File: test_metachunk.cpp

package info (click to toggle)
openjdk-25 25.0.1%2B8-1~deb13u1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 825,408 kB
  • sloc: java: 5,585,680; cpp: 1,333,948; xml: 1,321,242; ansic: 488,034; asm: 404,003; objc: 21,088; sh: 15,106; javascript: 13,265; python: 8,319; makefile: 2,518; perl: 357; awk: 351; pascal: 103; exp: 83; sed: 72; jsp: 24
file content (429 lines) | stat: -rw-r--r-- 15,895 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
/*
 * Copyright (c) 2020, 2023 SAP SE. All rights reserved.
 * Copyright (c) 2020, 2025, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "memory/metaspace/chunkManager.hpp"
#include "memory/metaspace/freeChunkList.hpp"
#include "memory/metaspace/metachunk.hpp"
#include "memory/metaspace/metaspaceSettings.hpp"
#include "memory/metaspace/virtualSpaceNode.hpp"
#include "metaspaceGtestCommon.hpp"
#include "metaspaceGtestContexts.hpp"
#include "runtime/mutexLocker.hpp"

using metaspace::ChunkManager;
using metaspace::FreeChunkListVector;
using metaspace::Metachunk;
using metaspace::Settings;
using metaspace::VirtualSpaceNode;
using namespace metaspace::chunklevel;

// Test ChunkManager::get_chunk
TEST_VM(metaspace, get_chunk) {

  ChunkGtestContext context(8 * M);
  Metachunk* c = nullptr;

  for (chunklevel_t pref_lvl = LOWEST_CHUNK_LEVEL; pref_lvl <= HIGHEST_CHUNK_LEVEL; pref_lvl++) {

    for (chunklevel_t max_lvl = pref_lvl; max_lvl <= HIGHEST_CHUNK_LEVEL; max_lvl++) {

      for (size_t min_committed_words = Settings::commit_granule_words();
           min_committed_words <= word_size_for_level(max_lvl); min_committed_words *= 2) {
        context.alloc_chunk_expect_success(&c, pref_lvl, max_lvl, min_committed_words);
        context.return_chunk(c);
      }
    }
  }
}

// Test ChunkManager::get_chunk, but with a commit limit.
TEST_VM(metaspace, get_chunk_with_commit_limit) {

  // A commit limit that is smaller than the largest possible chunk size.

  // Here we test different combinations of commit limit, preferred and highest chunk level, and min_committed_size.

  for (size_t commit_limit_words = Settings::commit_granule_words();
       commit_limit_words < MAX_CHUNK_WORD_SIZE * 2; commit_limit_words *= 2) {

    ChunkGtestContext context(commit_limit_words);
    Metachunk* c = nullptr;

    for (chunklevel_t pref_lvl = LOWEST_CHUNK_LEVEL; pref_lvl <= HIGHEST_CHUNK_LEVEL; pref_lvl++) {

      for (chunklevel_t max_lvl = pref_lvl; max_lvl <= HIGHEST_CHUNK_LEVEL; max_lvl++) {

        for (size_t min_committed_words = Settings::commit_granule_words();
             min_committed_words <= word_size_for_level(max_lvl); min_committed_words *= 2) {

          // When should commit work? As long as min_committed_words is smaller than commit_limit_words.
          bool commit_should_work = min_committed_words <= commit_limit_words;

          // printf("commit_limit: %zu, min_committed_words: %zu"
          //       ", max chunk level: " CHKLVL_FORMAT ", preferred chunk level: " CHKLVL_FORMAT ", should work: %d\n",
          //       commit_limit_words, min_committed_words, max_lvl, pref_lvl, commit_should_work);
          // fflush(stdout);

          if (commit_should_work) {
            context.alloc_chunk_expect_success(&c, pref_lvl, max_lvl, min_committed_words);
            context.return_chunk(c);
          } else {
            context.alloc_chunk_expect_failure(pref_lvl, max_lvl, min_committed_words);
          }
        }
      }
    }
  }
}

// Test that recommitting the used portion of a chunk will preserve the original content.
TEST_VM(metaspace, get_chunk_recommit) {

