File: Concurrent.java

package info (click to toggle)
openjdk-25 25.0.1%2B8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 825,408 kB
  • sloc: java: 5,585,680; cpp: 1,333,948; xml: 1,321,242; ansic: 488,034; asm: 404,003; objc: 21,088; sh: 15,106; javascript: 13,265; python: 8,319; makefile: 2,518; perl: 357; awk: 351; pascal: 103; exp: 83; sed: 72; jsp: 24
file content (440 lines) | stat: -rw-r--r-- 15,871 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*
 * Copyright (c) 2010, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package vm.gc.concurrent;

import java.lang.management.ManagementFactory;
import java.lang.management.MemoryMXBean;
import java.lang.management.MemoryUsage;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import nsk.share.TestFailure;
import nsk.share.gc.GC;
import nsk.share.gc.Memory;
import nsk.share.gc.ThreadedGCTest;
import nsk.share.gc.gp.GarbageProducer;
import nsk.share.gc.gp.GarbageProducer1Aware;
import nsk.share.gc.gp.GarbageProducerAware;
import nsk.share.gc.gp.MemoryStrategy;
import nsk.share.gc.gp.MemoryStrategyAware;
import nsk.share.gc.tree.*;
import nsk.share.log.Log;
import nsk.share.test.ExecutionController;
import nsk.share.test.LocalRandom;

class Forest {

    // the actual size of TreeNode in bytes in the memory calculated as occupied memory / count of nodes
    static int nodeSize;

    static long treeSize;

    private static long allNodesCount;

    /* log from test */
    static Log log;


    static int treeHeight;

    static long actuallyMut = 0;
    private static Forest instance = new Forest();
    private Tree[] trees;
    private Lock[] locks;

    private int nodeGarbageSize;

    private GarbageProducer gp;
    /*
     * Create array of trees occupyng given percent of heap
     */
    static Forest createForest(long percent, int heightToSizeRatio, int nodeGarbageSize, GarbageProducer gp, Log _log) {
        log = _log;

        long size = Runtime.getRuntime().maxMemory() * percent / 100;
        treeHeight = Memory.balancedTreeHeightFromMemory(size, (int) new TreeNode(nodeGarbageSize).getTotalSize());
        int ntrees = 0;
        while (treeHeight * heightToSizeRatio > ntrees) {
            ntrees++;
            treeHeight = Memory.balancedTreeHeightFromMemory(size / ntrees, (int) new TreeNode(nodeGarbageSize).getTotalSize());
        }

        log.debug("The expected forest paramteres: tree height = " + treeHeight  + " number of trees = " + ntrees
                + " size = " +  new TreeNode(nodeGarbageSize).getTotalSize());
        Tree[] localTrees = new Tree[ntrees * 4];
        Lock[] localLocks = new Lock[ntrees * 4];
        for (int i = 0; i < ntrees * 4; i++) {
            localTrees[i] = new Tree(Memory.makeBalancedTreeNode(treeHeight, nodeGarbageSize, gp));
            localLocks[i] = new ReentrantLock();

            int numOfAttempts = 0;
            if (Concurrent.getPercentInfoByMBeans() > percent) {
                log.debug("Attempt to System.gc() before control check. (" + numOfAttempts++ + ")");
                System.gc();
                if (Concurrent.getPercentInfoByMBeans() > percent) {
                    instance.trees = new Tree[i];
                    instance.locks = new Lock[i];
                    for (int j = 0; j < i; j++) {
                        instance.trees[j] = localTrees[j];
                        instance.locks[j] = localLocks[j];
                    }
                    allNodesCount = Memory.balancedTreeNodes(treeHeight) * instance.trees.length;
                    nodeSize = (int) (ManagementFactory.getMemoryMXBean().getHeapMemoryUsage().getUsed() / allNodesCount);
                    treeSize = Memory.balancedTreeSize(treeHeight, nodeSize);
                    instance.where = new AtomicCycleInteger(instance.trees.length);
                    instance.nodeGarbageSize = nodeGarbageSize;

                    log.debug("The forest real paramteres: tree height = " + treeHeight  + " number of trees = " + instance.trees.length
                            + " number of nodes = " + allNodesCount);
                    log.debug("Approximate node size = " + nodeSize + " calc = " + instance.trees[0].getRoot().getSize());
                    return instance;
                }
            }
        }
        throw new TestFailure("Should not reach here. The correct exit point is inside cycle");
    }


    int treesCount() {
        return trees.length;
    }

    long nodesCount() {
        return allNodesCount;
    }



    // Confirms that all trees are balanced and have the correct height.
    void checkTrees() {
        for (int i = 0; i < trees.length; i++) {
            locks[i].lock();
            checkTree(trees[i]);
            locks[i].unlock();
        }
    }

    private static void checkTree(Tree tree) {
        TreeNode root = tree.getRoot();
        int h1 = root.getHeight();
        int h2 = root.getShortestPath();
        if ((h1 != treeHeight) || (h2 != treeHeight)) {
            throw new TestFailure("The tree is not balanced expected " + treeHeight
                    + " value = " + h1 + " shortedtPath = " + h2);
        }
    }

