1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
|
/* avl.c - routines to implement an avl tree */
/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software <http://www.openldap.org/>.
*
* Copyright 1998-2024 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* <http://www.OpenLDAP.org/license.html>.
*/
/* Portions Copyright (c) 1993 Regents of the University of Michigan.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of Michigan at Ann Arbor. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is'' without express or implied warranty.
*/
/* ACKNOWLEDGEMENTS:
* This work was originally developed by the University of Michigan
* (as part of U-MICH LDAP). Additional significant contributors
* include:
* Howard Y. Chu
* Hallvard B. Furuseth
* Kurt D. Zeilenga
*/
#include "portable.h"
#include <limits.h>
#include <stdio.h>
#include <ac/stdlib.h>
#ifdef CSRIMALLOC
#define ber_memalloc malloc
#define ber_memrealloc realloc
#define ber_memfree free
#else
#include "lber.h"
#endif
#define AVL_INTERNAL
#include "ldap_avl.h"
/* Maximum tree depth this host's address space could support */
#define MAX_TREE_DEPTH (sizeof(void *) * CHAR_BIT)
static const int avl_bfs[] = {LH, RH};
/*
* ldap_avl_insert -- insert a node containing data data into the avl tree
* with root root. fcmp is a function to call to compare the data portion
* of two nodes. it should take two arguments and return <, >, or == 0,
* depending on whether its first argument is <, >, or == its second
* argument (like strcmp, e.g.). fdup is a function to call when a duplicate
* node is inserted. it should return 0, or -1 and its return value
* will be the return value from ldap_avl_insert in the case of a duplicate node.
* the function will be called with the original node's data as its first
* argument and with the incoming duplicate node's data as its second
* argument. this could be used, for example, to keep a count with each
* node.
*
* NOTE: this routine may malloc memory
*/
int
ldap_avl_insert( Avlnode ** root, void *data, AVL_CMP fcmp, AVL_DUP fdup )
{
Avlnode *t, *p, *s, *q, *r;
int a, cmp, ncmp;
if ( *root == NULL ) {
if (( r = (Avlnode *) ber_memalloc( sizeof( Avlnode ))) == NULL ) {
return( -1 );
}
r->avl_link[0] = r->avl_link[1] = NULL;
r->avl_data = data;
r->avl_bits[0] = r->avl_bits[1] = AVL_CHILD;
r->avl_bf = EH;
*root = r;
return( 0 );
}
t = NULL;
s = p = *root;
/* find insertion point */
while (1) {
cmp = fcmp( data, p->avl_data );
if ( cmp == 0 )
return (*fdup)( p->avl_data, data );
cmp = (cmp > 0);
q = p->avl_link[cmp];
if (q == NULL) {
/* insert */
if (( q = (Avlnode *) ber_memalloc( sizeof( Avlnode ))) == NULL ) {
return( -1 );
}
q->avl_link[0] = q->avl_link[1] = NULL;
q->avl_data = data;
q->avl_bits[0] = q->avl_bits[1] = AVL_CHILD;
q->avl_bf = EH;
p->avl_link[cmp] = q;
break;
} else if ( q->avl_bf ) {
t = p;
s = q;
}
p = q;
}
/* adjust balance factors */
cmp = fcmp( data, s->avl_data ) > 0;
r = p = s->avl_link[cmp];
a = avl_bfs[cmp];
while ( p != q ) {
cmp = fcmp( data, p->avl_data ) > 0;
p->avl_bf = avl_bfs[cmp];
p = p->avl_link[cmp];
}
/* checks and balances */
if ( s->avl_bf == EH ) {
s->avl_bf = a;
return 0;
} else if ( s->avl_bf == -a ) {
s->avl_bf = EH;
return 0;
} else if ( s->avl_bf == a ) {
cmp = (a > 0);
ncmp = !cmp;
if ( r->avl_bf == a ) {
/* single rotation */
p = r;
s->avl_link[cmp] = r->avl_link[ncmp];
r->avl_link[ncmp] = s;
s->avl_bf = 0;
r->avl_bf = 0;
} else if ( r->avl_bf == -a ) {
/* double rotation */
p = r->avl_link[ncmp];
r->avl_link[ncmp] = p->avl_link[cmp];
p->avl_link[cmp] = r;
s->avl_link[cmp] = p->avl_link[ncmp];
p->avl_link[ncmp] = s;
if ( p->avl_bf == a ) {
s->avl_bf = -a;
r->avl_bf = 0;
} else if ( p->avl_bf == -a ) {
s->avl_bf = 0;
r->avl_bf = a;
} else {
s->avl_bf = 0;
r->avl_bf = 0;
}
p->avl_bf = 0;
}
/* Update parent */
if ( t == NULL )
*root = p;
else if ( s == t->avl_right )
t->avl_right = p;
else
t->avl_left = p;
}
return 0;
}
void*
ldap_avl_delete( Avlnode **root, void* data, AVL_CMP fcmp )
{
Avlnode *p, *q, *r, *top;
int side, side_bf, shorter, nside;
/* parent stack */
Avlnode *pptr[MAX_TREE_DEPTH];
unsigned char pdir[MAX_TREE_DEPTH];
int depth = 0;
if ( *root == NULL )
return NULL;
p = *root;
while (1) {
side = fcmp( data, p->avl_data );
if ( !side )
break;
side = ( side > 0 );
pdir[depth] = side;
pptr[depth++] = p;
p = p->avl_link[side];
if ( p == NULL )
return p;
}
data = p->avl_data;
/* If this node has two children, swap so we are deleting a node with
* at most one child.