  ChunkGtestContext context;
  Metachunk* c = nullptr;
  context.alloc_chunk_expect_success(&c, ROOT_CHUNK_LEVEL, ROOT_CHUNK_LEVEL, 0);
  context.uncommit_chunk_with_test(c);

  context.commit_chunk_with_test(c, Settings::commit_granule_words());
  context.allocate_from_chunk(c, Settings::commit_granule_words());

  c->ensure_committed(Settings::commit_granule_words());
  check_range_for_pattern(c->base(), c->used_words(), (uintx)c);

  c->ensure_committed(Settings::commit_granule_words() * 2);
  check_range_for_pattern(c->base(), c->used_words(), (uintx)c);

  context.return_chunk(c);

}

// Test ChunkManager::get_chunk, but with a reserve limit.
// (meaning, the underlying VirtualSpaceList cannot expand, like compressed class space).
TEST_VM(metaspace, get_chunk_with_reserve_limit) {

  const size_t reserve_limit_words = word_size_for_level(ROOT_CHUNK_LEVEL);
  const size_t commit_limit_words = 1024 * M; // just very high
  ChunkGtestContext context(commit_limit_words, reserve_limit_words);

  // Reserve limit works at root chunk size granularity: if the chunk manager cannot satisfy
  //  a request for a chunk from its freelists, it will acquire a new root chunk from the
  //  underlying virtual space list. If that list is full and cannot be expanded (think ccs)
  //  we should get an error.
  // Testing this is simply testing a chunk allocation which should cause allocation of a new
  //  root chunk.

  // Cause allocation of the firstone root chunk, should still work:
  Metachunk* c = nullptr;
  context.alloc_chunk_expect_success(&c, HIGHEST_CHUNK_LEVEL);

  // and this should need a new root chunk and hence fail:
  context.alloc_chunk_expect_failure(ROOT_CHUNK_LEVEL);

  context.return_chunk(c);

}

// Test MetaChunk::allocate
TEST_VM(metaspace, chunk_allocate_full) {

  ChunkGtestContext context;

  for (chunklevel_t lvl = LOWEST_CHUNK_LEVEL; lvl <= HIGHEST_CHUNK_LEVEL; lvl++) {
    Metachunk* c = nullptr;
    context.alloc_chunk_expect_success(&c, lvl);
    context.allocate_from_chunk(c, c->word_size());
    context.return_chunk(c);
  }

}

// Test MetaChunk::allocate
TEST_VM(metaspace, chunk_allocate_random) {

  ChunkGtestContext context;

  for (chunklevel_t lvl = LOWEST_CHUNK_LEVEL; lvl <= HIGHEST_CHUNK_LEVEL; lvl++) {

    Metachunk* c = nullptr;
    context.alloc_chunk_expect_success(&c, lvl);
    context.uncommit_chunk_with_test(c); // start out fully uncommitted

    RandSizeGenerator rgen(1, c->word_size() / 30);
    bool stop = false;

    while (!stop) {
      const size_t s = rgen.get();
      if (s <= c->free_words()) {
        context.commit_chunk_with_test(c, s);
        context.allocate_from_chunk(c, s);
      } else {
        stop = true;
      }

    }
    context.return_chunk(c);

  }

}

TEST_VM(metaspace, chunk_buddy_stuff) {

  for (chunklevel_t l = ROOT_CHUNK_LEVEL + 1; l <= HIGHEST_CHUNK_LEVEL; l++) {

    ChunkGtestContext context;

    // Allocate two chunks; since we know the first chunk is the first in its area,
    // it has to be a leader, and the next one of the same size its buddy.

    // (Note: strictly speaking the ChunkManager does not promise any placement but
    //  we know how the placement works so these tests make sense).

