1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
/*
* Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
/*
* @test
* @bug 8304042
* @summary Test some examples with independent packs with cyclic dependency
* between the packs.
* @modules java.base/jdk.internal.misc
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestIndependentPacksWithCyclicDependency nCOH_nAV
* @run driver compiler.loopopts.superword.TestIndependentPacksWithCyclicDependency nCOH_yAV
* @run driver compiler.loopopts.superword.TestIndependentPacksWithCyclicDependency yCOH_nAV
* @run driver compiler.loopopts.superword.TestIndependentPacksWithCyclicDependency yCOH_yAV
*/
package compiler.loopopts.superword;
import jdk.internal.misc.Unsafe;
import jdk.test.lib.Asserts;
import compiler.lib.ir_framework.*;
public class TestIndependentPacksWithCyclicDependency {
static final int RANGE = 1024;
static final int ITER = 10_000;
static Unsafe unsafe = Unsafe.getUnsafe();
int[] goldI0 = new int[RANGE];
float[] goldF0 = new float[RANGE];
int[] goldI1 = new int[RANGE];
float[] goldF1 = new float[RANGE];
int[] goldI2 = new int[RANGE];
float[] goldF2 = new float[RANGE];
int[] goldI3 = new int[RANGE];
float[] goldF3 = new float[RANGE];
int[] goldI4 = new int[RANGE];
float[] goldF4 = new float[RANGE];
int[] goldI5 = new int[RANGE];
float[] goldF5 = new float[RANGE];
int[] goldI6 = new int[RANGE];
float[] goldF6 = new float[RANGE];
long[] goldL6 = new long[RANGE];
int[] goldI7 = new int[RANGE];
float[] goldF7 = new float[RANGE];
long[] goldL7 = new long[RANGE];
int[] goldI8 = new int[RANGE];
float[] goldF8 = new float[RANGE];
long[] goldL8 = new long[RANGE];
int[] goldI9 = new int[RANGE];
float[] goldF9 = new float[RANGE];
long[] goldL9 = new long[RANGE];
int[] goldI10 = new int[RANGE];
float[] goldF10 = new float[RANGE];
long[] goldL10 = new long[RANGE];
public static void main(String args[]) {
TestFramework framework = new TestFramework(TestIndependentPacksWithCyclicDependency.class);
framework.addFlags("--add-modules", "java.base", "--add-exports", "java.base/jdk.internal.misc=ALL-UNNAMED",
"-XX:CompileCommand=compileonly,compiler.loopopts.superword.TestIndependentPacksWithCyclicDependency::test*",
"-XX:CompileCommand=compileonly,compiler.loopopts.superword.TestIndependentPacksWithCyclicDependency::verify",
"-XX:CompileCommand=compileonly,compiler.loopopts.superword.TestIndependentPacksWithCyclicDependency::init",
"-XX:+IgnoreUnrecognizedVMOptions", "-XX:LoopUnrollLimit=1000");
switch (args[0]) {
case "nCOH_nAV" -> { framework.addFlags("-XX:-UseCompactObjectHeaders", "-XX:-AlignVector"); }
case "nCOH_yAV" -> { framework.addFlags("-XX:-UseCompactObjectHeaders", "-XX:+AlignVector"); }
case "yCOH_nAV" -> { framework.addFlags("-XX:+UseCompactObjectHeaders", "-XX:-AlignVector"); }
case "yCOH_yAV" -> { framework.addFlags("-XX:+UseCompactObjectHeaders", "-XX:+AlignVector"); }
default -> { throw new RuntimeException("Test argument not recognized: " + args[0]); }
};
framework.start();
}
TestIndependentPacksWithCyclicDependency() {
// compute the gold standard in interpreter mode
init(goldI0, goldF0);
test0(goldI0, goldI0, goldF0, goldF0);
init(goldI1, goldF1);
test1(goldI1, goldI1, goldF1, goldF1);
