1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
/*
* Copyright (c) 2022, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package compiler.c2.irTests;
import jdk.test.lib.Asserts;
import jdk.test.lib.Utils;
import java.util.Random;
import compiler.lib.ir_framework.*;
/*
* @test
* @bug 8267265
* @summary Test that Ideal transformations of ModLNode* are being performed as expected.
* @library /test/lib /
* @run driver compiler.c2.irTests.ModLNodeIdealizationTests
*/
public class ModLNodeIdealizationTests {
public static final long RANDOM_POWER_OF_2 = 1L << (1 + Utils.getRandomInstance().nextInt(62));
public static void main(String[] args) {
TestFramework.run();
}
@Run(test = {"constant", "constantAgain", "powerOf2", "powerOf2Random", "powerOf2Minus1"})
public void runMethod() {
long a = RunInfo.getRandom().nextLong();
a = (a == 0) ? 2 : a;
long b = RunInfo.getRandom().nextLong();
b = (b == 0) ? 2 : b;
long min = Long.MIN_VALUE;
long max = Long.MAX_VALUE;
assertResult(0, 0, true);
assertResult(a, b, false);
assertResult(min, min, false);
assertResult(max, max, false);
}
@DontCompile
public void assertResult(long a, long b, boolean shouldThrow) {
try {
Asserts.assertEQ(a % a, constant(a));
Asserts.assertFalse(shouldThrow, "Expected an exception to be thrown.");
} catch (ArithmeticException e) {
Asserts.assertTrue(shouldThrow, "Did not expect an exception to be thrown.");
}
Asserts.assertEQ(a % (1L << 33), powerOf2(a));
Asserts.assertEQ(a % ((1L << 33) - 1), powerOf2Minus1(a));
Asserts.assertEQ(a % 1, constantAgain(a));
}
@Test
@IR(failOn = {IRNode.MOD_L})
@IR(counts = {IRNode.DIV_BY_ZERO_TRAP, "1"})
// Checks x % x => 0
public long constant(long x) {
return x % x;
}
@Test
@IR(failOn = {IRNode.MOD_L})
// Checks x % 1 => 0
public long constantAgain(long x) {
return x % 1;
}
@Test
@IR(failOn = {IRNode.MOD_L, IRNode.DIV})
@IR(counts = {IRNode.AND_L, "1"})
// If the dividend is positive, and divisor is of the form 2^k, we can use a simple bit mask.
public long powerOf2(long x) {
return x % (1L << 33);
}
@Test
@IR(failOn = {IRNode.MOD_L, IRNode.DIV})
@IR(counts = {IRNode.AND_L, "1"})
// If the dividend is positive, and divisor is of the form 2^k, we can use a simple bit mask.
public long powerOf2Random(long x) {
return x % RANDOM_POWER_OF_2;
}
@Test
@IR(failOn = {IRNode.MOD_L})
@IR(counts = {IRNode.AND_L, ">=1", IRNode.RSHIFT, ">=1", IRNode.CMP_L, "2"})
// Special optimization for the case 2^k-1 for bigger k
public long powerOf2Minus1(long x) {
return x % ((1L << 33) - 1);
}
}
|