1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
/*
* Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package compiler.loopopts.superword;
import compiler.lib.ir_framework.*;
import compiler.lib.verify.*;
import jdk.test.lib.Utils;
import java.nio.ByteBuffer;
import java.util.Map;
import java.util.HashMap;
import java.util.Random;
import java.lang.foreign.*;
/*
* @test id=byte-buffer-direct
* @bug 8323582
* @summary Test vectorization of loops over MemorySegment, with native memory where the address is not always aligned.
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegmentUnalignedAddress ByteBufferDirect
*/
/*
* @test id=byte-buffer-direct-AlignVector
* @bug 8323582
* @summary Test vectorization of loops over MemorySegment, with native memory where the address is not always aligned.
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegmentUnalignedAddress ByteBufferDirect AlignVector
*/
/*
* @test id=byte-buffer-direct-VerifyAlignVector
* @bug 8323582
* @summary Test vectorization of loops over MemorySegment, with native memory where the address is not always aligned.
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegmentUnalignedAddress ByteBufferDirect VerifyAlignVector
*/
/*
* @test id=native
* @bug 8323582
* @summary Test vectorization of loops over MemorySegment, with native memory where the address is not always aligned.
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegmentUnalignedAddress Native
*/
/*
* @test id=native-AlignVector
* @bug 8323582
* @summary Test vectorization of loops over MemorySegment, with native memory where the address is not always aligned.
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegmentUnalignedAddress Native AlignVector
*/
/*
* @test id=native-VerifyAlignVector
* @bug 8323582
* @summary Test vectorization of loops over MemorySegment, with native memory where the address is not always aligned.
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegmentUnalignedAddress Native VerifyAlignVector
*/
public class TestMemorySegmentUnalignedAddress {
public static void main(String[] args) {
TestFramework framework = new TestFramework(TestMemorySegmentUnalignedAddressImpl.class);
framework.addFlags("-DmemorySegmentProviderNameForTestVM=" + args[0]);
if (args.length > 1) {
switch (args[1]) {
case "AlignVector" -> { framework.addFlags("-XX:+AlignVector"); }
case "VerifyAlignVector" -> { framework.addFlags("-XX:+AlignVector", "-XX:+IgnoreUnrecognizedVMOptions", "-XX:+VerifyAlignVector"); }
default -> { throw new RuntimeException("unexpected: " + args[1]); }
}
}
framework.setDefaultWarmup(100);
framework.start();
}
}
class TestMemorySegmentUnalignedAddressImpl {
static final int SIZE = 10_000;
static final int BACKING_SIZE = 10_000 + 1;
static final Random RANDOM = Utils.getRandomInstance();
interface TestFunction {
Object run(int i);
}
interface MemorySegmentProvider {
MemorySegment newMemorySegment();
}
static MemorySegmentProvider provider;
static {
String providerName = System.getProperty("memorySegmentProviderNameForTestVM");
provider = switch (providerName) {
case "ByteBufferDirect" -> TestMemorySegmentUnalignedAddressImpl::newMemorySegmentOfByteBufferDirect;
case "Native" -> TestMemorySegmentUnalignedAddressImpl::newMemorySegmentOfNative;
default -> throw new RuntimeException("Test argument not recognized: " + providerName);
};
}
// List of tests
Map<String, TestFunction> tests = new HashMap<>();
// List of gold, the results from the first run before compilation
Map<String, Object> golds = new HashMap<>();
public TestMemorySegmentUnalignedAddressImpl () {
// Generate two MemorySegments as inputs
MemorySegment a = sliceAligned(newMemorySegment());
MemorySegment b = sliceAligned(newMemorySegment());
fillRandom(a);
fillRandom(b);
// Add all tests to list
tests.put("testAlwaysAligned", (int i) -> {
MemorySegment ms = newMemorySegment();
MemorySegment slice = sliceAligned(ms);
copy(a, slice);
return testAlwaysAligned(slice);
});
tests.put("testAlwaysUnaligned", (int i) -> {
MemorySegment ms = newMemorySegment();
MemorySegment slice = sliceUnaligned(ms);
copy(a, slice);
return testAlwaysUnaligned(slice);
});
tests.put("testMixedAlignedAndUnaligned", (int i) -> {
MemorySegment ms = newMemorySegment();
MemorySegment slice = (i % 2 == 0) ? sliceUnaligned(ms) : sliceAligned(ms);
copy(a, slice);
return testMixedAlignedAndUnaligned(slice);
});
// Compute gold value for all test methods before compilation
for (Map.Entry<String,TestFunction> entry : tests.entrySet()) {
String name = entry.getKey();
TestFunction test = entry.getValue();
Object gold = test.run(0);
golds.put(name, gold);
}
}
MemorySegment sliceAligned(MemorySegment src) {
return src.asSlice(0, SIZE);
}
MemorySegment sliceUnaligned(MemorySegment src) {
return src.asSlice(1, SIZE);
}
MemorySegment newMemorySegment() {
return provider.newMemorySegment();
}
static void copy(MemorySegment src, MemorySegment dst) {
MemorySegment.copy(src, 0, dst, 0, src.byteSize());
}
static MemorySegment newMemorySegmentOfByteBufferDirect() {
return MemorySegment.ofBuffer(ByteBuffer.allocateDirect(BACKING_SIZE));
}
static MemorySegment newMemorySegmentOfNative() {
// Auto arena: GC decides when there is no reference to the MemorySegment,
// and then it deallocates the backing memory.
