1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
/*
* Copyright (c) 2018, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test id=IntegerPolynomial25519
* @bug 8181594 8208648
* @summary Test proper operation of integer field arithmetic
* @modules java.base/sun.security.util java.base/sun.security.util.math java.base/sun.security.util.math.intpoly
* @build BigIntegerModuloP
* @run main TestIntegerModuloP sun.security.util.math.intpoly.IntegerPolynomial25519 32 0
*/
/*
* @test id=IntegerPolynomial448
* @modules java.base/sun.security.util java.base/sun.security.util.math java.base/sun.security.util.math.intpoly
* @build BigIntegerModuloP
* @run main TestIntegerModuloP sun.security.util.math.intpoly.IntegerPolynomial448 56 1
*/
/*
* @test id=IntegerPolynomial1305
* @modules java.base/sun.security.util java.base/sun.security.util.math java.base/sun.security.util.math.intpoly
* @build BigIntegerModuloP
* @run main TestIntegerModuloP sun.security.util.math.intpoly.IntegerPolynomial1305 16 2
*/
/*
* @test id=IntegerPolynomialP256
* @modules java.base/sun.security.util java.base/sun.security.util.math java.base/sun.security.util.math.intpoly
* @build BigIntegerModuloP
* @run main TestIntegerModuloP sun.security.util.math.intpoly.IntegerPolynomialP256 32 5
*/
/*
* @test id=IntegerPolynomialP384
* @modules java.base/sun.security.util java.base/sun.security.util.math java.base/sun.security.util.math.intpoly
* @build BigIntegerModuloP
* @run main TestIntegerModuloP sun.security.util.math.intpoly.IntegerPolynomialP384 48 6
*/
/*
* @test id=IntegerPolynomialP521
* @modules java.base/sun.security.util java.base/sun.security.util.math java.base/sun.security.util.math.intpoly
* @build BigIntegerModuloP
* @run main TestIntegerModuloP sun.security.util.math.intpoly.IntegerPolynomialP521 66 7
*/
/*
* @test id=P256OrderField
* @modules java.base/sun.security.util java.base/sun.security.util.math java.base/sun.security.util.math.intpoly
* @build BigIntegerModuloP
* @run main TestIntegerModuloP sun.security.util.math.intpoly.P256OrderField 32 8
*/
/*
* @test id=P384OrderField
* @modules java.base/sun.security.util java.base/sun.security.util.math java.base/sun.security.util.math.intpoly
* @build BigIntegerModuloP
* @run main TestIntegerModuloP sun.security.util.math.intpoly.P384OrderField 48 9
*/
/*
* @test id=P521OrderField
* @modules java.base/sun.security.util java.base/sun.security.util.math java.base/sun.security.util.math.intpoly
* @build BigIntegerModuloP
* @run main TestIntegerModuloP sun.security.util.math.intpoly.P521OrderField 66 10
*/
/*
* @test id=Curve25519OrderField
* @modules java.base/sun.security.util java.base/sun.security.util.math java.base/sun.security.util.math.intpoly
* @build BigIntegerModuloP
* @run main TestIntegerModuloP sun.security.util.math.intpoly.Curve25519OrderField 32 11
*/
/*
* @test id=Curve448OrderField
* @modules java.base/sun.security.util java.base/sun.security.util.math java.base/sun.security.util.math.intpoly
* @build BigIntegerModuloP
* @run main TestIntegerModuloP sun.security.util.math.intpoly.Curve448OrderField 56 12
*/
import sun.security.util.math.*;
import sun.security.util.math.intpoly.*;
import java.util.function.*;
import java.util.*;
import java.math.*;
import java.nio.*;
public class TestIntegerModuloP {
static BigInteger TWO = BigInteger.valueOf(2);
// The test has a list of functions, and it selects randomly from that list
// The function types
interface ElemFunction extends BiFunction
<MutableIntegerModuloP, IntegerModuloP, IntegerModuloP> { }
interface ElemArrayFunction extends BiFunction
<MutableIntegerModuloP, IntegerModuloP, byte[]> { }
interface TriConsumer <T, U, V> {
void accept(T t, U u, V v);
}
interface ElemSetFunction extends TriConsumer
<MutableIntegerModuloP, IntegerModuloP, byte[]> { }
// The lists of functions. Multiple lists are needed because the test
// respects the limitations of the arithmetic implementations.
