1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
#include <iostream>
#include <vector>
// -------------------- OpenMesh
#include <OpenMesh/Core/IO/MeshIO.hh>
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
typedef OpenMesh::TriMesh_ArrayKernelT<> MyMesh;
int main(int argc, char **argv)
{
MyMesh mesh;
// check command line options
if (argc != 4)
{
std::cerr << "Usage: " << argv[0] << " #iterations infile outfile\n";
return 1;
}
// read mesh from stdin
if ( ! OpenMesh::IO::read_mesh(mesh, argv[2]) )
{
std::cerr << "Error: Cannot read mesh from " << argv[2] << std::endl;
return 1;
}
// this vector stores the computed centers of gravity
std::vector<MyMesh::Point> cogs;
std::vector<MyMesh::Point>::iterator cog_it;
cogs.reserve(mesh.n_vertices());
// smoothing mesh argv[1] times
MyMesh::VertexIter v_it, v_end(mesh.vertices_end());
MyMesh::VertexVertexIter vv_it;
MyMesh::Point cog;
MyMesh::Scalar valence;
unsigned int i, N(atoi(argv[1]));
for (i=0; i < N; ++i)
{
cogs.clear();
for (v_it=mesh.vertices_begin(); v_it!=v_end; ++v_it)
{
cog[0] = cog[1] = cog[2] = valence = 0.0;
for (vv_it=mesh.vv_iter( *v_it ); vv_it.is_valid(); ++vv_it)
{
cog += mesh.point( *vv_it );
++valence;
}
cogs.push_back(cog / valence);
}
for (v_it=mesh.vertices_begin(), cog_it=cogs.begin();
v_it!=v_end; ++v_it, ++cog_it)
if ( !mesh.is_boundary( *v_it ) )
mesh.set_point( *v_it, *cog_it );
}
// write mesh to stdout
if ( ! OpenMesh::IO::write_mesh(mesh, argv[3]) )
{
std::cerr << "Error: cannot write mesh to " << argv[3] << std::endl;
return 1;
}
return 0;
}
|