coeff[1].add(t.multiply(coeff[2].add(t.multiply(coeff[3]))))) );
if (x.compareTo(leftX) < 0) leftX = x;
if (x.compareTo(rightX) > 0) rightX = x;
}
}
return new BigDecimal[] { leftX, rightX };
}
/**
* Return the left and right edges in high precision
*/
private static BigDecimal[] getHorizontalEdges(QuadCurve2D curve) {
double cx = curve.getCtrlX();
BigDecimal[] coeff = new BigDecimal[3];
BigDecimal[] deriv_coeff = new BigDecimal[2];
BigDecimal dx21 = new BigDecimal(cx).subtract(new BigDecimal(curve.getX1()));
coeff[2] = new BigDecimal(curve.getX2()).subtract(new BigDecimal(cx)).subtract(dx21); // A = P3 - P0 - 2 P2
coeff[1] = new BigDecimal(2.0).multiply(dx21); // B = 2 (P2 - P1)
coeff[0] = new BigDecimal(curve.getX1()); // C = P1
deriv_coeff[0] = coeff[1];
deriv_coeff[1] = new BigDecimal(2.0).multiply( coeff[2] );
BigDecimal leftX = BigDecimal.ZERO;
BigDecimal rightX = BigDecimal.ZERO;
if (!deriv_coeff[1].equals(BigDecimal.ZERO)) {
BigDecimal t = deriv_coeff[0].negate().divide(deriv_coeff[1], RoundingMode.HALF_EVEN);
if (t.compareTo( BigDecimal.ZERO ) > 0 && t.compareTo(BigDecimal.ONE) < 0) {
BigDecimal x = coeff[0].add( t.multiply(coeff[1].add(t.multiply(coeff[2]))) );
if (x.compareTo(leftX) < 0) leftX = x;
if (x.compareTo(rightX) > 0) rightX = x;
}
}
return new BigDecimal[] { leftX, rightX };
}
/**
* Convert a shape into SVG-ish notation for debugging/readability.
*/
private static String toString(Shape shape) {
StringBuilder returnValue = new StringBuilder();
PathIterator pi = shape.getPathIterator(null);
double[] coords = new double[6];
while(!pi.isDone()) {
int k = pi.currentSegment(coords);
if (k == PathIterator.SEG_MOVETO) {
returnValue.append("m "+coords[0]+" "+coords[1]+" ");
} else if (k == PathIterator.SEG_LINETO) {
returnValue.append("l "+coords[0]+" "+coords[1]+" ");
} else if (k == PathIterator.SEG_QUADTO) {
returnValue.append("q "+coords[0]+" "+coords[1]+" "+coords[2]+" "+coords[3]+" ");
} else if (k == PathIterator.SEG_CUBICTO) {
returnValue.append("c "+coords[0]+" "+coords[1]+" "+coords[2]+" "+coords[3]+" "+coords[4]+" "+coords[5]+" ");
} else if (k == PathIterator.SEG_CLOSE) {
returnValue.append("z");
}
pi.next();
}
return returnValue.toString();
}
private static String toUniformString(double value) {
BigDecimal decimal = new BigDecimal(value);
int DIGIT_COUNT = 40;
String str = decimal.toPlainString();
if (str.length() >= DIGIT_COUNT) {
str = str.substring(0,DIGIT_COUNT-1)+"…";
}
while(str.length() < DIGIT_COUNT) {
str = str + " ";
}
return str;
}
private static String toComparisonString(String target, String observed) {
for(int a = 0; a<target.length(); a++) {
char ch1 = target.charAt(a);
char ch2 = observed.charAt(a);
if (ch1 != ch2) {
return observed.substring(0,a) + createCircleDigit(ch2)+observed.substring(a+1);
}
}
return observed;
}
/**
* Convert a digit 0-9 into a "circle digit". Really we just want any unobtrusive way to
* highlight a character.
*/
private static char createCircleDigit(char ch) {
if (ch >= '1' && ch <='9')
return (char)( ch - '1' + '\u2460');
if (ch == '0')
return '\u24ea';
return ch;
}
private static int solveQuadratic(BigDecimal[] eqn, BigDecimal[] res) {
BigDecimal a = eqn[2];
BigDecimal b = eqn[1];
BigDecimal c = eqn[0];
int roots = 0;
if (a.equals(BigDecimal.ZERO)) {
// The quadratic parabola has degenerated to a line.
if (b.equals(BigDecimal.ZERO)) {
// The line has degenerated to a constant.
return -1;
}
res[roots++] = c.negate().divide(b);
} else {
// From Numerical Recipes, 5.6, Quadratic and Cubic Equations
BigDecimal d = b.multiply(b).add(new BigDecimal(-4.0).multiply(a).multiply(c));
if (d.compareTo(BigDecimal.ZERO) < 0) {
// If d < 0.0, then there are no roots
return 0;
}
d = d.sqrt(MathContext.DECIMAL128);
// For accuracy, calculate one root using:
// (-b +/- d) / 2a
// and the other using:
// 2c / (-b +/- d)
// Choose the sign of the +/- so that b+d gets larger in magnitude
if (b.compareTo(BigDecimal.ZERO) < 0) {
d = d.negate();
}
BigDecimal q = b.add(d).divide(new BigDecimal(-2.0));
q = q.setScale(40, RoundingMode.HALF_EVEN);
// We already tested a for being 0 above
res[roots++] = q.divide(a, RoundingMode.HALF_EVEN);
if (!q.equals(BigDecimal.ZERO)) {
c = c.setScale(40, RoundingMode.HALF_EVEN);
res[roots++] = c.divide(q, RoundingMode.HALF_EVEN);
}
}
return roots;
}
}
|