static final List<ElemFunction> ADD_FUNCTIONS = new ArrayList<>();
static final List<ElemFunction> MULT_FUNCTIONS = new ArrayList<>();
static final List<ElemArrayFunction> ARRAY_FUNCTIONS = new ArrayList<>();
static final List<ElemSetFunction> SET_FUNCTIONS = new ArrayList<>();
static void setUpFunctions(IntegerFieldModuloP field, int length) {
ADD_FUNCTIONS.clear();
MULT_FUNCTIONS.clear();
SET_FUNCTIONS.clear();
ARRAY_FUNCTIONS.clear();
byte highByte = (byte)
(field.getSize().bitLength() > length * 8 ? 1 : 0);
// add functions are (im)mutable add/subtract
ADD_FUNCTIONS.add(IntegerModuloP::add);
ADD_FUNCTIONS.add(IntegerModuloP::subtract);
ADD_FUNCTIONS.add(MutableIntegerModuloP::setSum);
ADD_FUNCTIONS.add(MutableIntegerModuloP::setDifference);
// also include functions that return the first/second argument
ADD_FUNCTIONS.add((a, b) -> a);
ADD_FUNCTIONS.add((a, b) -> b);
// mult functions are (im)mutable multiply and square
MULT_FUNCTIONS.add(IntegerModuloP::multiply);
MULT_FUNCTIONS.add((a, b) -> a.square());
MULT_FUNCTIONS.add((a, b) -> b.square());
MULT_FUNCTIONS.add(MutableIntegerModuloP::setProduct);
MULT_FUNCTIONS.add((a, b) -> a.setSquare());
// also test multiplication by a small value
MULT_FUNCTIONS.add((a, b) -> a.setProduct(b.getField().getSmallValue(
b.asBigInteger().mod(BigInteger.valueOf(262144)).intValue())));
// set functions are setValue with various argument types
SET_FUNCTIONS.add((a, b, c) -> a.setValue(b));
SET_FUNCTIONS.add((a, b, c) ->
a.setValue(c, 0, c.length, (byte) 0));
SET_FUNCTIONS.add((a, b, c) ->
a.setValue(c, 0, c.length / 2, (byte) 0));
SET_FUNCTIONS.add((a, b, c) ->
a.setValue(ByteBuffer.wrap(c, 0, c.length / 2).order(ByteOrder.LITTLE_ENDIAN),
c.length / 2, highByte));
// array functions return the (possibly modified) value as byte array
ARRAY_FUNCTIONS.add((a, b ) -> a.asByteArray(length));
ARRAY_FUNCTIONS.add((a, b) -> a.addModPowerTwo(b, length));
}
public static void main(String[] args) {
String className = args[0];
final int length = Integer.parseInt(args[1]);
int seed = Integer.parseInt(args[2]);
try {
Class<?> clazz = Class.forName(className);
IntegerFieldModuloP field = (IntegerFieldModuloP)
clazz.getDeclaredField("ONE").get(null);
setUpFunctions(field, length);
runFieldTest(field, length, seed);
} catch (Exception ex) {
throw new RuntimeException(ex);
}
System.out.println("All tests passed");
}
static void assertEqual(IntegerModuloP e1, IntegerModuloP e2) {
if (!e1.asBigInteger().equals(e2.asBigInteger())) {
throw new RuntimeException("values not equal: "
+ e1.asBigInteger() + " != " + e2.asBigInteger());
}
}
// A class that holds pairs of actual/expected values, and allows
// computation on these pairs.
