1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
/*
* Copyright (c) 2024, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package compiler.lib.generators;
import java.lang.foreign.MemorySegment;
import java.lang.foreign.ValueLayout;
import java.util.*;
import static java.lang.Float.floatToFloat16;
import jdk.test.lib.Utils;
/**
* The Generators class provides a set of random generator functions for testing.
* The goal is to cover many special cases, such as NaNs in Floats or values
* close to overflow in ints. They should produce values from specific
* "interesting" distributions which might trigger various behaviours in
* optimizations.
* <p>
* Normally, clients get the default Generators instance by referring to the static variable {@link #G}.
* <p>
* The Generators class offers generators with essential distributions, for example, {@link #uniformInts(int, int)},
* {@link #uniformLongs(long, long)}, {@link #uniformDoubles(double, double)} or {@link #uniformFloats()}. For floating
* points, you may choose to get random bit patterns uniformly at random, rather than the values they represent.
* The Generators class also offers special generators of interesting values such as {@link #powerOfTwoInts(int)},
* {@link #powerOfTwoLongs(int)}, which are values close to the powers of 2, or {@link #SPECIAL_DOUBLES} and
* {@link #SPECIAL_FLOATS}, which are values such as infinity, NaN, zero or the maximum and minimum values.
* <p>
* Many distributions are <i>restrictable</i>. For example, if you first create a uniform integer generator over [1, 10],
* you can obtain a new generator by further restricting this range to [1, 5]. This is useful in cases where a function
* should be tested with different distributions. For example, a function <code>h(int, int, int)</code> under test might
* be worthwhile to test not only with uniformly sampled integers but might also exhibit interesting behavior if tested
* specifically with powers of two. Suppose further that each argument has a different range of allowed values. We
* can write a test function as below:
*
* <pre><code>
* void test(Generator{@literal <Integer>} g) {
* h(g.restricted(1, 10).next(), g.next(), g.restricted(-10, 100).next());
* }
* </code></pre>
*
* Then <code>test</code> can be called with different distributions, for example:
*
* <pre><code>
* test(G.uniformInts());
* test(G.specialInts(0));
* </code></pre>
* <p>
* If there is a single value that is interesting as an argument to all three parameters, we might even call this
* method with a single generator, ensuring that the single value is within the restriction ranges:
*
* <pre><code>
* test(G.single(1));
* </code></pre>
*
* <p>
* Furthermore, this class offers utility generators, such as {@link #randomElement(Collection)} or
* {@link #orderedRandomElement(Collection)} for sampling from a list of elements; {@link #single(Object)} for a
* generator that only produces a single value; and {@link #mixed(Generator, Generator, int, int)} which combines
* two generators with the provided weights.
* <p>
* Thus, the generators provided by this class are composable and therefore extensible. This allows to easily
* create random generators even with types and distributions that are not predefined. For example, to create a
* generator that provides true with 60 percent probably and false with 40 percent probably, one can simply write:
* <pre><code>G.mixed(G.single(true), G.single(false), 60, 40)</code></pre>
* <p>
* Generators are by no means limited to work with numbers. Restrictable generators can work with any type that
* implements {@link Comparable} while generators such as {@link #randomElement(Collection)} and {@link #single(Object)}
* work with any type. Note that there are separate restrictable versions of the last two generators
* (namely, {@link #orderedRandomElement(Collection)} and {@link #single(Comparable)}) that work with comparable types.
* For example, you might restrict a generator choosing strings at random:
* <pre><code>G.orderedRandomElement(List.of("Bob", "Alice", "Carol")).restricted("Al", "Bz")</code></pre>
* This returns a new generator which only returns elements greater or equal than "Al" and less than or equal to
* "Bz". Thus, the only two values remaining in the example are "Alice" and "Bob". In general, you should always refer
* to the method that created the generator to learn about the exact semantics of restricting it.
* <p>
* For all the generators created by instances of this class, the following rule applies: Integral generators are
* always inclusive of both the lower and upper bound, while floating point generators are always inclusive of the
* lower bound but always exclusive of the upper bound. This also applies to all generators obtained by restricting
* these generators further.
