1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/*
* Copyright (c) 2020, 2023 SAP SE. All rights reserved.
* Copyright (c) 2020, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "memory/metaspace/chunkManager.hpp"
#include "memory/metaspace/metaspaceSettings.hpp"
#include "memory/metaspace/virtualSpaceList.hpp"
//#define LOG_PLEASE
#include "metaspaceGtestCommon.hpp"
#include "metaspaceGtestContexts.hpp"
#include "metaspaceGtestRangeHelpers.hpp"
#include "metaspaceGtestSparseArray.hpp"
using metaspace::ChunkManager;
using metaspace::Settings;
class ChunkManagerRandomChunkAllocTest {
static const size_t max_footprint_words = 8 * M;
ChunkGtestContext _context;
// All allocated live chunks
typedef SparseArray<Metachunk*> SparseArrayOfChunks;
SparseArrayOfChunks _chunks;
const ChunkLevelRange _chunklevel_range;
const float _commit_factor;
// Depending on a probability pattern, come up with a reasonable limit to number of live chunks
static int max_num_live_chunks(ChunkLevelRange r, float commit_factor) {
// Assuming we allocate only the largest type of chunk, committed to the fullest commit factor,
// how many chunks can we accomodate before hitting max_footprint_words?
const size_t largest_chunk_size = word_size_for_level(r.lowest());
int max_chunks = (int)((max_footprint_words * commit_factor) / (float) largest_chunk_size);
// .. but cap at (min) 50 and (max) 1000
max_chunks = MIN2(1000, max_chunks);
max_chunks = MAX2(50, max_chunks);
return max_chunks;
}
// Return true if, after an allocation error happened, a reserve error seems possible.
bool could_be_reserve_error() {
return _context.reserve_limit() < max_uintx;
}
// Return true if, after an allocation error happened, a commit error seems likely.
bool could_be_commit_error(size_t additional_word_size) {
// could it be commit limit hit?
// Note that this is difficult to verify precisely, since there are
// several layers of truth:
// a) at the lowest layer (RootChunkArea) we have a bitmap of committed granules;
// b) at the vslist layer, we keep running counters of committed/reserved words;
// c) at the chunk layer, we keep a commit watermark (committed_words).
//
// (a) should mirror reality.
// (a) and (b) should be precisely in sync. This is tested by
// VirtualSpaceList::verify().
// (c) can be, by design, imprecise (too low).
//
// Here, I check (b) and trust it to be correct. We also call vslist::verify().
DEBUG_ONLY(_context.verify();)
const size_t commit_add = align_up(additional_word_size, Settings::commit_granule_words());
if (_context.commit_limit() <= (commit_add + _context.vslist().committed_words())) {
return true;
}
return false;
}
// Given a chunk level and a factor, return a random commit size.
static size_t random_committed_words(chunklevel_t lvl, float commit_factor) {
const size_t sz = (size_t)((float)word_size_for_level(lvl) * commit_factor);
if (sz < 2) {
return 0;
}
return MIN2(SizeRange(sz).random_value(), sz);
}
//// Chunk allocation ////
// Given an slot index, allocate a random chunk and set it into that slot. Slot must be empty.
// Returns false if allocation fails.
bool allocate_random_chunk_at(int slot) {
DEBUG_ONLY(_chunks.check_slot_is_null(slot);)
const ChunkLevelRange r = _chunklevel_range.random_subrange();
const chunklevel_t pref_level = r.lowest();
const chunklevel_t max_level = r.highest();
const size_t min_committed = random_committed_words(max_level, _commit_factor);
Metachunk* c = nullptr;
_context.alloc_chunk(&c, r.lowest(), r.highest(), min_committed);
if (c == nullptr) {
EXPECT_TRUE(could_be_reserve_error() ||
could_be_commit_error(min_committed));
LOG("Alloc chunk at %d failed.", slot);
return false;
}
_chunks.set_at(slot, c);
LOG("Allocated chunk at %d: " METACHUNK_FORMAT ".", slot, METACHUNK_FORMAT_ARGS(c));
return true;
}
// Allocates a random number of random chunks
bool allocate_random_chunks() {
int to_alloc = 1 + IntRange(MAX2(1, _chunks.size() / 8)).random_value();
bool success = true;
int slot = _chunks.first_null_slot();
while (to_alloc > 0 && slot != -1 && success) {
success = allocate_random_chunk_at(slot);
slot = _chunks.next_null_slot(slot);
to_alloc --;
}
return success && to_alloc == 0;
}
bool fill_all_slots_with_random_chunks() {
bool success = true;
for (int slot = _chunks.first_null_slot();
slot != -1 && success; slot = _chunks.next_null_slot(slot)) {
success = allocate_random_chunk_at(slot);
}
return success;
}
//// Chunk return ////
// Given an slot index, return the chunk in that slot to the chunk manager.