    Metachunk* c1 = nullptr;
    context.alloc_chunk(&c1, CHUNK_LEVEL_1K);
    EXPECT_TRUE(c1->is_leader());

    Metachunk* c2 = nullptr;
    context.alloc_chunk(&c2, CHUNK_LEVEL_1K);
    EXPECT_FALSE(c2->is_leader());

    // buddies are adjacent in memory
    // (next/prev_in_vs needs lock)
    {
      MutexLocker fcl(Metaspace_lock, Mutex::_no_safepoint_check_flag);
      EXPECT_EQ(c1->next_in_vs(), c2);
      EXPECT_EQ(c1->end(), c2->base());
      EXPECT_NULL(c1->prev_in_vs()); // since we know this is the first in the area
      EXPECT_EQ(c2->prev_in_vs(), c1);
    }

    context.return_chunk(c1);
    context.return_chunk(c2);

  }

}

TEST_VM(metaspace, chunk_allocate_with_commit_limit) {

  const size_t granule_sz = Settings::commit_granule_words();
  const size_t commit_limit = granule_sz * 3;
  ChunkGtestContext context(commit_limit);

  // A big chunk, but uncommitted.
  Metachunk* c = nullptr;
  context.alloc_chunk_expect_success(&c, ROOT_CHUNK_LEVEL, ROOT_CHUNK_LEVEL, 0);
  context.uncommit_chunk_with_test(c); // ... just to make sure.

  // first granule...
  context.commit_chunk_with_test(c, granule_sz);
  context.allocate_from_chunk(c, granule_sz);

  // second granule...
  context.commit_chunk_with_test(c, granule_sz);
  context.allocate_from_chunk(c, granule_sz);

  // third granule...
  context.commit_chunk_with_test(c, granule_sz);
  context.allocate_from_chunk(c, granule_sz);

  // This should fail now.
  context.commit_chunk_expect_failure(c, granule_sz);

  context.return_chunk(c);

}

// Test splitting a chunk
TEST_VM(metaspace, chunk_split_and_merge) {

  // Split works like this:
  //
  //  ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
  // |                                  A                                            |
  //  ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
  //
  //  ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
  // | A' | b  |    c    |         d         |                   e                   |
  //  ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
  //
  // A original chunk (A) is split to form a target chunk (A') and as a result splinter
  // chunks form (b..e). A' is the leader of the (A',b) pair, which is the leader of the
  // ((A',b), c) pair and so on. In other words, A' will be a leader chunk, all splinter
  // chunks are follower chunks.
  //
  // Merging reverses this operation:
  //
  //  ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
  // | A  | b  |    c    |         d         |                   e                   |
  //  ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
  //
  //  ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
  // |                                  A'                                           |
  //  ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
  //
  // (A) will be merged with its buddy b, (A+b) with its buddy c and so on. The result
  // chunk is A'.
  // Note that merging also works, of course, if we were to start the merge at (b) (so,
  // with a follower chunk, not a leader). Also, at any point in the merge
  // process we may arrive at a follower chunk. So, the fact that in this test
  // we only expect a leader merge is a feature of the test, and of the fact that we
  // start each split test with a fresh ChunkTestsContext.

  // Note: Splitting and merging chunks is usually done from within the ChunkManager and
  //  subject to a lot of assumptions and hence asserts. Here, we have to explicitly use
  //  VirtualSpaceNode::split/::merge and therefore have to observe rules:
  // - both split and merge expect free chunks, so state has to be "free"
  // - but that would trigger the "ideally merged" assertion in the RootChunkArea, so the
  //   original chunk has to be a root chunk, we cannot just split any chunk manually.
  // - Also, after the split we have to completely re-merge to avoid triggering asserts
  //   in ~RootChunkArea()
  // - finally we have to lock manually

  ChunkGtestContext context;

  const chunklevel_t orig_lvl = ROOT_CHUNK_LEVEL;
  for (chunklevel_t target_lvl = orig_lvl + 1; target_lvl <= HIGHEST_CHUNK_LEVEL; target_lvl++) {

    // Split a fully committed chunk. The resulting chunk should be fully
    //  committed as well, and have its content preserved.
    Metachunk* c = nullptr;
    context.alloc_chunk_expect_success(&c, orig_lvl);

    // We allocate from this chunk to be able to completely paint the payload.
    context.allocate_from_chunk(c, c->word_size());

    const uintx canary = os::random();
    fill_range_with_pattern(c->base(), c->word_size(), canary);