* <p>
* Unless you have reasons to pick a specific distribution, you are encouraged to rely on {@link #ints()},
* {@link #longs()}, {@link #doubles()} and {@link #floats()}, which will randomly pick an interesting distribution.
* This is best practice, because that allows the test to be run under different conditions - maybe only a single
* distribution can trigger a bug.
*/
public final class Generators {
/**
* This is the default Generators instance that should be used by tests normally.
*/
public static final Generators G = new Generators(new RandomnessSourceAdapter(Utils.getRandomInstance()));
final RandomnessSource random;
public Generators(RandomnessSource random) {
this.random = random;
}
/**
* Returns a generator that generates integers in the range [lo, hi] (inclusive of both lo and hi).
*/
public RestrictableGenerator<Integer> uniformInts(int lo, int hi) {
return new UniformIntGenerator(this, lo, hi);
}
/**
* Returns a generator that generates integers over the entire range of int.
*/
public RestrictableGenerator<Integer> uniformInts() {
return uniformInts(Integer.MIN_VALUE, Integer.MAX_VALUE);
}
/**
* Returns a generator that generates longs in the range [lo, hi] (inclusive of both lo and hi).
*/
public RestrictableGenerator<Long> uniformLongs(long lo, long hi) {
return new UniformLongGenerator(this, lo, hi);
}
/**
* Returns a generator that generates integers over the entire range of int.
*/
public RestrictableGenerator<Long> uniformLongs() {
return uniformLongs(Long.MIN_VALUE, Long.MAX_VALUE);
}
/**
* Generates uniform doubles in the range of [lo, hi) (inclusive of lo, exclusive of hi).
*/
public RestrictableGenerator<Double> uniformDoubles(double lo, double hi) {
return new UniformDoubleGenerator(this, lo, hi);
}
/**
* Generates uniform doubles in the range of [0, 1) (inclusive of 0, exclusive of 1).
*/
public RestrictableGenerator<Double> uniformDoubles() {
return uniformDoubles(0, 1);
}
/**
* Provides an any-bits double distribution random generator, i.e. the bits are uniformly sampled,
* thus creating any possible double value, including the multiple different NaN representations.
*/
public Generator<Double> anyBitsDouble() {
return new AnyBitsDoubleGenerator(this);
}
/**
* Generates uniform float16s in the range of [lo, hi) (inclusive of lo, exclusive of hi).
*/
public RestrictableGenerator<Short> uniformFloat16s(short lo, short hi) {
return new UniformFloat16Generator(this, lo, hi);
}
/**
* Generates uniform float16s in the range of [0, 1) (inclusive of 0, exclusive of 1).
*/
public RestrictableGenerator<Short> uniformFloat16s() {
return uniformFloat16s(floatToFloat16(0.0f), floatToFloat16(1.0f));
}
/**
* Generates uniform doubles in the range of [lo, hi) (inclusive of lo, exclusive of hi).
*/
public RestrictableGenerator<Float> uniformFloats(float lo, float hi) {
return new UniformFloatGenerator(this, lo, hi);
}
/**
* Provides an any-bits float16 distribution random generator, i.e. the bits are uniformly sampled,
* thus creating any possible float16 value, including the multiple different NaN representations.
*/
public Generator<Short> anyBitsFloat16s() {
return new AnyBitsFloat16Generator(this);
}
/**
* Generates uniform floats in the range of [0, 1) (inclusive of 0, exclusive of 1).
*/
public RestrictableGenerator<Float> uniformFloats() {
return uniformFloats(0, 1);
}
/**
* Provides an any-bits float distribution random generator, i.e. the bits are uniformly sampled,
* thus creating any possible float value, including the multiple different NaN representations.
*/
public Generator<Float> anyBitsFloats() {
return new AnyBitsFloatGenerator(this);
}
/**
* Returns a generator that uniformly randomly samples elements from the provided collection.
* Each element in the collection is treated as a separate, unique value, even if equals might be true.
* The result is an unrestrictable generator. If you want a restrictable generator that selects values from a
* list and are working with Comparable values, use {@link #orderedRandomElement(Collection)}.
*/
public <T> Generator<T> randomElement(Collection<T> list) {
return new RandomElementGenerator<>(this, list);
}
/**
* Returns a restrictable generator that uniformly randomly samples elements from the provided collection.