    // Swap subtrees in 2 trees, the path is used
    // as sequence of 1-0 to select subtree (left-reight sequence)
    static void swapSubtrees(Tree t1, Tree t2, int depth, int path) {
        TreeNode tn1 = t1.getRoot();
        TreeNode tn2 = t2.getRoot();
        for (int i = 0; i < depth; i++) {
            if ((path & 1) == 0) {
                tn1 = tn1.getLeft();
                tn2 = tn2.getLeft();
            } else {
                tn1 = tn1.getRight();
                tn2 = tn2.getRight();
            }
            path >>= 1;
        }
        TreeNode tmp;
        if ((path & 1) == 0) {
            tmp = tn1.getLeft();
            tn1.setLeft(tn2.getLeft());
            tn2.setLeft(tmp);
        } else {
            tmp = tn1.getRight();
            tn1.setRight(tn2.getRight());
            tn2.setLeft(tmp);
        }
    }


    // Interchanges two randomly selected subtrees (of same size and depth) several times
    void swapSubtrees(long count) {
        for (int i = 0; i < count; i++) {
            int index1 = LocalRandom.nextInt(trees.length);
            int index2 = LocalRandom.nextInt(trees.length);
            int depth = LocalRandom.nextInt(treeHeight);
            int path = LocalRandom.nextInt();
            locks[index1].lock();
            // Skip the round to avoid deadlocks
            if (locks[index2].tryLock()) {
                swapSubtrees(trees[index1], trees[index2], depth, path);
                actuallyMut += 2;
                locks[index2].unlock();
            }
            locks[index1].unlock();

        }

    }


    static class AtomicCycleInteger extends AtomicInteger {
        private int max;
        public AtomicCycleInteger(int cycleLength) {
            super();
            this.max = cycleLength - 1;
        }
        public int cycleIncrementAndGet() {
            for (;;) {
                int current = get();
                int next = (current == max ? 0 : current + 1);
                if (compareAndSet(current, next)) {
                    return next;
                }
            }
        }
    }

    // the index in tree array which should be chnaged during next regeneration
    AtomicCycleInteger where = null;

    // generate new full and partial trees in our forest
    void regenerateTrees(long nodesCount) {
        int full = (int) (nodesCount / Memory.balancedTreeNodes(treeHeight)) ;
        int partial = (int) nodesCount % (Memory.balancedTreeNodes(treeHeight));
        for (int i = 0; i < full; i++) {
            int idx = where.cycleIncrementAndGet();
            locks[idx].lock();
            trees[idx] = new Tree(Memory.makeBalancedTreeNode(treeHeight, nodeGarbageSize));
            locks[idx].unlock();
        }
        while (partial > 0) {
            int h = Memory.balancedTreeHeightFromNodes(partial);
            Tree newTree = new Tree(Memory.makeBalancedTreeNode(h, nodeGarbageSize));
            int idx = where.cycleIncrementAndGet();
            locks[idx].lock();
            replaceTree(trees[idx], newTree);
            locks[idx].unlock();
            partial = partial - Memory.balancedTreeNodes(h);
        }
    }


    // Given a balanced tree full and a smaller balanced tree partial,
    // replaces an appropriate subtree of full by partial, taking care
    // to preserve the shape of the full tree.
    private static void replaceTree(Tree full, Tree partial) {
        boolean dir = (partial.getHeight() % 2) == 0;
        actuallyMut++;
        replaceTreeWork(full.getRoot(), partial.getRoot(), dir);
    }

    // Called only by replaceTree (below) and by itself.
    static void replaceTreeWork(TreeNode full, TreeNode partial,
            boolean dir) {
        boolean canGoLeft = full.getLeft() != null && full.getLeft().getHeight() > partial.getHeight();
        boolean canGoRight = full.getRight() != null && full.getRight().getHeight() > partial.getHeight();
        if (canGoLeft && canGoRight) {
            if (dir) {
                replaceTreeWork(full.getLeft(), partial, !dir);
            } else {
                replaceTreeWork(full.getRight(), partial, !dir);
            }
        } else if (!canGoLeft && !canGoRight) {
            if (dir) {
                full.setLeft(partial);
            } else {
                full.setRight(partial);
            }
        } else if (!canGoLeft) {
            full.setLeft(partial);
        } else {
            full.setRight(partial);
        }
    }



}
public class Concurrent extends ThreadedGCTest implements GarbageProducerAware, GarbageProducer1Aware, MemoryStrategyAware {

    // Heap as tree
    Forest forest;

    // GP for old gargbage production
    GarbageProducer gpOld;

    // GP for young gargbage production
    GarbageProducer gpYoung;

    MemoryStrategy ms;

    private void printStatistics() {
        log.debug("Actual mutations = " + forest.actuallyMut);
    }

    private class Worker implements Runnable {

        private ExecutionController stresser;