init(goldI2, goldF2);
test2(goldI2, goldI2, goldF2, goldF2);
init(goldI3, goldF3);
test3(goldI3, goldI3, goldF3, goldF3);
init(goldI4, goldF4);
test4(goldI4, goldI4, goldF4, goldF4);
init(goldI5, goldF5);
test5(goldI5, goldI5, goldF5, goldF5);
init(goldI6, goldF6, goldL6);
test6(goldI6, goldI6, goldF6, goldF6, goldL6, goldL6);
init(goldI7, goldF7, goldL7);
test7(goldI7, goldI7, goldF7, goldF7, goldL7, goldL7);
init(goldI8, goldF8, goldL8);
test8(goldI8, goldI8, goldF8, goldF8, goldL8, goldL8);
init(goldI9, goldF9, goldL9);
test9(goldI9, goldI9, goldF9, goldF9, goldL9, goldL9);
init(goldI10, goldF10, goldL10);
test10(goldI10, goldI10, goldF10, goldF10, goldL10, goldL10);
}
@Run(test = "test0")
@Warmup(100)
public void runTest0() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
init(dataI, dataF);
test0(dataI, dataI, dataF, dataF);
verify("test0", dataI, goldI0);
verify("test0", dataF, goldF0);
}
@Test
@IR(counts = {IRNode.ADD_VI, "> 0", IRNode.MUL_VF, "> 0"},
applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true", "rvv", "true"})
static void test0(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb) {
for (int i = 0; i < RANGE; i+=2) {
// Hand-unrolled 2x. Int and Float slice are completely separate.
dataIb[i+0] = dataIa[i+0] + 3;
dataIb[i+1] = dataIa[i+1] + 3;
dataFb[i+0] = dataFa[i+0] * 1.3f;
dataFb[i+1] = dataFa[i+1] * 1.3f;
// With AlignVector, we need 8-byte alignment of vector loads/stores.
// UseCompactObjectHeaders=false UseCompactObjectHeaders=true
// adr = base + 16 + 8*i -> always adr = base + 12 + 8*i -> never
// -> vectorize -> no vectorization
}
}
@Run(test = "test1")
@Warmup(100)
public void runTest1() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
init(dataI, dataF);
test1(dataI, dataI, dataF, dataF);
verify("test1", dataI, goldI1);
verify("test1", dataF, goldF1);
}
@Test
@IR(counts = {IRNode.ADD_VI, "> 0", IRNode.MUL_VF, "> 0", IRNode.VECTOR_CAST_F2I, "> 0", IRNode.VECTOR_CAST_I2F, "> 0"},
applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"avx2", "true", "asimd", "true", "rvv", "true"})
static void test1(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb) {
for (int i = 0; i < RANGE; i+=2) {
// Hand-unrolled 2x. Converst to and from. StoreF -> LoadF dependency.
dataFa[i+0] = dataIa[i+0] + 3;
dataFa[i+1] = dataIa[i+1] + 3;
dataIb[i+0] = (int)(dataFb[i+0] * 1.3f);
dataIb[i+1] = (int)(dataFb[i+1] * 1.3f);
// With AlignVector, we need 8-byte alignment of vector loads/stores.
// UseCompactObjectHeaders=false UseCompactObjectHeaders=true
// adr = base + 16 + 8*i -> always adr = base + 12 + 8*i -> never
// -> vectorize -> no vectorization
}
}
@Run(test = "test2")
public void runTest2() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
init(dataI, dataF);
test2(dataI, dataI, dataF, dataF);
verify("test2", dataI, goldI2);
verify("test2", dataF, goldF2);
}
@Test
@IR(counts = {IRNode.ADD_VI, "> 0", IRNode.MUL_VI, "> 0"},
applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true", "rvv", "true"})
static void test2(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb) {
for (int i = 0; i < RANGE; i+=2) {
// int and float arrays are two slices. But we pretend both are of type int.