static class TestPair<T extends IntegerModuloP> {
private final T test;
private final T baseline;
public TestPair(T test, T baseline) {
this.test = test;
this.baseline = baseline;
}
public T getTest() {
return test;
}
public T getBaseline() {
return baseline;
}
private void assertEqual() {
TestIntegerModuloP.assertEqual(test, baseline);
}
public TestPair<MutableIntegerModuloP> mutable() {
return new TestPair<>(test.mutable(), baseline.mutable());
}
public
<R extends IntegerModuloP, X extends IntegerModuloP>
TestPair<X> apply(BiFunction<T, R, X> func, TestPair<R> right) {
X testResult = func.apply(test, right.test);
X baselineResult = func.apply(baseline, right.baseline);
return new TestPair(testResult, baselineResult);
}
public
<U extends IntegerModuloP, V>
void apply(TriConsumer<T, U, V> func, TestPair<U> right, V argV) {
func.accept(test, right.test, argV);
func.accept(baseline, right.baseline, argV);
}
public
<R extends IntegerModuloP>
void applyAndCheckArray(BiFunction<T, R, byte[]> func,
TestPair<R> right) {
byte[] testResult = func.apply(test, right.test);
byte[] baselineResult = func.apply(baseline, right.baseline);
if (!Arrays.equals(testResult, baselineResult)) {
throw new RuntimeException("Array values do not match: "
+ HexFormat.of().withUpperCase().formatHex(testResult) + " != "
+ HexFormat.of().withUpperCase().formatHex(baselineResult));
}
}
}
static TestPair<IntegerModuloP>
applyAndCheck(ElemFunction func, TestPair<MutableIntegerModuloP> left,
TestPair<IntegerModuloP> right) {
TestPair<IntegerModuloP> result = left.apply(func, right);
result.assertEqual();
left.assertEqual();
right.assertEqual();
return result;
}
static void
setAndCheck(ElemSetFunction func, TestPair<MutableIntegerModuloP> left,
TestPair<IntegerModuloP> right, byte[] argV) {
left.apply(func, right, argV);
left.assertEqual();
right.assertEqual();
}
static TestPair<MutableIntegerModuloP>
applyAndCheckMutable(ElemFunction func,
TestPair<MutableIntegerModuloP> left,
TestPair<IntegerModuloP> right) {
TestPair<IntegerModuloP> result = applyAndCheck(func, left, right);
TestPair<MutableIntegerModuloP> mutableResult = result.mutable();
mutableResult.assertEqual();
result.assertEqual();
left.assertEqual();
right.assertEqual();
return mutableResult;
}
static void
cswapAndCheck(int swap, TestPair<MutableIntegerModuloP> left,
TestPair<MutableIntegerModuloP> right) {
left.getTest().conditionalSwapWith(right.getTest(), swap);
left.getBaseline().conditionalSwapWith(right.getBaseline(), swap);
left.assertEqual();
right.assertEqual();
}
// Request arithmetic that should overflow, and ensure that overflow is
// detected.
