1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/*
* Copyright (c) 2022, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 8290034
* @summary Auto-vectorization of Reverse bit operation.
* @requires vm.compiler2.enabled
* @requires (os.simpleArch == "x64" & vm.cpu.features ~= ".*avx2.*") |
* os.arch == "aarch64" |
* (os.arch == "riscv64" & vm.cpu.features ~= ".*zbkb.*" & vm.cpu.features ~= ".*zvbb.*")
* @library /test/lib /
* @run driver compiler.vectorization.TestReverseBitsVector
*/
package compiler.vectorization;
import compiler.lib.ir_framework.*;
import java.util.Random;
public class TestReverseBitsVector {
private static final int ARRLEN = 1024;
private static final int ITERS = 11000;
private static long [] linp;
private static long [] lout;
private static int [] iinp;
private static int [] iout;
private static short [] sinp;
private static short [] sout;
private static char [] cinp;
private static char [] cout;
public static void setup() {
Random r = new Random(1024);
linp = new long[ARRLEN];
lout = new long[ARRLEN];
iinp = new int[ARRLEN];
iout = new int[ARRLEN];
sinp = new short[ARRLEN];
sout = new short[ARRLEN];
cinp = new char[ARRLEN];
cout = new char[ARRLEN];
for(int i = 0; i < ARRLEN; i++) {
linp[i] = r.nextLong();
iinp[i] = r.nextInt();
sinp[i] = (short)r.nextInt();
cinp[i] = (char)r.nextInt();
}
}
public static void main(String args[]) {
setup();
TestFramework.runWithFlags("-XX:-TieredCompilation");
System.out.println("PASSED");
}
@Test
@IR(counts = {IRNode.REVERSE_VL, "> 0"})
public void test_reverse_long1(long[] lout, long[] linp) {
for (int i = 0; i < lout.length; i+=1) {
lout[i] = Long.reverse(linp[i]);
}
}
@Run(test = {"test_reverse_long1"}, mode = RunMode.STANDALONE)
public void kernel_test_reverse_long1() {
setup();
for (int i = 0; i < ITERS; i++) {
test_reverse_long1(lout , linp);
}
}
@Test
@IR(failOn = {IRNode.REVERSE_VL, IRNode.REVERSE_L})
public void test_reverse_long2(long[] lout, long[] linp) {
for (int i = 0; i < lout.length; i+=1) {
lout[i] = Long.reverse(Long.reverse(linp[i]));
}
}
@Run(test = {"test_reverse_long2"}, mode = RunMode.STANDALONE)
public void kernel_test_reverse_long2() {
setup();
for (int i = 0; i < ITERS; i++) {
test_reverse_long2(lout , linp);
}
}
@Test
@IR(failOn = {IRNode.REVERSE_VL, IRNode.REVERSE_L})
public void test_reverse_long3(long[] lout, long[] linp) {
for (int i = 0; i < lout.length; i+=1) {
lout[i] = Long.reverse(linp[i] ^ linp[i]);
}
}
@Run(test = {"test_reverse_long3"}, mode = RunMode.STANDALONE)
public void kernel_test_reverse_long3() {
setup();
for (int i = 0; i < ITERS; i++) {
test_reverse_long3(lout , linp);
}
}
@Test
@IR(counts = {IRNode.REVERSE_VI, "> 0"})
public void test_reverse_int1(int[] iout, int[] iinp) {
for (int i = 0; i < iout.length; i+=1) {
iout[i] = Integer.reverse(iinp[i]);
}
}
@Run(test = {"test_reverse_int1"}, mode = RunMode.STANDALONE)
public void kernel_test_reverse_int1() {
setup();
for (int i = 0; i < ITERS; i++) {
test_reverse_int1(iout , iinp);
}
}
@Test
@IR(failOn = {IRNode.REVERSE_VI, IRNode.REVERSE_I})
public void test_reverse_int2(int[] iout, int[] iinp) {
for (int i = 0; i < iout.length; i+=1) {
iout[i] = Integer.reverse(Integer.reverse(iinp[i]));
}
}
@Run(test = {"test_reverse_int2"}, mode = RunMode.STANDALONE)
public void kernel_test_reverse_int2() {
setup();
for (int i = 0; i < ITERS; i++) {
test_reverse_int2(iout , iinp);
}
}
@Test
@IR(failOn = {IRNode.REVERSE_VI, IRNode.REVERSE_I})
public void test_reverse_int3(int[] iout, int[] iinp) {
for (int i = 0; i < iout.length; i+=1) {
iout[i] = Integer.reverse(iinp[i] ^ iinp[i]);
}
}
@Run(test = {"test_reverse_int3"}, mode = RunMode.STANDALONE)
public void kernel_test_reverse_int3() {
setup();
for (int i = 0; i < ITERS; i++) {
test_reverse_int3(iout , iinp);
}
}
}
|