*/
if ( p->avl_link[0] && p->avl_link[1] ) {
/* find the immediate predecessor <q> */
q = p->avl_link[0];
side = depth;
pdir[depth++] = 0;
while (q->avl_link[1]) {
pdir[depth] = 1;
pptr[depth++] = q;
q = q->avl_link[1];
}
/* swap links */
r = p->avl_link[0];
p->avl_link[0] = q->avl_link[0];
q->avl_link[0] = r;
q->avl_link[1] = p->avl_link[1];
p->avl_link[1] = NULL;
q->avl_bf = p->avl_bf;
/* fix stack positions: old parent of p points to q */
pptr[side] = q;
if ( side ) {
r = pptr[side-1];
r->avl_link[pdir[side-1]] = q;
} else {
*root = q;
}
/* new parent of p points to p */
if ( depth-side > 1 ) {
r = pptr[depth-1];
r->avl_link[1] = p;
} else {
q->avl_link[0] = p;
}
}
/* now <p> has at most one child, get it */
q = p->avl_link[0] ? p->avl_link[0] : p->avl_link[1];
ber_memfree( p );
if ( !depth ) {
*root = q;
return data;
}
/* set the child into p's parent */
depth--;
p = pptr[depth];
side = pdir[depth];
p->avl_link[side] = q;
top = NULL;
shorter = 1;
while ( shorter ) {
p = pptr[depth];
side = pdir[depth];
nside = !side;
side_bf = avl_bfs[side];
/* case 1: height unchanged */
if ( p->avl_bf == EH ) {
/* Tree is now heavier on opposite side */
p->avl_bf = avl_bfs[nside];
shorter = 0;
} else if ( p->avl_bf == side_bf ) {
/* case 2: taller subtree shortened, height reduced */
p->avl_bf = EH;
} else {
/* case 3: shorter subtree shortened */
if ( depth )
top = pptr[depth-1]; /* p->parent; */
else
top = NULL;
/* set <q> to the taller of the two subtrees of <p> */
q = p->avl_link[nside];
if ( q->avl_bf == EH ) {
/* case 3a: height unchanged, single rotate */
p->avl_link[nside] = q->avl_link[side];
q->avl_link[side] = p;
shorter = 0;
q->avl_bf = side_bf;
p->avl_bf = (- side_bf);
} else if ( q->avl_bf == p->avl_bf ) {
/* case 3b: height reduced, single rotate */
p->avl_link[nside] = q->avl_link[side];
q->avl_link[side] = p;
shorter = 1;
q->avl_bf = EH;
p->avl_bf = EH;
} else {
/* case 3c: height reduced, balance factors opposite */
r = q->avl_link[side];
q->avl_link[side] = r->avl_link[nside];
r->avl_link[nside] = q;
p->avl_link[nside] = r->avl_link[side];
r->avl_link[side] = p;
if ( r->avl_bf == side_bf ) {
q->avl_bf = (- side_bf);
p->avl_bf = EH;
} else if ( r->avl_bf == (- side_bf)) {
q->avl_bf = EH;
p->avl_bf = side_bf;
} else {
q->avl_bf = EH;
p->avl_bf = EH;
}
r->avl_bf = EH;
q = r;
}
/* a rotation has caused <q> (or <r> in case 3c) to become
* the root. let <p>'s former parent know this.