* Duplicate elements are discarded from the collection. Restrictions are inclusive of both the uppper and lower
* bound.
*/
public <T extends Comparable<T>> RestrictableGenerator<T> orderedRandomElement(Collection<T> list) {
NavigableSet<T> set = list instanceof NavigableSet<T> ? (NavigableSet<T>) list : new TreeSet<>(list);
return new RestrictableRandomElementGenerator<>(this, set);
}
/**
* Returns a generator that always generate the provided value.
*/
public <T> Generator<T> single(T value) {
return new SingleValueGenerator<>(value);
}
/**
* Returns a restrictable generator that always generate the provided value.
*/
public <T extends Comparable<T>> RestrictableGenerator<T> single(T value) {
return new RestrictableSingleValueGenerator<>(value);
}
/**
* Returns a new generator that samples its next element from either generator A or B, with assignable weights.
* An overload for restrictable generators exists.
*/
public <T> Generator<T> mixed(Generator<T> a, Generator<T> b, int weightA, int weightB) {
return new MixedGenerator<>(this, List.of(a, b), List.of(weightA, weightB));
}
/**
* Returns a new generator that samples its next element randomly from one of the provided generators with
* assignable weights.
* An overload for restrictable generators exists.
*/
@SafeVarargs
public final <T> Generator<T> mixed(List<Integer> weights, Generator<T>... generators) {
return new MixedGenerator<>(this, Arrays.asList(generators), weights);
}
/**
* Returns a new restrictable generator that samples its next element from either generator A or B, with assignable weights.
* Restricting this generator restricts each subgenerator. Generators which become empty by the restriction are
* removed from the new mixed generator. Weights stay their original value if a generator is removed. If the mixed
* generator would become empty by applying a restriction {@link EmptyGeneratorException} is thrown.
*/
public <T extends Comparable<T>> RestrictableGenerator<T> mixed(RestrictableGenerator<T> a, RestrictableGenerator<T> b, int weightA, int weightB) {
return new RestrictableMixedGenerator<>(this, List.of(a, b), List.of(weightA, weightB));
}
/**
* Returns a new restrictable generator that samples its next element randomly from one of the provided restrictable
* generators with assignable weights.
* See {@link #mixed(RestrictableGenerator, RestrictableGenerator, int, int)} for details about restricting this
* generator.
*/
@SafeVarargs
public final <T extends Comparable<T>> RestrictableGenerator<T> mixed(List<Integer> weights, RestrictableGenerator<T>... generators) {
return new RestrictableMixedGenerator<>(this, Arrays.asList(generators), weights);
}
/**
* Randomly pick an int generator.
*
* @return Random int generator.
*/
public RestrictableGenerator<Integer> ints() {
switch(random.nextInt(0, 6)) {
case 0 -> { return uniformInts(); }
case 1 -> { return powerOfTwoInts(0); }
case 2 -> { return powerOfTwoInts(2); }
case 3 -> { return powerOfTwoInts(16); }
case 4 -> { return uniformIntsMixedWithPowersOfTwo(1, 1, 16); }
case 5 -> { return uniformIntsMixedWithPowersOfTwo(1, 2, 2); }
default -> { throw new RuntimeException("impossible"); }
}
}
/**
* A generator of special ints. Special ints are powers of two or values close to powers of 2, where a value
* is close to a power of two p if it is in the interval [p - range, p + range]. Note that we also consider negative
* values as powers of two. Note that for range >= 1, the set of values includes {@link Integer#MAX_VALUE} and
* {@link Integer#MIN_VALUE}.
*/
public RestrictableGenerator<Integer> powerOfTwoInts(int range) {
TreeSet<Integer> set = new TreeSet<>();
for (int i = 0; i < 32; i++) {
int pow2 = 1 << i;
for (int j = -range; j <= range; j++) {
set.add(+pow2 + j);
set.add(-pow2 + j);
}
}
return orderedRandomElement(set);
}
/**
* A convenience helper to mix {@link #powerOfTwoInts(int)} with {@link #uniformInts(int, int)}.