void return_chunk_at(int slot) {
Metachunk* c = _chunks.at(slot);
LOG("Returning chunk at %d: " METACHUNK_FORMAT ".", slot, METACHUNK_FORMAT_ARGS(c));
_context.return_chunk(c);
_chunks.set_at(slot, nullptr);
}
// return a random number of chunks (at most a quarter of the full slot range)
void return_random_chunks() {
int to_free = 1 + IntRange(MAX2(1, _chunks.size() / 8)).random_value();
int index = _chunks.first_non_null_slot();
while (to_free > 0 && index != -1) {
return_chunk_at(index);
index = _chunks.next_non_null_slot(index);
to_free --;
}
}
void return_all_chunks() {
for (int slot = _chunks.first_non_null_slot();
slot != -1; slot = _chunks.next_non_null_slot(slot)) {
return_chunk_at(slot);
}
}
// adjust test if we change levels
STATIC_ASSERT(HIGHEST_CHUNK_LEVEL == CHUNK_LEVEL_1K);
STATIC_ASSERT(LOWEST_CHUNK_LEVEL == CHUNK_LEVEL_16M);
void one_test() {
fill_all_slots_with_random_chunks();
_chunks.shuffle();
IntRange rand(100);
for (int j = 0; j < 750; j++) {
bool force_alloc = false;
bool force_free = true;
bool do_alloc =
force_alloc ? true :
(force_free ? false : rand.random_value() >= 50);
force_alloc = force_free = false;
if (do_alloc) {
if (!allocate_random_chunks()) {
force_free = true;
}
} else {
return_random_chunks();
}
_chunks.shuffle();
}
return_all_chunks();
}
public:
// A test with no limits
ChunkManagerRandomChunkAllocTest(ChunkLevelRange r, float commit_factor) :
_context(),
_chunks(max_num_live_chunks(r, commit_factor)),
_chunklevel_range(r),
_commit_factor(commit_factor)
{}
// A test with no reserve limit but commit limit
ChunkManagerRandomChunkAllocTest(size_t commit_limit,
ChunkLevelRange r, float commit_factor) :
_context(commit_limit),
_chunks(max_num_live_chunks(r, commit_factor)),
_chunklevel_range(r),
_commit_factor(commit_factor)
{}
// A test with both reserve and commit limit
// ChunkManagerRandomChunkAllocTest(size_t commit_limit, size_t reserve_limit,
// ChunkLevelRange r, float commit_factor)
// : _helper(commit_limit, reserve_limit),
// _chunks(max_num_live_chunks(r, commit_factor)),
// _chunklevel_range(r),
// _commit_factor(commit_factor)
// {}
void do_tests() {
const int num_runs = 3;
for (int n = 0; n < num_runs; n++) {
one_test();
}
}
};
#define DEFINE_TEST(name, range, commit_factor) \
TEST_VM(metaspace, chunkmanager_random_alloc_##name) { \
ChunkManagerRandomChunkAllocTest test(range, commit_factor); \
test.do_tests(); \
}
DEFINE_TEST(test_nolimit_1, ChunkLevelRanges::small_chunks(), 0.0f)
DEFINE_TEST(test_nolimit_2, ChunkLevelRanges::small_chunks(), 0.5f)
DEFINE_TEST(test_nolimit_3, ChunkLevelRanges::small_chunks(), 1.0f)
DEFINE_TEST(test_nolimit_4, ChunkLevelRanges::all_chunks(), 0.0f)
DEFINE_TEST(test_nolimit_5, ChunkLevelRanges::all_chunks(), 0.5f)
DEFINE_TEST(test_nolimit_6, ChunkLevelRanges::all_chunks(), 1.0f)
#define DEFINE_TEST_2(name, range, commit_factor) \
TEST_VM(metaspace, chunkmanager_random_alloc_##name) { \
const size_t commit_limit = 256 * K; \
ChunkManagerRandomChunkAllocTest test(commit_limit, range, commit_factor); \
test.do_tests(); \
}
DEFINE_TEST_2(test_with_limit_1, ChunkLevelRanges::small_chunks(), 0.0f)
DEFINE_TEST_2(test_with_limit_2, ChunkLevelRanges::small_chunks(), 0.5f)
DEFINE_TEST_2(test_with_limit_3, ChunkLevelRanges::small_chunks(), 1.0f)
DEFINE_TEST_2(test_with_limit_4, ChunkLevelRanges::all_chunks(), 0.0f)
DEFINE_TEST_2(test_with_limit_5, ChunkLevelRanges::all_chunks(), 0.5f)
DEFINE_TEST_2(test_with_limit_6, ChunkLevelRanges::all_chunks(), 1.0f)
|