return Arena.ofAuto().allocate(BACKING_SIZE, 1);
}
static void fillRandom(MemorySegment data) {
for (int i = 0; i < (int)data.byteSize(); i++) {
data.set(ValueLayout.JAVA_BYTE, i, (byte)RANDOM.nextInt());
}
}
static void verify(String name, Object gold, Object result) {
try {
Verify.checkEQ(gold, result);
} catch (VerifyException e) {
throw new RuntimeException("Verify: wrong result in " + name, e);
}
}
static int runInvocationCounter = 0;
@Run(test = {"testAlwaysAligned",
"testAlwaysUnaligned",
"testMixedAlignedAndUnaligned"})
void runTests() {
runInvocationCounter++;
for (Map.Entry<String,TestFunction> entry : tests.entrySet()) {
String name = entry.getKey();
TestFunction test = entry.getValue();
// Recall gold value from before compilation
Object gold = golds.get(name);
// Compute new result
Object result = test.run(runInvocationCounter);
// Compare gold and new result
verify(name, gold, result);
}
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "> 0",
IRNode.ADD_VI, "> 0",
IRNode.STORE_VECTOR, "> 0",
"multiversion", "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true", "rvv", "true"},
phase = CompilePhase.PRINT_IDEAL)
// We never fail the alignment check in the auto vectorization Predicate,
// hence we never even create the multiversioned loops.
static Object testAlwaysAligned(MemorySegment ms) {
for (long i = 0; i < ms.byteSize(); i += 4) {
int v = ms.get(ValueLayout.JAVA_INT_UNALIGNED, i);
ms.set(ValueLayout.JAVA_INT_UNALIGNED, i, (int)(v + 1));
}
return new Object[]{ ms };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "> 0",
IRNode.ADD_VI, "> 0",
IRNode.STORE_VECTOR, "> 0",
"multiversion_fast", "= 4", // pre, main, drain, post
"multiversion_slow", "= 2"}, // main, post
applyIf = {"AlignVector", "true"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true", "rvv", "true"},
phase = CompilePhase.PRINT_IDEAL)
// We add alignment checks to the auto vectorization Predicate. It fails
// at runtime, deopts, and recompiles with multiversioning.
@IR(counts = {IRNode.LOAD_VECTOR_I, "> 0",
IRNode.ADD_VI, "> 0",
IRNode.STORE_VECTOR, "> 0",
"multiversion_fast", "= 0",
"multiversion_slow", "= 0"},
applyIf = {"AlignVector", "false"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true", "rvv", "true"},
phase = CompilePhase.PRINT_IDEAL)
// We never add any conditions to the auto vectorization Predicate, so
// we also never deopt and never end up multiversioning.
static Object testAlwaysUnaligned(MemorySegment ms) {
for (long i = 0; i < ms.byteSize(); i += 4) {
int v = ms.get(ValueLayout.JAVA_INT_UNALIGNED, i);
ms.set(ValueLayout.JAVA_INT_UNALIGNED, i, (int)(v + 1));
}
return new Object[]{ ms };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "> 0",
IRNode.ADD_VI, "> 0",
IRNode.STORE_VECTOR, "> 0",
"multiversion_fast", "= 4", // pre, main, drain, post
"multiversion_slow", "= 2"}, // main, post
applyIf = {"AlignVector", "true"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true", "rvv", "true"},
phase = CompilePhase.PRINT_IDEAL)
// We add alignment checks to the auto vectorization Predicate. It fails
// at runtime, deopts, and recompiles with multiversioning.
@IR(counts = {IRNode.LOAD_VECTOR_I, "> 0",
IRNode.ADD_VI, "> 0",
IRNode.STORE_VECTOR, "> 0",
"multiversion_fast", "= 0",
"multiversion_slow", "= 0"},
applyIf = {"AlignVector", "false"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true", "rvv", "true"},
phase = CompilePhase.PRINT_IDEAL)
// We never add any conditions to the auto vectorization Predicate, so
// we also never deopt and never end up multiversioning.
static Object testMixedAlignedAndUnaligned(MemorySegment ms) {
for (long i = 0; i < ms.byteSize(); i += 4) {
int v = ms.get(ValueLayout.JAVA_INT_UNALIGNED, i);
ms.set(ValueLayout.JAVA_INT_UNALIGNED, i, (int)(v + 1));
}
return new Object[]{ ms };
}
}
|