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0, dataIa[i+0] + 1);
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4, dataIa[i+1] + 1);
dataIb[i+0] = 11 * unsafe.getInt(dataFb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0);
dataIb[i+1] = 11 * unsafe.getInt(dataFb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4);
// With AlignVector, we need 8-byte alignment of vector loads/stores.
// UseCompactObjectHeaders=false UseCompactObjectHeaders=true
// adr = base + 16 + 8*i -> always adr = base + 12 + 8*i -> never
// -> vectorize -> no vectorization
}
}
@Run(test = "test3")
@Warmup(100)
public void runTest3() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
init(dataI, dataF);
test3(dataI, dataI, dataF, dataF);
verify("test3", dataI, goldI3);
verify("test3", dataF, goldF3);
}
@Test
@IR(counts = {IRNode.ADD_VI, "> 0", IRNode.MUL_VF, "> 0"},
applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true", "rvv", "true"})
static void test3(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb) {
for (int i = 0; i < RANGE; i+=2) {
// Inversion of orders. But because we operate on separate slices, this should
// safely vectorize. It should detect that each line is independent, so it can
// reorder them.
dataIb[i+0] = dataIa[i+0] + 3;
dataFb[i+1] = dataFa[i+1] * 1.3f;
dataFb[i+0] = dataFa[i+0] * 1.3f;
dataIb[i+1] = dataIa[i+1] + 3;
// With AlignVector, we need 8-byte alignment of vector loads/stores.
// UseCompactObjectHeaders=false UseCompactObjectHeaders=true
// adr = base + 16 + 8*i -> always adr = base + 12 + 8*i -> never
// -> vectorize -> no vectorization
}
}
@Run(test = "test4")
@Warmup(100)
public void runTest4() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
init(dataI, dataF);
test4(dataI, dataI, dataF, dataF);
verify("test4", dataI, goldI4);
verify("test4", dataF, goldF4);
}
@Test
static void test4(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb) {
for (int i = 0; i < RANGE; i+=2) {
// same as test1, except that reordering leads to different semantics
// [A,B] and [X,Y] are both packs that are internally independent
// But we have dependencies A -> X (StoreF -> LoadF)
// and Y -> B (StoreI -> LoadI)
// Hence the two packs have a cyclic dependency, we cannot schedule
// one before the other.
dataFa[i+0] = dataIa[i+0] + 3; // A
dataIb[i+0] = (int)(dataFb[i+0] * 1.3f); // X
dataIb[i+1] = (int)(dataFb[i+1] * 1.3f); // Y
dataFa[i+1] = dataIa[i+1] + 3; // B
}
}
@Run(test = "test5")
public void runTest5() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
init(dataI, dataF);
test5(dataI, dataI, dataF, dataF);
verify("test5", dataI, goldI5);
verify("test5", dataF, goldF5);
}
@Test
static void test5(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb) {
for (int i = 0; i < RANGE; i+=2) {
// same as test2, except that reordering leads to different semantics
// explanation analogue to test4
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0, dataIa[i+0] + 1); // A
dataIb[i+0] = 11 * unsafe.getInt(dataFb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0); // X
dataIb[i+1] = 11 * unsafe.getInt(dataFb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4); // Y
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4, dataIa[i+1] + 1); // B
}
}
@Run(test = "test6")
public void runTest6() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
long[] dataL = new long[RANGE];
init(dataI, dataF, dataL);
test6(dataI, dataI, dataF, dataF, dataL, dataL);
verify("test6", dataI, goldI6);
verify("test6", dataF, goldF6);
verify("test6", dataL, goldL6);
}
@Test
@IR(counts = {IRNode.ADD_VI, "> 0", IRNode.MUL_VI, "> 0", IRNode.ADD_VF, "> 0"},
applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true", "rvv", "true"})
static void test6(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb,
long[] dataLa, long[] dataLb) {
for (int i = 0; i < RANGE; i+=2) {
// Chain of parallelizable op and conversion
int v00 = unsafe.getInt(dataIa, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0) + 3;
int v01 = unsafe.getInt(dataIa, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4) + 3;
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0, v00);
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4, v01);
int v10 = unsafe.getInt(dataFb, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0) * 45;
int v11 = unsafe.getInt(dataFb, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4) * 45;
unsafe.putInt(dataLa, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 0, v10);
unsafe.putInt(dataLa, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 4, v11);
float v20 = unsafe.getFloat(dataLb, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 0) + 0.55f;
float v21 = unsafe.getFloat(dataLb, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 4) + 0.55f;
unsafe.putFloat(dataIb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0, v20);
unsafe.putFloat(dataIb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4, v21);
// With AlignVector, we need 8-byte alignment of vector loads/stores.
