1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
/*
* Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import jdk.test.lib.RandomFactory;
import java.util.function.DoubleUnaryOperator;
/*
* @test
* @bug 8302027
* @key randomness
* @library /test/lib
* @build jdk.test.lib.RandomFactory
* @build Tests
* @build FdlibmTranslit
* @build TrigTests
* @run main TrigTests
* @summary Tests for StrictMath.{sin, cos, tan}
*/
/**
* The tests in ../Math/{TanTests.java, SinCosTests.java} test
* properties that should hold for any implementation of the trig
* functions sin, cos, and tan, including the FDLIBM-based ones
* required by the StrictMath class. Therefore, the test cases in
* ../Math/{TanTests.java, SinCosTests.java} are run against both the
* Math and StrictMath versions of the trig methods. The role of this
* test is to verify that the FDLIBM algorithms are being used by
* running golden file tests on values that may vary from one
* conforming implementation of the trig functions to another.
*/
public class TrigTests {
private TrigTests(){}
public static void main(String... args) {
int failures = 0;
failures += testAgainstTranslitCommon();
failures += testAgainstTranslitSin();
failures += testAgainstTranslitCos();
failures += testAgainstTranslitTan();
if (failures > 0) {
System.err.println("Testing the trig functions incurred "
+ failures + " failures.");
throw new RuntimeException();
}
}
/**
* Bundle together groups of testing methods.
*/
private static enum TrigTest {
SIN(TrigTests::testSinCase, FdlibmTranslit::sin),
COS(TrigTests::testCosCase, FdlibmTranslit::cos),
TAN(TrigTests::testTanCase, FdlibmTranslit::tan);
private DoubleDoubleToInt testCase;
private DoubleUnaryOperator transliteration;
TrigTest(DoubleDoubleToInt testCase, DoubleUnaryOperator transliteration) {
this.testCase = testCase;
this.transliteration = transliteration;
}
public DoubleDoubleToInt testCase() {return testCase;}
public DoubleUnaryOperator transliteration() {return transliteration;}
}
// Initialize shared random number generator
private static java.util.Random random = RandomFactory.getRandom();
/**
* Test against shared points of interest.
*/
private static int testAgainstTranslitCommon() {
int failures = 0;
double[] pointsOfInterest = {
Math.PI/4.0,
-Math.PI/4.0,
Math.PI/2.0,
-Math.PI/2.0,
3.0*Math.PI/2.0,
-3.0*Math.PI/2.0,
Math.PI,
-Math.PI,
2.0*Math.PI,
-2.0*Math.PI,
Double.MIN_NORMAL,
1.0,
Tests.createRandomDouble(random),
};
for (var testMethods : TrigTest.values()) {
for (double testPoint : pointsOfInterest) {
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, testMethods);
}
}
return failures;
}
/**
* Test StrictMath.sin against transliteration port of sin.
*/
private static int testAgainstTranslitSin() {
int failures = 0;
// Probe near decision points in the FDLIBM algorithm.
double[] decisionPoints = {
0x1.0p-27,
-0x1.0p-27,
};
for (double testPoint : decisionPoints) {
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, TrigTest.SIN);
}
// Inputs where Math.sin and StrictMath.sin differ for at least
// one Math.sin implementation.
double [][] testCases = {
{0x1.00000006eeeefp-12, 0x1.ffffffb888889p-13},
{0x1.00000006eeefp-12, 0x1.ffffffb88888bp-13},
{0x1.00000006eeef1p-12, 0x1.ffffffb88888dp-13},
{0x1.000000001bba2p-9, 0x1.ffffeaaae2633p-10},
{0x1.000000000013p-1, 0x1.eaee8744b0806p-2},
{0x1.0000000000012p0, 0x1.aed548f090d02p-1},
{0x1.00000000004e1p9, 0x1.45b52f29ac36p-4},
{0x1.00000000000cp10, -0x1.44ad26136ce5fp-3},
{0x1.000000000020bp11, -0x1.4092047afcd2p-2},
{0x1.0000000000003p12, -0x1.3074ea23314dep-1},
{0x1.0000000000174p50, -0x1.54cd5e7e9e3d2p-1},
{0x1.0000000000005p51, -0x1.8c35b0d728faep-2},
{0x1.0000000000101p113, -0x1.69e9ed300b1dcp-1},
{0x1.0000000000017p114, 0x1.f6b44aa2a1c9cp-1},
{0x1.00000000001abp128, -0x1.ecaddc1136bb2p-1},
{0x1.000000000001bp129, -0x1.682ccb977e4dp-1},
{0x1.0p233, 0x1.7c54e75ed6077p-1},
{0x1.00000000000fcp299, 0x1.78ad2fd7aef78p-1},
{0x1.0000000000002p300, -0x1.1adaf3550facp-1},
{0x1.00000000001afp1023, 0x1.d1c804ef2eeccp-1},
};
for (double[] testCase: testCases) {
failures+=testSinCase(testCase[0], testCase[1]);
}
return failures;
}
/**
* Test StrictMath.cos against transliteration port of cos.
