1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/*
* Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package nsk.monitoring.stress.thread;
import java.lang.management.*;
import java.io.*;
import nsk.share.*;
import nsk.monitoring.share.*;
public class cmon001 {
final static long CONST_BARRIER_TIME = 200;
final static long ITERATIONS = 50;
// Precision of value returned by ThreadInfo.getWaitedTime().
// System.nanoTime() and ThreadInfo.getWaitedTime() may use
// different methods to sample time, so PRECISION is essential to
// compare those two times.
final static long PRECISION = 3; // Milliseconds
// Ratio between nano and milli
final static long NANO_MILLI = 1000000;
private static volatile boolean testFailed = false;
private static Integer calculated;
private static String calculatedSync = "abc";
private static Object common = new Object();
private static Object[] finishBarriers;
private static long[] startTime;
private static long[] endTime;
private static long[] waitedTime;
public static void main(String[] argv) {
System.exit(run(argv, System.out) + Consts.JCK_STATUS_BASE);
}
public static int run(String[] argv, PrintStream out) {
ArgumentHandler argHandler = new ArgumentHandler(argv);
Log log = new Log(out, argHandler);
ThreadMonitor monitor = Monitor.getThreadMonitor(log, argHandler);
// The test passes, if thread contention monitoring is not supported
if (!monitor.isThreadContentionMonitoringSupported()) {
log.display("Thread contention monitoring is not supported.");
log.display("TEST PASSED.");
return Consts.TEST_PASSED;
}
// Enable thread contention monitoring, if it is supported
monitor.setThreadContentionMonitoringEnabled(true);
int threadCount = argHandler.getThreadCount();
MyThread threads[] = new MyThread[threadCount];
finishBarriers = new Object[threadCount];
startTime = new long[threadCount];
endTime = new long[threadCount];
waitedTime = new long[threadCount];
for (int i = 0; i < threadCount; i++)
finishBarriers[i] = new Object();
// Begin a loop which will start a number of threads
for (int time = 0; time < ITERATIONS; time++) {
log.display("Iteration: " + time);
calculated = Integer.valueOf(0);
// Start all threads. Half of them are user threads,
// others - daemon.
for (int i = 0; i < threadCount; i++) {
threads[i] = new MyThread(i, time, log, monitor);
threads[i].setDaemon(i % 2 == 0);
threads[i].start();
}
// Wait for all threads to access "calculated" variable
while (calculated.intValue() < threadCount)
Thread.currentThread().yield();
log.display("All threads have finished calculation: " + calculated);
// Notify all threads to finish
for (int i = 0; i < threadCount; i++)
synchronized (finishBarriers[i]) {
finishBarriers[i].notify();
}
// Wait for all threads to die
for (int i = 0; i < threadCount; i++)
try {
threads[i].join();
} catch (InterruptedException e) {
log.complain("Unexpected exception");
e.printStackTrace(log.getOutStream());
testFailed = true;
}
log.display("All threads have died.");
// Perform checks
// All threads must increase "calculated" value by one, so
// "calculated" must be equal to number of started threads.
if (calculated.intValue() != threadCount) {
log.complain("Number of threads that accessed the variable: "
+ calculated.intValue() + ", expected: "
+ threadCount);
testFailed = true;
}
// Waited time of each thread must not be greater than overall
// time of execution of the thread.
// Precision must be taken into account in this case.
for (int i = 0; i < threadCount; i++) {
long liveNano = endTime[i] - startTime[i];
long liveMilli = liveNano / NANO_MILLI;
long leastWaitedTime = 2 * CONST_BARRIER_TIME + time;
if (leastWaitedTime - 2 * PRECISION > waitedTime[i]) {
// that is not a bug. see 5070997 for details
log.display("Thread " + i + " was waiting for a monitor "
+ "for at least " + leastWaitedTime
+ " milliseconds, but "
+ "ThreadInfo.getWaitedTime() returned value "
+ waitedTime[i]);
}
if (liveMilli + PRECISION < waitedTime[i]) {
log.complain("Life time of thread " + i + " is " + liveMilli
+ " milliseconds, but "
+ "ThreadInfo.getWaitedTime() returned value "
+ waitedTime[i]);
testFailed = true;
}
}
} // for time
if (testFailed)
log.complain("TEST FAILED.");
return (testFailed) ? Consts.TEST_FAILED : Consts.TEST_PASSED;
} // run()
private static class MyThread extends Thread {
int num;
int time;
Log log;
ThreadMonitor monitor;
Object constBarrier = new Object();
Object varBarrier = new Object();
MyThread(int num, int time, Log log, ThreadMonitor monitor) {
this.num = num;
this.time = time;
this.log = log;
this.monitor = monitor;
}
public void run() {
startTime[num] = System.nanoTime();
// constBarrier does not receive notification, so the thread will
// be waiting for CONST_BARRIER_TIME milliseconds
synchronized (constBarrier) {
try {
constBarrier.wait(CONST_BARRIER_TIME);
} catch (InterruptedException e) {
log.complain("Unexpected exception");
e.printStackTrace(log.getOutStream());
testFailed = true;
}
}
// varBarrier does not receive notification, so the thread will
// be waiting for (CONST_BARRIER_TIME + time) milliseconds. This
// time is different for each iteration.
synchronized (varBarrier) {
try {
varBarrier.wait(CONST_BARRIER_TIME + time);
} catch (InterruptedException e) {
log.complain("Unexpected exception");
e.printStackTrace(log.getOutStream());
testFailed = true;
}
}
// Increase "calculated" value by one
synchronized (common) {
synchronized (calculatedSync) {
calculated = Integer.valueOf(calculated.intValue() + 1);
}
}
synchronized (finishBarriers[num]) {
try {
finishBarriers[num].wait(10 * CONST_BARRIER_TIME);
} catch (InterruptedException e) {
log.complain("Unexpected exception");
e.printStackTrace(log.getOutStream());
testFailed = true;
}
}
// Save all time stats for the thread
ThreadInfo info = monitor.getThreadInfo(this.getId(), 0);
waitedTime[num] = info.getWaitedTime();
endTime[num] = System.nanoTime();
}
} // class MyThread
}
|