    FreeChunkListVector splinters;

    {
      // Splitting/Merging chunks is usually done by the chunkmanager, and no explicit
      // outside API exists. So we split/merge chunks via the underlying vs node, directly.
      // This means that we have to go through some extra hoops to not trigger any asserts.
      MutexLocker fcl(Metaspace_lock, Mutex::_no_safepoint_check_flag);
      c->reset_used_words();
      c->set_free();
      c->vsnode()->split(target_lvl, c, &splinters);
    }

    DEBUG_ONLY(context.verify();)

    EXPECT_EQ(c->level(), target_lvl);
    EXPECT_TRUE(c->is_fully_committed());
    EXPECT_FALSE(c->is_root_chunk());
    EXPECT_TRUE(c->is_leader());

    check_range_for_pattern(c->base(), c->word_size(), canary);

    // I expect splinter chunks (one for each splinter level:
    //  e.g. splitting a 1M chunk to get a 64K chunk should yield splinters: [512K, 256K, 128K, 64K]
    for (chunklevel_t l = LOWEST_CHUNK_LEVEL; l < HIGHEST_CHUNK_LEVEL; l++) {
      const Metachunk* c2 = splinters.first_at_level(l);
      if (l > orig_lvl && l <= target_lvl) {
        EXPECT_NOT_NULL(c2);
        EXPECT_EQ(c2->level(), l);
        EXPECT_TRUE(c2->is_free());
        EXPECT_TRUE(!c2->is_leader());
        DEBUG_ONLY(c2->verify());
        check_range_for_pattern(c2->base(), c2->word_size(), canary);
      } else {
        EXPECT_NULL(c2);
      }
    }

    // Revert the split by using merge. This should result in all splinters coalescing
    // to one chunk.
    {
      MutexLocker fcl(Metaspace_lock, Mutex::_no_safepoint_check_flag);
      Metachunk* merged = c->vsnode()->merge(c, &splinters);

      // the merged chunk should occupy the same address as the splinter
      // since it should have been the leader in the split.
      EXPECT_EQ(merged, c);
      EXPECT_TRUE(merged->is_root_chunk() || merged->is_leader());

      // Splitting should have arrived at the original chunk since none of the splinters are in use.
      EXPECT_EQ(c->level(), orig_lvl);

      // All splinters should have been removed from the list
      EXPECT_EQ(splinters.num_chunks(), 0);
    }

    context.return_chunk(c);

  }

}

TEST_VM(metaspace, chunk_enlarge_in_place) {

  ChunkGtestContext context;

  // Starting with the smallest chunk size, attempt to enlarge the chunk in place until we arrive
  // at root chunk size. Since the state is clean, this should work.

  Metachunk* c = nullptr;
  context.alloc_chunk_expect_success(&c, HIGHEST_CHUNK_LEVEL);

  chunklevel_t l = c->level();

  while (l != ROOT_CHUNK_LEVEL) {

    // commit and allocate from chunk to pattern it...
    const size_t original_chunk_size = c->word_size();
    context.commit_chunk_with_test(c, c->free_words());
    context.allocate_from_chunk(c, c->free_words());

    size_t used_before = c->used_words();
    size_t free_before = c->free_words();
    size_t free_below_committed_before = c->free_below_committed_words();
    const MetaWord* top_before = c->top();

    EXPECT_TRUE(context.cm().attempt_enlarge_chunk(c));
    EXPECT_EQ(l - 1, c->level());
    EXPECT_EQ(c->word_size(), original_chunk_size * 2);

    // Used words should not have changed
    EXPECT_EQ(c->used_words(), used_before);
    EXPECT_EQ(c->top(), top_before);

    // free words should be expanded by the old size (since old chunk is doubled in size)
    EXPECT_EQ(c->free_words(), free_before + original_chunk_size);

    // free below committed can be larger but never smaller
    EXPECT_GE(c->free_below_committed_words(), free_below_committed_before);

    // Old content should be preserved
    check_range_for_pattern(c->base(), original_chunk_size, (uintx)c);

    l = c->level();
  }

  context.return_chunk(c);

}