// UseCompactObjectHeaders=false UseCompactObjectHeaders=true
// adr = base + 16 + 8*i -> always adr = base + 12 + 8*i -> never
// -> vectorize -> no vectorization
}
}
@Run(test = "test7")
public void runTest7() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
long[] dataL = new long[RANGE];
init(dataI, dataF, dataL);
test7(dataI, dataI, dataF, dataF, dataL, dataL);
verify("test7", dataI, goldI7);
verify("test7", dataF, goldF7);
verify("test7", dataL, goldL7);
}
@Test
static void test7(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb,
long[] dataLa, long[] dataLb) {
for (int i = 0; i < RANGE; i+=2) {
// Cycle involving 3 memory slices
int v00 = unsafe.getInt(dataIa, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0) + 3;
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0, v00);
int v10 = unsafe.getInt(dataFb, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0) * 45;
int v11 = unsafe.getInt(dataFb, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4) * 45;
unsafe.putInt(dataLa, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 0, v10);
unsafe.putInt(dataLa, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 4, v11);
float v20 = unsafe.getFloat(dataLb, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 0) + 0.55f;
float v21 = unsafe.getFloat(dataLb, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 4) + 0.55f;
unsafe.putFloat(dataIb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0, v20);
unsafe.putFloat(dataIb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4, v21);
int v01 = unsafe.getInt(dataIa, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4) + 3; // moved down
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4, v01);
}
}
@Run(test = "test8")
public void runTest8() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
long[] dataL = new long[RANGE];
init(dataI, dataF, dataL);
test8(dataI, dataI, dataF, dataF, dataL, dataL);
verify("test8", dataI, goldI8);
verify("test8", dataF, goldF8);
verify("test8", dataL, goldL8);
}
@Test
static void test8(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb,
long[] dataLa, long[] dataLb) {
for (int i = 0; i < RANGE; i+=2) {
// 2-cycle, with more ops after
int v00 = unsafe.getInt(dataIa, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0) + 3;
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0, v00);
int v10 = unsafe.getInt(dataFb, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0) * 45;
int v11 = unsafe.getInt(dataFb, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4) * 45;
unsafe.putInt(dataLa, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 0, v10);
unsafe.putInt(dataLa, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 4, v11);
int v01 = unsafe.getInt(dataIa, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4) + 3;
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4, v01);
// more stuff after
float v20 = unsafe.getFloat(dataLb, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 0) + 0.55f;
float v21 = unsafe.getFloat(dataLb, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 4) + 0.55f;
unsafe.putFloat(dataIb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0, v20);
unsafe.putFloat(dataIb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4, v21);
}
}
@Run(test = "test9")
public void runTest9() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
long[] dataL = new long[RANGE];
init(dataI, dataF, dataL);
test9(dataI, dataI, dataF, dataF, dataL, dataL);
verify("test9", dataI, goldI9);
verify("test9", dataF, goldF9);
verify("test9", dataL, goldL9);
}
@Test
static void test9(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb,
long[] dataLa, long[] dataLb) {
for (int i = 0; i < RANGE; i+=2) {
// 2-cycle, with more stuff before
float v20 = unsafe.getFloat(dataLb, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 0) + 0.55f;
float v21 = unsafe.getFloat(dataLb, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 4) + 0.55f;
unsafe.putFloat(dataIb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0, v20);