*/
if ( top == NULL ) {
*root = q;
} else if (top->avl_link[0] == p) {
top->avl_link[0] = q;
} else {
top->avl_link[1] = q;
}
/* end case 3 */
p = q;
}
if ( !depth )
break;
depth--;
} /* end while(shorter) */
return data;
}
static int
avl_inapply( Avlnode *root, AVL_APPLY fn, void* arg, int stopflag )
{
if ( root == 0 )
return( AVL_NOMORE );
if ( root->avl_left != 0 )
if ( avl_inapply( root->avl_left, fn, arg, stopflag )
== stopflag )
return( stopflag );
if ( (*fn)( root->avl_data, arg ) == stopflag )
return( stopflag );
if ( root->avl_right == 0 )
return( AVL_NOMORE );
else
return( avl_inapply( root->avl_right, fn, arg, stopflag ) );
}
static int
avl_postapply( Avlnode *root, AVL_APPLY fn, void* arg, int stopflag )
{
if ( root == 0 )
return( AVL_NOMORE );
if ( root->avl_left != 0 )
if ( avl_postapply( root->avl_left, fn, arg, stopflag )
== stopflag )
return( stopflag );
if ( root->avl_right != 0 )
if ( avl_postapply( root->avl_right, fn, arg, stopflag )
== stopflag )
return( stopflag );
return( (*fn)( root->avl_data, arg ) );
}
static int
avl_preapply( Avlnode *root, AVL_APPLY fn, void* arg, int stopflag )
{
if ( root == 0 )
return( AVL_NOMORE );
if ( (*fn)( root->avl_data, arg ) == stopflag )
return( stopflag );
if ( root->avl_left != 0 )
if ( avl_preapply( root->avl_left, fn, arg, stopflag )
== stopflag )
return( stopflag );
if ( root->avl_right == 0 )
return( AVL_NOMORE );
else
return( avl_preapply( root->avl_right, fn, arg, stopflag ) );
}
/*
* ldap_avl_apply -- avl tree root is traversed, function fn is called with
* arguments arg and the data portion of each node. if fn returns stopflag,
* the traversal is cut short, otherwise it continues. Do not use -6 as
* a stopflag, as this is what is used to indicate the traversal ran out
* of nodes.
*/
int
ldap_avl_apply( Avlnode *root, AVL_APPLY fn, void* arg, int stopflag, int type )
{
switch ( type ) {
case AVL_INORDER:
return( avl_inapply( root, fn, arg, stopflag ) );
case AVL_PREORDER:
return( avl_preapply( root, fn, arg, stopflag ) );
case AVL_POSTORDER:
return( avl_postapply( root, fn, arg, stopflag ) );
default:
fprintf( stderr, "Invalid traversal type %d\n", type );
return( -1 );
}
/* NOTREACHED */
}
/*
* ldap_avl_prefixapply - traverse avl tree root, applying function fprefix
* to any nodes that match. fcmp is called with data as its first arg
* and the current node's data as its second arg. it should return
* 0 if they match, < 0 if data is less, and > 0 if data is greater.
* the idea is to efficiently find all nodes that are prefixes of
* some key... Like ldap_avl_apply, this routine also takes a stopflag
* and will return prematurely if fmatch returns this value. Otherwise,
* AVL_NOMORE is returned.
*/
int
ldap_avl_prefixapply(
Avlnode *root,
void* data,
AVL_CMP fmatch,
void* marg,
AVL_CMP fcmp,
void* carg,
int stopflag
)
{
int cmp;
if ( root == 0 )
return( AVL_NOMORE );
cmp = (*fcmp)( data, root->avl_data /* , carg */);
if ( cmp == 0 ) {
if ( (*fmatch)( root->avl_data, marg ) == stopflag )
return( stopflag );
if ( root->avl_left != 0 )
if ( ldap_avl_prefixapply( root->avl_left, data, fmatch,
marg, fcmp, carg, stopflag ) == stopflag )
return( stopflag );
if ( root->avl_right != 0 )
return( ldap_avl_prefixapply( root->avl_right, data, fmatch,
marg, fcmp, carg, stopflag ) );
else
return( AVL_NOMORE );
} else if ( cmp < 0 ) {
if ( root->avl_left != 0 )
return( ldap_avl_prefixapply( root->avl_left, data, fmatch,
marg, fcmp, carg, stopflag ) );
} else {
if ( root->avl_right != 0 )
return( ldap_avl_prefixapply( root->avl_right, data, fmatch,
marg, fcmp, carg, stopflag ) );
}
return( AVL_NOMORE );
}
/*
* ldap_avl_free -- traverse avltree root, freeing the memory it is using.
* the dfree() is called to free the data portion of each node. The
* number of items actually freed is returned.
