1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*
* Copyright (c) 2022, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 8294588
* @summary Auto-vectorize Float.floatToFloat16, Float.float16ToFloat APIs
* @requires vm.compiler2.enabled
* @library /test/lib /
* @run driver compiler.vectorization.TestFloatConversionsVector nCOH_nAV
* @run driver compiler.vectorization.TestFloatConversionsVector nCOH_yAV
* @run driver compiler.vectorization.TestFloatConversionsVector yCOH_nAV
* @run driver compiler.vectorization.TestFloatConversionsVector yCOH_yAV
*/
package compiler.vectorization;
import compiler.lib.ir_framework.*;
import jdk.test.lib.Asserts;
public class TestFloatConversionsVector {
private static final int ARRLEN = 1024;
private static final int ITERS = 11000;
private static float [] finp;
private static short [] sout;
private static short [] sinp;
private static float [] fout;
public static void main(String args[]) {
TestFramework framework = new TestFramework(TestFloatConversionsVector.class);
framework.addFlags("-XX:-TieredCompilation", "-XX:CompileThresholdScaling=0.3");
switch (args[0]) {
case "nCOH_nAV" -> { framework.addFlags("-XX:-UseCompactObjectHeaders", "-XX:-AlignVector"); }
case "nCOH_yAV" -> { framework.addFlags("-XX:-UseCompactObjectHeaders", "-XX:+AlignVector"); }
case "yCOH_nAV" -> { framework.addFlags("-XX:+UseCompactObjectHeaders", "-XX:-AlignVector"); }
case "yCOH_yAV" -> { framework.addFlags("-XX:+UseCompactObjectHeaders", "-XX:+AlignVector"); }
default -> { throw new RuntimeException("Test argument not recognized: " + args[0]); }
};
framework.start();
System.out.println("PASSED");
}
@Test
@IR(counts = {IRNode.VECTOR_CAST_F2HF, IRNode.VECTOR_SIZE + "min(max_float, max_short)", "> 0"},
applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"},
applyIfPlatformOr = {"x64", "true", "aarch64", "true", "riscv64", "true"},
applyIfCPUFeatureOr = {"f16c", "true", "avx512f", "true", "zvfh", "true", "asimd", "true", "sve", "true"})
public void test_float_float16(short[] sout, float[] finp) {
for (int i = 0; i < finp.length; i++) {
sout[i] = Float.floatToFloat16(finp[i]);
// With AlignVector, we need 8-byte alignment of vector loads/stores.
// UseCompactObjectHeaders=false UseCompactObjectHeaders=true
// F_adr = base + 16 + 4*i -> i % 2 = 0 F_adr = base + 12 + 4*i -> i % 2 = 1
// S_adr = base + 16 + 2*i -> i % 4 = 0 S_adr = base + 12 + 2*i -> i % 4 = 2
// -> vectorize -> no vectorization
}
}
@Test
public void test_float_float16_strided(short[] sout, float[] finp) {
for (int i = 0; i < finp.length/2; i++) {
sout[i*2] = Float.floatToFloat16(finp[i*2]);
}
}
@Test
public void test_float_float16_short_vector(short[] sout, float[] finp) {
for (int i = 0; i < finp.length; i+= 4) {
sout[i+0] = Float.floatToFloat16(finp[i+0]);
sout[i+1] = Float.floatToFloat16(finp[i+1]);
}
}
@Run(test = {"test_float_float16", "test_float_float16_strided",
"test_float_float16_short_vector"}, mode = RunMode.STANDALONE)
public void kernel_test_float_float16() {
finp = new float[ARRLEN];
sout = new short[ARRLEN];
for (int i = 0; i < ARRLEN; i++) {
finp[i] = (float) i * 1.4f;
}
for (int i = 0; i < ITERS; i++) {
test_float_float16(sout, finp);
}
// Verifying the result
for (int i = 0; i < ARRLEN; i++) {
Asserts.assertEquals(Float.floatToFloat16(finp[i]), sout[i]);
}
for (int i = 0; i < ITERS; i++) {
test_float_float16_strided(sout, finp);
}
// Verifying the result
for (int i = 0; i < ARRLEN/2; i++) {
Asserts.assertEquals(Float.floatToFloat16(finp[i*2]), sout[i*2]);
}
for (int i = 0; i < ITERS; i++) {
test_float_float16_short_vector(sout, finp);
}
// Verifying the result
for (int i = 0; i < ARRLEN; i++) {
Asserts.assertEquals(Float.floatToFloat16(finp[i]), sout[i]);
}
}
@Test
@IR(counts = {IRNode.VECTOR_CAST_HF2F, IRNode.VECTOR_SIZE + "min(max_float, max_short)", "> 0"},
applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"},
applyIfPlatformOr = {"x64", "true", "aarch64", "true", "riscv64", "true"},
applyIfCPUFeatureOr = {"f16c", "true", "avx512f", "true", "zvfh", "true", "asimd", "true", "sve", "true"})
public void test_float16_float(float[] fout, short[] sinp) {
for (int i = 0; i < sinp.length; i++) {
fout[i] = Float.float16ToFloat(sinp[i]);
// With AlignVector, we need 8-byte alignment of vector loads/stores.
// UseCompactObjectHeaders=false UseCompactObjectHeaders=true
// F_adr = base + 16 + 4*i -> i % 2 = 0 F_adr = base + 12 + 4*i -> i % 2 = 1
// S_adr = base + 16 + 2*i -> i % 4 = 0 S_adr = base + 12 + 2*i -> i % 4 = 2
// -> vectorize -> no vectorization
}
}
@Test
public void test_float16_float_strided(float[] fout, short[] sinp) {
for (int i = 0; i < sinp.length/2; i++) {
fout[i*2] = Float.float16ToFloat(sinp[i*2]);
}
}
@Run(test = {"test_float16_float", "test_float16_float_strided"}, mode = RunMode.STANDALONE)
public void kernel_test_float16_float() {
sinp = new short[ARRLEN];
fout = new float[ARRLEN];
for (int i = 0; i < ARRLEN; i++) {
sinp[i] = (short)i;
}
for (int i = 0; i < ITERS; i++) {
test_float16_float(fout, sinp);
}
// Verifying the result
for (int i = 0; i < ARRLEN; i++) {
Asserts.assertEquals(Float.float16ToFloat(sinp[i]), fout[i]);
}
for (int i = 0; i < ITERS; i++) {
test_float16_float_strided(fout, sinp);
}
// Verifying the result
for (int i = 0; i < ARRLEN/2; i++) {
Asserts.assertEquals(Float.float16ToFloat(sinp[i*2]), fout[i*2]);
}
}
}
|