*/
public RestrictableGenerator<Integer> uniformIntsMixedWithPowersOfTwo(int weightUniform, int weightSpecial, int rangeSpecial) {
return mixed(uniformInts(), powerOfTwoInts(rangeSpecial), weightUniform, weightSpecial);
}
/**
* Randomly pick a long generator.
*
* @return Random long generator.
*/
public RestrictableGenerator<Long> longs() {
switch(random.nextInt(0, 6)) {
case 0 -> { return uniformLongs(); }
case 1 -> { return powerOfTwoLongs(0); }
case 2 -> { return powerOfTwoLongs(2); }
case 3 -> { return powerOfTwoLongs(16); }
case 4 -> { return uniformLongsMixedWithPowerOfTwos(1, 1, 16); }
case 5 -> { return uniformLongsMixedWithPowerOfTwos(1, 2, 2); }
default -> { throw new RuntimeException("impossible"); }
}
}
/**
* A generator of special longs. Special longs are powers of two or values close to powers of 2, where a value
* is close to a power of two p if it is in the interval [p - range, p + range]. Note that we also consider negative
* values as powers of two. Note that for range >= 1, the set of values includes {@link Long#MAX_VALUE} and
* {@link Long#MIN_VALUE}.
*/
public RestrictableGenerator<Long> powerOfTwoLongs(int range) {
TreeSet<Long> set = new TreeSet<>();
for (int i = 0; i < 64; i++) {
long pow2 = 1L << i;
for (int j = -range; j <= range; j++) {
set.add(+pow2 + j);
set.add(-pow2 + j);
}
}
return orderedRandomElement(set);
}
/**
* A convenience helper to mix {@link #powerOfTwoLongs(int)} with {@link #uniformLongs(long, long)}.
*/
public RestrictableGenerator<Long> uniformLongsMixedWithPowerOfTwos(int weightUniform, int weightSpecial, int rangeSpecial) {
return mixed(uniformLongs(), powerOfTwoLongs(rangeSpecial), weightUniform, weightSpecial);
}
/**
* Randomly pick a float16 generator.
*
* @return Random float16 generator.
*/
public Generator<Short> float16s() {
switch(random.nextInt(0, 5)) {
case 0 -> { return uniformFloat16s(floatToFloat16(-1.0f), floatToFloat16(1.0f)); }
// Well-balanced, so that multiplication reduction never explodes or collapses to zero:
case 1 -> { return uniformFloat16s(floatToFloat16(0.999f), floatToFloat16(1.001f)); }
case 2 -> { return anyBitsFloat16s(); }
// A tame distribution, mixed in with the occasional special float value:
case 3 -> { return mixedWithSpecialFloat16s(uniformFloat16s(floatToFloat16(0.999f), floatToFloat16(1.001f)), 10, 1000); }
// Generating any bits, but special values are more frequent.
case 4 -> { return mixedWithSpecialFloat16s(anyBitsFloat16s(), 100, 200); }
default -> { throw new RuntimeException("impossible"); }
}
}
/**
* Randomly pick a float generator.
*
* @return Random float generator.
*/
public Generator<Float> floats() {
switch(random.nextInt(0, 5)) {
case 0 -> { return uniformFloats(-1, 1); }
// Well-balanced, so that multiplication reduction never explodes or collapses to zero:
case 1 -> { return uniformFloats(0.999f, 1.001f); }
case 2 -> { return anyBitsFloats(); }
// A tame distribution, mixed in with the occasional special float value:
case 3 -> { return mixedWithSpecialFloats(uniformFloats(0.999f, 1.001f), 10, 1000); }
// Generating any bits, but special values are more frequent.
case 4 -> { return mixedWithSpecialFloats(anyBitsFloats(), 100, 200); }
default -> { throw new RuntimeException("impossible"); }
}
}
/**
* Randomly pick a double generator.
*
* @return Random double generator.