        @Override
        public void run() {
            if (stresser == null) {
                stresser = getExecutionController();
            }
            while (stresser.continueExecution()) {
                doStep();
            }
        }
    }

    @Override
    public Runnable createRunnable(int i) {
        return new Worker();
    }

    public static int getPercentInfoByMBeans() {
        MemoryMXBean mbean = ManagementFactory.getMemoryMXBean();
        return (int) (100 * mbean.getHeapMemoryUsage().getUsed() / mbean.getHeapMemoryUsage().getMax());
    }

    private void printMem(long used, long max, String source) {
        log.debug("The Memory after allocation (" + source + "): ");
        log.debug("Used = " + used + " Max = " + max + " Percent = " + (100 * used / max));
    }

    // Command-line parameters.
    // young garbage in percent and absolute
    private static int youngPercent = 0;
    long youngGarbageSize;
    // mutation rate (parcent and absolute trees)
    private static int ptrMutRate = 50;
    long mutateTrees;
    // percent of heap to occupy by forest (long live garbage)
    private static int livePercent = 60;
    // the minimum of which should be available for forest
    // test fails if it is not possible to use 60% of heap
    private static final int MIN_AVAILABLE_MEM = 60;
    // percent of forest to reallocate each step
    private static int reallocatePercent = 30;
    long reallocateSizeInNodes;
    // sleep time in ms
    private static int sleepTime = 100;

    private void init(int longLivePercent) {
        int numberOfThreads = runParams.getNumberOfThreads();
        forest = Forest.createForest(longLivePercent, numberOfThreads,
                (int) Math.sqrt(ms.getSize(Runtime.getRuntime().maxMemory())), gpOld, log);

        youngGarbageSize = Runtime.getRuntime().maxMemory() * youngPercent / 100 / numberOfThreads;
        reallocateSizeInNodes = forest.nodesCount() * reallocatePercent / 100 / numberOfThreads;
        mutateTrees = forest.treesCount() * ptrMutRate / 100 / numberOfThreads / 2;

        log.debug("Young Gen = " + youngGarbageSize);
        log.debug("Forest contains " + forest.treesCount() + " trees and " + forest.nodesCount() + " nodes.");
        log.debug("Count of nodes to reallocate = " + reallocateSizeInNodes);
        log.debug("Count of tree pairs to exchange nodes = " + mutateTrees);
        log.debug("Sleep time = " + sleepTime);

        // print some info
        MemoryUsage mbean = ManagementFactory.getMemoryMXBean().getHeapMemoryUsage();
        printMem(mbean.getUsed(), mbean.getMax(), "Beans");
        printMem(Runtime.getRuntime().maxMemory() - Runtime.getRuntime().freeMemory(),
                Runtime.getRuntime().maxMemory(), "System");
    }

    @Override
    public void run() {
        try {
            init(livePercent);
        } catch (OutOfMemoryError oome) {
            if (livePercent > MIN_AVAILABLE_MEM) {
                log.debug("Unable to use " + livePercent + " use only " + MIN_AVAILABLE_MEM);
                init(MIN_AVAILABLE_MEM);
            }
        }
        super.run();
        printStatistics();
    }



    private void doStep() {
        // allocate some young garbage
        if (youngGarbageSize != 0) {
            gpYoung.create(youngGarbageSize);
        }

        // allocate some long-live garbage (attached to our trees)
        forest.regenerateTrees(reallocateSizeInNodes);

        // mutate pointers
        forest.swapSubtrees(mutateTrees);

        // sleep to give GC time for some concurrent actions
        try {
            Thread.sleep(sleepTime);
        } catch (InterruptedException ie) {
        }

        // verify trees, also read all pointers
        forest.checkTrees();
    }

    public static void main(String[] args) {
        init(args);
        GC.runTest(new Concurrent(), args);
    }

    public static void init(String[] args) {
        for (int i = 0; i < args.length; ++i) {
            if (args[i].equals("-lp")) {
                // percent of long lived objects
                livePercent = Integer.parseInt(args[++i]);
            } else if (args[i].equals("-rp")) {
                // percent of trees to reallocate
                reallocatePercent = Integer.parseInt(args[++i]);
            } else if (args[i].equals("-yp")) {
                // percent of young objects
                youngPercent = Integer.parseInt(args[++i]);
            } else if (args[i].equals("-mr")) {
                // percent of trees to exchange (mutate)
                ptrMutRate = Integer.parseInt(args[++i]);
            } else if (args[i].equals("-st")) {
                // sleep time in ms
                sleepTime = Integer.parseInt(args[++i]);
            }
        }
    }

    @Override
    public void setGarbageProducer(GarbageProducer gp) {
        this.gpOld = gp;
    }


    @Override
    public void setGarbageProducer1(GarbageProducer gpYoung) {
        this.gpYoung = gpYoung;
    }

    @Override
    public void setMemoryStrategy(MemoryStrategy ms) {
        this.ms = ms;
    }
}