unsafe.putFloat(dataIb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4, v21);
// 2-cycle
int v00 = unsafe.getInt(dataIa, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0) + 3;
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0, v00);
int v10 = unsafe.getInt(dataFb, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0) * 45;
int v11 = unsafe.getInt(dataFb, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4) * 45;
unsafe.putInt(dataLa, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 0, v10);
unsafe.putInt(dataLa, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 4, v11);
int v01 = unsafe.getInt(dataIa, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4) + 3;
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4, v01);
}
}
@Run(test = "test10")
public void runTest10() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
long[] dataL = new long[RANGE];
init(dataI, dataF, dataL);
test10(dataI, dataI, dataF, dataF, dataL, dataL);
verify("test10", dataI, goldI10);
verify("test10", dataF, goldF10);
verify("test10", dataL, goldL10);
}
@Test
static void test10(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb,
long[] dataLa, long[] dataLb) {
for (int i = 0; i < RANGE; i+=2) {
// This creates the following graph before SuperWord:
//
// A -> R -> U
// S -> V -> B
//
// SuperWord analyzes the graph, and sees that [A,B] and [U,V]
// are adjacent, isomorphic and independent packs. However,
// [R,S] are not isomorphic (R mul, S add).
// So it vectorizes [A,B] and [U,V] this gives us this graph:
//
// -> R
// [A,B] -> [U,V] -+
// ^ -> S |
// | |
// +------------------+
//
// The cycle thus does not only go via packs, but also scalar ops.
//
int v00 = unsafe.getInt(dataIa, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0) + 3; // A
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0, v00);
int v10 = unsafe.getInt(dataFb, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0) * 45; // R: constant mismatch
int v11 = unsafe.getInt(dataFb, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4) + 43; // S
unsafe.putInt(dataLa, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 0, v10);
unsafe.putInt(dataLa, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 4, v11);
float v20 = unsafe.getFloat(dataLb, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 0) + 0.55f; // U
float v21 = unsafe.getFloat(dataLb, unsafe.ARRAY_LONG_BASE_OFFSET + 4L * i + 4) + 0.55f; // V
unsafe.putFloat(dataIb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0, v20);
unsafe.putFloat(dataIb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4, v21);
int v01 = unsafe.getInt(dataIa, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4) + 3; // B: moved down
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4, v01);
}
}
static void init(int[] dataI, float[] dataF) {
for (int i = 0; i < RANGE; i++) {
dataI[i] = i + 1;
dataF[i] = i + 0.1f;
}
}
static void init(int[] dataI, float[] dataF, long[] dataL) {
for (int i = 0; i < RANGE; i++) {
dataI[i] = i + 1;
dataF[i] = i + 0.1f;
dataL[i] = i + 1;
}
}
static void verify(String name, int[] data, int[] gold) {
for (int i = 0; i < RANGE; i++) {
if (data[i] != gold[i]) {
throw new RuntimeException(" Invalid " + name + " result: dataI[" + i + "]: " + data[i] + " != " + gold[i]);
}
}
}
static void verify(String name, float[] data, float[] gold) {
for (int i = 0; i < RANGE; i++) {
int datav = unsafe.getInt(data, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i);
int goldv = unsafe.getInt(gold, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i);
if (datav != goldv) {
throw new RuntimeException(" Invalid " + name + " result: dataF[" + i + "]: " + datav + " != " + goldv);
}
}
}
static void verify(String name, long[] data, long[] gold) {
for (int i = 0; i < RANGE; i++) {
if (data[i] != gold[i]) {
throw new RuntimeException(" Invalid " + name + " result: dataL[" + i + "]: " + data[i] + " != " + gold[i]);
}
}
}
}
|