*/
public Generator<Double> doubles() {
switch(random.nextInt(0, 5)) {
case 0 -> { return uniformDoubles(-1, 1); }
// Well-balanced, so that multiplication reduction never explodes or collapses to zero:
case 1 -> { return uniformDoubles(0.999f, 1.001f); }
case 2 -> { return anyBitsDouble(); }
// A tame distribution, mixed in with the occasional special double value:
case 3 -> { return mixedWithSpecialDoubles(uniformDoubles(0.999f, 1.001f), 10, 1000); }
// Generating any bits, but special values are more frequent.
case 4 -> { return mixedWithSpecialDoubles(anyBitsDouble(), 100, 200); }
default -> { throw new RuntimeException("impossible"); }
}
}
/**
* Generates interesting double values, which often are corner cases such as, 0, 1, -1, NaN, +/- Infinity, Min,
* Max.
*/
public final RestrictableGenerator<Double> SPECIAL_DOUBLES = orderedRandomElement(List.of(
0d,
-0d,
1d,
-1d,
Double.POSITIVE_INFINITY,
Double.NEGATIVE_INFINITY,
Double.NaN,
Double.MAX_VALUE,
Double.MIN_NORMAL,
Double.MIN_VALUE
));
/**
* Returns a mixed generator that mixes the provided background generator and {@link #SPECIAL_DOUBLES} with the provided
* weights.
*/
public Generator<Double> mixedWithSpecialDoubles(Generator<Double> background, int weightNormal, int weightSpecial) {
return mixed(background, SPECIAL_DOUBLES, weightNormal, weightSpecial);
}
/**
* Returns a restrictable mixed generator that mixes the provided background generator and {@link #SPECIAL_DOUBLES} with the provided
* weights.
*/
public RestrictableGenerator<Double> mixedWithSpecialDoubles(RestrictableGenerator<Double> background, int weightNormal, int weightSpecial) {
return mixed(background, SPECIAL_DOUBLES, weightNormal, weightSpecial);
}
/**
* Generates interesting float values, which often are corner cases such as, 0, 1, -1, NaN, +/- Infinity, Min,
* Max.
*/
public final RestrictableGenerator<Float> SPECIAL_FLOATS = orderedRandomElement(List.of(
0f,
-0f,
1f,
-1f,
Float.POSITIVE_INFINITY,
Float.NEGATIVE_INFINITY,
Float.NaN,
Float.MAX_VALUE,
Float.MIN_NORMAL,
Float.MIN_VALUE
));
/**
* Generates interesting float16 values, which often are corner cases such as, +/- 0, NaN, +/- Infinity, Min,
* Max.
*/
public final RestrictableGenerator<Short> SPECIAL_FLOAT16S = orderedRandomElement(List.of(
floatToFloat16(0.0f),
floatToFloat16(-0.0f),
floatToFloat16(Float.POSITIVE_INFINITY),
floatToFloat16(Float.NEGATIVE_INFINITY),
floatToFloat16(Float.NaN),
floatToFloat16(0x1.ffcP+15f), // MAX_VALUE
floatToFloat16(0x1.0P-14f), // MIN_NORMAL
floatToFloat16(0x1.0P-24f) // MIN_VALUE
));
/**
* Returns a mixed generator that mixes the provided background generator and {@link #SPECIAL_FLOAT16S} with the provided
* weights.
*/
public Generator<Short> mixedWithSpecialFloat16s(Generator<Short> background, int weightNormal, int weightSpecial) {
return mixed(background, SPECIAL_FLOAT16S, weightNormal, weightSpecial);
}
/**
* Returns a mixed generator that mixes the provided background generator and {@link #SPECIAL_FLOATS} with the provided
* weights.
*/
public Generator<Float> mixedWithSpecialFloats(Generator<Float> background, int weightNormal, int weightSpecial) {
return mixed(background, SPECIAL_FLOATS, weightNormal, weightSpecial);
}
/**
* Returns a restrictable mixed generator that mixes the provided background generator and {@link #SPECIAL_FLOATS} with the provided
* weights.
*/
public RestrictableGenerator<Float> mixedWithSpecialFloats(RestrictableGenerator<Float> background, int weightNormal, int weightSpecial) {
return mixed(background, SPECIAL_FLOATS, weightNormal, weightSpecial);
}
/**
* Trys to restrict the provided restrictable generator to the provided range. If the restriction fails no
* exception is raised, but instead a uniform int generator for the range is returned.
