File: Binary16ConversionNaN.java

package info (click to toggle)
openjdk-25 25.0.1%2B8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 825,408 kB
  • sloc: java: 5,585,680; cpp: 1,333,948; xml: 1,321,242; ansic: 488,034; asm: 404,003; objc: 21,088; sh: 15,106; javascript: 13,265; python: 8,319; makefile: 2,518; perl: 357; awk: 351; pascal: 103; exp: 83; sed: 72; jsp: 24
file content (163 lines) | stat: -rw-r--r-- 6,621 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
 * Copyright (c) 2022, 2024, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * @test
 * @bug 8289551 8302976
 * @summary Verify NaN sign and significand bits are preserved across conversions
 * @requires (vm.cpu.features ~= ".*avx512vl.*" | vm.cpu.features ~= ".*f16c.*") | os.arch=="aarch64"
 *           | (os.arch == "riscv64" & vm.cpu.features ~= ".*zfh.*")
 *           | ((os.arch == "ppc64" | os.arch == "ppc64le") & vm.cpu.features ~= ".*darn.*")
 * @requires vm.compiler1.enabled & vm.compiler2.enabled
 * @requires vm.compMode != "Xcomp"
 * @library /test/lib /
 *
 * @build jdk.test.whitebox.WhiteBox
 * @run driver jdk.test.lib.helpers.ClassFileInstaller jdk.test.whitebox.WhiteBox
 * @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI
 *                   -Xmixed -XX:-BackgroundCompilation -XX:-UseOnStackReplacement
 *                   -XX:CompileThresholdScaling=1000.0 Binary16ConversionNaN
 */

/*
 * The behavior tested below is an implementation property not
 * required by the specification. It would be acceptable for this
 * information to not be preserved (as long as a NaN is returned) if,
 * say, a intrinsified version using native hardware instructions
 * behaved differently.
 *
 * If that is the case, this test should be modified to disable
 * intrinsics or to otherwise not run on platforms with an differently
 * behaving intrinsic.
 */

import compiler.whitebox.CompilerWhiteBoxTest;
import jdk.test.whitebox.WhiteBox;
import java.lang.reflect.Method;

public class Binary16ConversionNaN {

    private static final WhiteBox WHITE_BOX = WhiteBox.getWhiteBox();

    /*
     * Put all 16-bit NaN values through a conversion loop and make
     * sure the significand, sign, and exponent are all preserved.
     */
    public static void main(String... argv) throws NoSuchMethodException {
        int errors = 0;
        final int NAN_EXPONENT = 0x7c00;
        final int SIGN_BIT     = 0x8000;

        // First, run with Interpreter only to  collect "gold" data.
        // Glags -Xmixed -XX:CompileThresholdScaling=1000.0 are used
        // to prevent compilation during this phase.
        short[] pVal = new short[1024];
        short[] pRes = new short[1024];
        short[] nVal = new short[1024];
        short[] nRes = new short[1024];

        // A NaN has a nonzero significand
        for (int i = 1; i <= 0x3ff; i++) {
            short binary16NaN = (short)(NAN_EXPONENT | i);
            assert isNaN(binary16NaN);
            short s1 = testRoundTrip(binary16NaN);
            errors  += verify(binary16NaN, s1);
            pVal[i] = binary16NaN;
            pRes[i] = s1;

            short binary16NegNaN = (short)(SIGN_BIT | binary16NaN);
            short s2 = testRoundTrip(binary16NegNaN);
            errors  += verify(binary16NegNaN, s2);
            nVal[i] = binary16NegNaN;
            nRes[i] = s2;
        }
        if (errors > 0) { // Exit if Interpreter failed
            throw new RuntimeException(errors + " errors");
        }

        Method test_method = Binary16ConversionNaN.class.getDeclaredMethod("testRoundTrip", short.class);

        // Compile with C1 and compare results
        WHITE_BOX.enqueueMethodForCompilation(test_method, CompilerWhiteBoxTest.COMP_LEVEL_SIMPLE);
        if (!WHITE_BOX.isMethodCompiled(test_method)) {
            throw new RuntimeException("test is not compiled by C1");
        }
        for (int i = 1; i <= 0x3ff; i++) {
            short s1 = testRoundTrip(pVal[i]);
            errors  += verifyCompiler(pRes[i], s1, "C1");
            short s2 = testRoundTrip(nVal[i]);
            errors  += verifyCompiler(nRes[i], s2, "C1");
        }

        WHITE_BOX.deoptimizeMethod(test_method);

        // Compile with C2 and compare results
        WHITE_BOX.enqueueMethodForCompilation(test_method, CompilerWhiteBoxTest.COMP_LEVEL_FULL_OPTIMIZATION);
        if (!WHITE_BOX.isMethodCompiled(test_method)) {
            throw new RuntimeException("test is not compiled by C2");
        }
        for (int i = 1; i <= 0x3ff; i++) {
            short s1 = testRoundTrip(pVal[i]);
            errors  += verifyCompiler(pRes[i], s1, "C2");
            short s2 = testRoundTrip(nVal[i]);
            errors  += verifyCompiler(nRes[i], s2, "C2");
        }

        if (errors > 0) {
            throw new RuntimeException(errors + " errors");
        }
    }

    private static boolean isNaN(short binary16) {
        return ((binary16 & 0x7c00) == 0x7c00) // Max exponent and...
            && ((binary16 & 0x03ff) != 0 );    // significand nonzero.
    }

    private static short testRoundTrip(short i) {
        float f =  Float.float16ToFloat(i);
        return Float.floatToFloat16(f);
    }

    private static int verify(short s, short s2) {
        int errors = 0;
        if ((s & ~0x0200) != (s2 & ~0x0200)) { // ignore QNaN bit
            errors++;
            System.out.println("Roundtrip failure on NaN value " +
                               Integer.toHexString(0xFFFF & (int)s) +
                               "\t got back " + Integer.toHexString(0xFFFF & (int)s2));
        }
        return errors;
    }

    private static int verifyCompiler(short s, short s2, String name) {
        int errors = 0;
        if (s != s2) {
            errors++;
            System.out.println("Roundtrip failure on NaN value " +
                               Integer.toHexString(0xFFFF & (int)s) +
                               "\t got back " + Integer.toHexString(0xFFFF & (int)s2) +
                               "\t from " + name + " code");
        }
        return errors;
    }
}