*/
int
ldap_avl_free( Avlnode *root, AVL_FREE dfree )
{
int nleft, nright;
if ( root == 0 )
return( 0 );
nleft = nright = 0;
if ( root->avl_left != 0 )
nleft = ldap_avl_free( root->avl_left, dfree );
if ( root->avl_right != 0 )
nright = ldap_avl_free( root->avl_right, dfree );
if ( dfree )
(*dfree)( root->avl_data );
ber_memfree( root );
return( nleft + nright + 1 );
}
/*
* ldap_avl_find -- search avltree root for a node with data data. the function
* cmp is used to compare things. it is called with data as its first arg
* and the current node data as its second. it should return 0 if they match,
* < 0 if arg1 is less than arg2 and > 0 if arg1 is greater than arg2.
*/
Avlnode *
ldap_avl_find2( Avlnode *root, const void *data, AVL_CMP fcmp )
{
int cmp;
while ( root != 0 && (cmp = (*fcmp)( data, root->avl_data )) != 0 ) {
cmp = cmp > 0;
root = root->avl_link[cmp];
}
return root;
}
void*
ldap_avl_find( Avlnode *root, const void* data, AVL_CMP fcmp )
{
int cmp;
while ( root != 0 && (cmp = (*fcmp)( data, root->avl_data )) != 0 ) {
cmp = cmp > 0;
root = root->avl_link[cmp];
}
return( root ? root->avl_data : 0 );
}
/*
* ldap_avl_find_lin -- search avltree root linearly for a node with data data.
* the function cmp is used to compare things. it is called with data as its
* first arg and the current node data as its second. it should return 0 if
* they match, non-zero otherwise.
*/
void*
ldap_avl_find_lin( Avlnode *root, const void* data, AVL_CMP fcmp )
{
void* res;
if ( root == 0 )
return( NULL );
if ( (*fcmp)( data, root->avl_data ) == 0 )
return( root->avl_data );
if ( root->avl_left != 0 )
if ( (res = ldap_avl_find_lin( root->avl_left, data, fcmp ))
!= NULL )
return( res );
if ( root->avl_right == 0 )
return( NULL );
else
return( ldap_avl_find_lin( root->avl_right, data, fcmp ) );
}
/* NON-REENTRANT INTERFACE */
static void* *avl_list;
static int avl_maxlist;
static int ldap_avl_nextlist;
#define AVL_GRABSIZE 100
/* ARGSUSED */
static int
avl_buildlist( void* data, void* arg )
{
static int slots;
if ( avl_list == (void* *) 0 ) {
avl_list = (void* *) ber_memalloc(AVL_GRABSIZE * sizeof(void*));
slots = AVL_GRABSIZE;
avl_maxlist = 0;
} else if ( avl_maxlist == slots ) {
slots += AVL_GRABSIZE;
avl_list = (void* *) ber_memrealloc( (char *) avl_list,
(unsigned) slots * sizeof(void*));
}
avl_list[ avl_maxlist++ ] = data;
return( 0 );
}
/*
* ldap_avl_getfirst() and ldap_avl_getnext() are provided as alternate tree
* traversal methods, to be used when a single function cannot be
* provided to be called with every node in the tree. ldap_avl_getfirst()
* traverses the tree and builds a linear list of all the nodes,
* returning the first node. ldap_avl_getnext() returns the next thing
* on the list built by ldap_avl_getfirst(). This means that ldap_avl_getfirst()
* can take a while, and that the tree should not be messed with while
* being traversed in this way, and that multiple traversals (even of
* different trees) cannot be active at once.
*/
void*
ldap_avl_getfirst( Avlnode *root )
{
if ( avl_list ) {
ber_memfree( (char *) avl_list);
avl_list = (void* *) 0;
}
avl_maxlist = 0;
ldap_avl_nextlist = 0;
if ( root == 0 )
return( 0 );
(void) ldap_avl_apply( root, avl_buildlist, (void*) 0, -1, AVL_INORDER );
return( avl_list[ ldap_avl_nextlist++ ] );
}
void*
ldap_avl_getnext( void )
{
if ( avl_list == 0 )
return( 0 );
if ( ldap_avl_nextlist == avl_maxlist ) {
ber_memfree( (void*) avl_list);
avl_list = (void* *) 0;
return( 0 );
}
return( avl_list[ ldap_avl_nextlist++ ] );
}
/* end non-reentrant code */
int
ldap_avl_dup_error( void* left, void* right )
{
return( -1 );
}
int
ldap_avl_dup_ok( void* left, void* right )
{
return( 0 );
}
|