*/
public RestrictableGenerator<Integer> safeRestrict(RestrictableGenerator<Integer> g, int lo, int hi) {
try {
return g.restricted(lo, hi);
} catch (EmptyGeneratorException e) {
return uniformInts(lo, hi);
}
}
/**
* Trys to restrict the provided restrictable generator to the provided range. If the restriction fails no
* exception is raised, but instead a uniform long generator for the range is returned.
*/
public RestrictableGenerator<Long> safeRestrict(RestrictableGenerator<Long> g, long lo, long hi) {
try {
return g.restricted(lo, hi);
} catch (EmptyGeneratorException e) {
return uniformLongs(lo, hi);
}
}
/**
* Trys to restrict the provided restrictable generator to the provided range. If the restriction fails no
* exception is raised, but instead a uniform double generator for the range is returned.
*/
public RestrictableGenerator<Double> safeRestrict(RestrictableGenerator<Double> g, double lo, double hi) {
try {
return g.restricted(lo, hi);
} catch (EmptyGeneratorException e) {
return uniformDoubles(lo, hi);
}
}
/**
* Trys to restrict the provided restrictable generator to the provided range. If the restriction fails no
* exception is raised, but instead a uniform float generator for the range is returned.
*/
public RestrictableGenerator<Float> safeRestrict(RestrictableGenerator<Float> g, float lo, float hi) {
try {
return g.restricted(lo, hi);
} catch (EmptyGeneratorException e) {
return uniformFloats(lo, hi);
}
}
/**
* Fills the memory segments with doubles obtained by calling next on the generator.
*
* @param generator The generator from which to source the values.
* @param ms Memory segment to be filled with random values.
*/
public void fillDouble(Generator<Double> generator, MemorySegment ms) {
var layout = ValueLayout.JAVA_DOUBLE_UNALIGNED;
for (long i = 0; i < ms.byteSize() / layout.byteSize(); i++) {
ms.setAtIndex(layout, i, generator.next());
}
}
/**
* Fill the array with doubles using the distribution of nextDouble.
*
* @param a Array to be filled with random values.
*/
public void fill(Generator<Double> generator, double[] a) {
fillDouble(generator, MemorySegment.ofArray(a));
}
/**
* Fills the memory segments with floats obtained by calling next on the generator.
*
* @param generator The generator from which to source the values.
* @param ms Memory segment to be filled with random values.
*/
public void fillFloat(Generator<Float> generator, MemorySegment ms) {
var layout = ValueLayout.JAVA_FLOAT_UNALIGNED;
for (long i = 0; i < ms.byteSize() / layout.byteSize(); i++) {
ms.setAtIndex(layout, i, generator.next());
}
}
/**
* Fill the array with floats using the distribution of nextDouble.
*
* @param a Array to be filled with random values.
*/
public void fill(Generator<Float> generator, float[] a) {
fillFloat(generator, MemorySegment.ofArray(a));
}
/**
* Fills the memory segments with ints obtained by calling next on the generator.
*
* @param generator The generator from which to source the values.
* @param ms Memory segment to be filled with random values.
*/
public void fillInt(Generator<Integer> generator, MemorySegment ms) {
var layout = ValueLayout.JAVA_INT_UNALIGNED;
for (long i = 0; i < ms.byteSize() / layout.byteSize(); i++) {
ms.setAtIndex(layout, i, generator.next());
}
}
/**
* Fill the array with ints using the distribution of nextDouble.
*
* @param a Array to be filled with random values.
*/
public void fill(Generator<Integer> generator, int[] a) {
fillInt(generator, MemorySegment.ofArray(a));
}
/**
* Fills the memory segments with longs obtained by calling next on the generator.
*
* @param generator The generator from which to source the values.
* @param ms Memory segment to be filled with random values.
*/
public void fillLong(Generator<Long> generator, MemorySegment ms) {
var layout = ValueLayout.JAVA_LONG_UNALIGNED;
for (long i = 0; i < ms.byteSize() / layout.byteSize(); i++) {
ms.setAtIndex(layout, i, generator.next());
}
}
/**
* Fill the array with longs using the distribution of nextDouble.
*
* @param a Array to be filled with random values.
*/
public void fill(Generator<Long> generator, long[] a) {
fillLong(generator, MemorySegment.ofArray(a));
}
}
|