static void runOverflowTest(TestPair<IntegerModuloP> elem) {
TestPair<MutableIntegerModuloP> mutableElem = elem.mutable();
try {
for (int i = 0; i < 1000; i++) {
applyAndCheck(MutableIntegerModuloP::setSum, mutableElem, elem);
}
applyAndCheck(MutableIntegerModuloP::setProduct, mutableElem, elem);
} catch (ArithmeticException ex) {
// this is expected
}
mutableElem = elem.mutable();
try {
for (int i = 0; i < 1000; i++) {
elem = applyAndCheck(IntegerModuloP::add,
mutableElem, elem);
}
applyAndCheck(IntegerModuloP::multiply, mutableElem, elem);
} catch (ArithmeticException ex) {
// this is expected
}
}
// Run a large number of random operations and ensure that
// results are correct
static void runOperationsTest(Random random, int length,
TestPair<IntegerModuloP> elem,
TestPair<IntegerModuloP> right) {
TestPair<MutableIntegerModuloP> left = elem.mutable();
for (int i = 0; i < 10000; i++) {
ElemFunction addFunc1 =
ADD_FUNCTIONS.get(random.nextInt(ADD_FUNCTIONS.size()));
TestPair<MutableIntegerModuloP> result1 =
applyAndCheckMutable(addFunc1, left, right);
// left could have been modified, so turn it back into a summand
applyAndCheckMutable((a, b) -> a.setSquare(), left, right);
ElemFunction addFunc2 =
ADD_FUNCTIONS.get(random.nextInt(ADD_FUNCTIONS.size()));
TestPair<IntegerModuloP> result2 =
applyAndCheck(addFunc2, left, right);
if (elem.test.getField() instanceof IntegerPolynomial) {
IntegerPolynomial field =
(IntegerPolynomial) elem.test.getField();
int numAdds = 10; // check for addition overflow
for (int j = 1; j < numAdds; j++) {
ElemFunction addFunc3 = ADD_FUNCTIONS.
get(random.nextInt(ADD_FUNCTIONS.size()));
result2 = applyAndCheck(addFunc3, left, right);
}
}
ElemFunction multFunc2 =
MULT_FUNCTIONS.get(random.nextInt(MULT_FUNCTIONS.size()));
TestPair<MutableIntegerModuloP> multResult =
applyAndCheckMutable(multFunc2, result1, result2);
int swap = random.nextInt(2);
cswapAndCheck(swap, left, multResult);
ElemSetFunction setFunc =
SET_FUNCTIONS.get(random.nextInt(SET_FUNCTIONS.size()));
byte[] valueArr = new byte[2 * length];
random.nextBytes(valueArr);
setAndCheck(setFunc, result1, result2, valueArr);
// left could have been modified, so to turn it back into a summand
applyAndCheckMutable((a, b) -> a.setSquare(), left, right);
ElemArrayFunction arrayFunc =
ARRAY_FUNCTIONS.get(random.nextInt(ARRAY_FUNCTIONS.size()));
left.applyAndCheckArray(arrayFunc, right);
}
}
// Run all the tests for a given field
static void runFieldTest(IntegerFieldModuloP testField,
int length, int seed) {
System.out.println("Testing: " + testField.getClass().getSimpleName());
Random random = new Random(seed);
IntegerFieldModuloP baselineField =
new BigIntegerModuloP(testField.getSize());
int numBits = testField.getSize().bitLength();
BigInteger r =
new BigInteger(numBits, random).mod(testField.getSize());
TestPair<IntegerModuloP> rand =
new TestPair(testField.getElement(r), baselineField.getElement(r));
runOverflowTest(rand);
// check combinations of operations for different kinds of elements
List<TestPair<IntegerModuloP>> testElements = new ArrayList<>();
testElements.add(rand);
testElements.add(new TestPair(testField.get0(), baselineField.get0()));
testElements.add(new TestPair(testField.get1(), baselineField.get1()));
byte[] testArr = {121, 37, -100, -5, 76, 33};
testElements.add(new TestPair(testField.getElement(testArr),
baselineField.getElement(testArr)));
testArr = new byte[length];
random.nextBytes(testArr);
testElements.add(new TestPair(testField.getElement(testArr),
baselineField.getElement(testArr)));
random.nextBytes(testArr);
byte highByte = (byte) (numBits > length * 8 ? 1 : 0);
testElements.add(
new TestPair(
testField.getElement(testArr, 0, testArr.length, highByte),
baselineField.getElement(testArr, 0, testArr.length, highByte)
)
);
for (int i = 0; i < testElements.size(); i++) {
for (int j = 0; j < testElements.size(); j++) {
runOperationsTest(random, length, testElements.get(i),
testElements.get(j));
}
}
}
}
|