*/
private static int testAgainstTranslitCos() {
int failures = 0;
// Probe near decision points in the FDLIBM algorithm.
double[] decisionPoints = {
0x1.0p27,
-0x1.0p27,
0.78125,
-0.78125,
};
for (double testPoint : decisionPoints) {
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, TrigTest.COS);
}
// Inputs where Math.cos and StrictMath.cos differ for at least
// one Math.cos implementation.
double [][] testCases = {
{0x1.000000076aaa6p-10, 0x1.fffff00000147p-1},
{0x1.000000002e4fbp-8, 0x1.ffff00001554fp-1},
{0x1.0000000000318p-2, 0x1.f01549f7dee4p-1},
{0x1.000000000011ep-1, 0x1.c1528065b7cc6p-1},
{0x1.0000000000174p0, 0x1.14a280fb50419p-1},
{0x1.0000000000019p1, -0x1.aa226575372bbp-2},
{0x1.00000000018c9p9, -0x1.fe60f23b0016ap-1},
{0x1.0000000000022p10, 0x1.f98669d7b18d6p-1},
{0x1.0000000000281p11, 0x1.e6439428b217p-1},
{0x1.0000000000001p12, 0x1.9ba4a85e6e173p-1},
{0x1.0000000000211p20, 0x1.e33ad93554beep-1},
{0x1.0000000000006p21, 0x1.9027223f77694p-1},
{0x1.00000000000b8p95, 0x1.8315138968a66p-1},
{0x1.0000000000043p96, 0x1.5b302d1c86cbcp-4},
{0x1.000000000013ap127, -0x1.740d46d7821f4p-1},
{0x1.0000000000002p128, -0x1.e050345cf2161p-1},
{0x1.000000000014p299, 0x1.6c5f3c84352fep-1},
{0x1.0000000000007p300, -0x1.55109bfdf1c5cp-1},
{0x1.000000000010ep400, 0x1.e725637029938p-2},
{0x1.0000000000007p401, 0x1.1f89e14e29ccep-1},
{0x1.0p402, 0x1.be2d53c4560dcp-1},
{0x1.000000000015fp1023, -0x1.2f2596c42735cp-1},
};
for (double[] testCase: testCases) {
failures+=testCosCase(testCase[0], testCase[1]);
}
return failures;
}
/**
* Test StrictMath.tan against transliteration port of tan
*/
private static int testAgainstTranslitTan() {
int failures = 0;
// Probe near decision points in the FDLIBM algorithm.
double[] decisionPoints = {
0x1.0p-28,
-0x1.0p-28,
0.6744,
-0.6744,
};
for (double testPoint : decisionPoints) {
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, TrigTest.TAN);
}
// Inputs where Math.tan and StrictMath.tan differ for at least
// one Math.tan implementation.
double [][] testCases = {
{0x1.00000002221fep-13, 0x1.0000001777753p-13},
{0x1.0000000088859p-12, 0x1.00000055dddbp-12},
{0x1.0000000008787p-10, 0x1.000005555defep-10},
{0x1.0000000001423p-9, 0x1.0000155558b9ap-9},
{0x1.00000000005d9p-2, 0x1.05785a43c529p-2},
{0x1.000000000001fp-1, 0x1.17b4f5bf34772p-1},
{0x1.000000000006ep0, 0x1.8eb245cbee51ep0},
{0x1.0000000000032p1, -0x1.17af62e094fd7p1},
{0x1.00000000006a7p9, -0x1.46be0efd0f8cp-4},
{0x1.0p10, -0x1.48d5be43ada01p-3},
{0x1.00000000000c3p32, 0x1.0ad3757181cbap-1},
{0x1.0000000000005p33, 0x1.6e07fbf43d47p0},
{0x1.0000000000124p127, -0x1.3baa73a93958p0},
{0x1.000000000002p128, -0x1.bf05a77a8df0cp-1},
{0x1.000000000011cp299, 0x1.8a6f42eaa3d1fp0},
{0x1.000000000001cp300, -0x1.b30fc9f73002cp-1},
{0x1.0000000000013p500, -0x1.c4e46751be12cp-1},
{0x1.00000000000ep1023, -0x1.d52c4ec04f108p-2}
};
for (double[] testCase: testCases) {
failures+=testTanCase(testCase[0], testCase[1]);
}
return failures;
}
private interface DoubleDoubleToInt {
int apply(double x, double y);
}
private static int testRange(double start, double increment, int count,
TrigTest testMethods) {
int failures = 0;
double x = start;
for (int i = 0; i < count; i++, x += increment) {
failures +=
testMethods.testCase().apply(x, testMethods.transliteration().applyAsDouble(x));
}
return failures;
}
private static int testRangeMidpoint(double midpoint, double increment, int count,
TrigTest testMethods) {
int failures = 0;
double x = midpoint - increment*(count / 2) ;
for (int i = 0; i < count; i++, x += increment) {
failures +=
testMethods.testCase().apply(x, testMethods.transliteration().applyAsDouble(x));
}
return failures;
}
private static int testSinCase(double input, double expected) {
return Tests.test("StrictMath.sin(double)", input,
StrictMath::sin, expected);
}
private static int testCosCase(double input, double expected) {
return Tests.test("StrictMath.cos(double)", input,
StrictMath::cos, expected);
}
private static int testTanCase(double input, double expected) {
return Tests.test("StrictMath.tan(double)", input,
StrictMath::tan, expected);
}
}
|