1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
|
from collections import defaultdict
import unittest
import math
import sys
from validateModeller import *
from openmm.app import *
from openmm import *
from openmm.unit import *
if sys.version_info >= (3, 0):
from io import StringIO
else:
from cStringIO import StringIO
class TestModeller(unittest.TestCase):
""" Test the Modeller class. """
def setUp(self):
# load the alanine dipeptide pdb file
self.pdb = PDBFile('systems/alanine-dipeptide-explicit.pdb')
self.topology_start = self.pdb.topology
self.positions = self.pdb.positions
self.forcefield = ForceField('amber10.xml', 'tip3p.xml')
# load the T4-lysozyme-L99A receptor pdb file
self.pdb2 = PDBFile('systems/lysozyme-implicit.pdb')
self.topology_start2 = self.pdb2.topology
self.positions2 = self.pdb2.positions
# load the metallothionein pdb file
self.pdb3 = PDBFile('systems/1T2Y.pdb')
self.topology_start3 = self.pdb3.topology
self.positions3 = self.pdb3.positions
def test_deleteWater(self):
""" Test the deleteWater() method. """
# build the chain dictionary
chain_dict = {0:0}
# 749 water chains are deleted
chain_delta = -749
# Build the residue and atom dictionaries for validate_preserved.
# Also, count the number of deleted residues and atoms.
residues_preserved = 0
residue_delta = 0
residue_dict = {}
atoms_preserved = 0
atom_delta = 0
atom_dict = {}
for residue in self.topology_start.residues():
if residue.name!='HOH' and residue.name!='WAT':
residue_dict[residue.index] = residues_preserved
residues_preserved += 1
for atom in residue.atoms():
atom_dict[atom.index] = atoms_preserved
atoms_preserved += 1
else:
residue_delta -= 1
for atom in residue.atoms():
atom_delta -= 1
modeller = Modeller(self.topology_start, self.positions)
modeller.deleteWater()
topology_after = modeller.getTopology()
validate_preserved(self, self.topology_start, topology_after,
chain_dict, residue_dict, atom_dict)
validate_deltas(self, self.topology_start, topology_after,
chain_delta, residue_delta, atom_delta)
def test_delete(self):
""" Test the delete() method. """
modeller = Modeller(self.topology_start, self.positions)
topology_before = modeller.getTopology()
# Create the list of items to be deleted.
# Start with the first 50 water chains
chains = [chain for chain in topology_before.chains()]
toDelete = chains[1:51]
# Next add water residues 103->152 to the list of items to be deleted
residues = [residue for residue in topology_before.residues()]
toDelete.extend(residues[103:153])
# Finally add water atoms 622->771 to the list of items to be deleted
atoms = [atom for atom in topology_before.atoms()]
toDelete.extend(atoms[622:772])
modeller.delete(toDelete)
topology_after = modeller.getTopology()
# build the chain dictionary
chain_dict = {0:0}
for i in range(1,51):
chain_dict[i+50] = i
for i in range(51,101):
chain_dict[i+100] = i
for i in range(101, 600):
chain_dict[i+150] = i
# build the residue dictionary
residue_dict = {}
for i in range(3):
residue_dict[i] = i
for i in range(3,53):
residue_dict[i+50] = i
for i in range(53, 103):
residue_dict[i+100] = i
for i in range(103, 602):
residue_dict[i+150] = i
# build the atom dictionary
atom_dict = {}
for i in range(22):
atom_dict[i] = i
for i in range(22,172):
atom_dict[i+150] = i
for i in range(172,322):
atom_dict[i+300] = i
for i in range(322,1819):
atom_dict[i+450] = i
validate_preserved(self, topology_before, topology_after, chain_dict, residue_dict, atom_dict)
chain_delta = -150
residue_delta = -150
atom_delta = -450
validate_deltas(self, topology_before, topology_after, chain_delta, residue_delta, atom_delta)
def test_add(self):
""" Test the add() method. """
# load the methanol-box pdb file
pdb2 = PDBFile('systems/methanol-box.pdb')
topology_toAdd = pdb2.topology
positions_toAdd = pdb2.positions
modeller = Modeller(self.topology_start, self.positions)
modeller.deleteWater()
topology_before = modeller.getTopology()
modeller.add(topology_toAdd, positions_toAdd)
topology_after = modeller.getTopology()
# build the first chain dictionary for the first call of validate_preserved()
chain_counter = 0
chain_dict = {}
for chain in topology_before.chains():
chain_dict[chain.index] = chain_counter
chain_counter += 1
# build the residue and atom dictionaries for the first call of validate_preserved()
residue_counter = 0
residue_dict = {}
atom_counter = 0
atom_dict = {}
for residue in topology_before.residues():
residue_dict[residue.index] = residue_counter
residue_counter += 1
for atom in residue.atoms():
atom_dict[atom.index] = atom_counter
atom_counter += 1
# Validate that the items from the before topology are preserved after addition of items.
validate_preserved(self, topology_before, topology_after, chain_dict, residue_dict, atom_dict)
# Next, we build another set of dictionaries to validate that the items added are
# preserved. Also, we calculate the number of chains, residues, and atoms added.
# build the chain dictionary
chain_delta = 0
chain_dict = {}
for chain in topology_toAdd.chains():
chain_dict[chain.index] = chain_counter
chain_counter += 1
chain_delta += 1
# build the residue and atom dictionaries for the second call of validate_preserved
residue_delta = 0
residue_dict = {}
atom_delta = 0
atom_dict = {}
for residue in topology_toAdd.residues():
residue_dict[residue.index] = residue_counter
residue_counter += 1
residue_delta += 1
for atom in residue.atoms():
atom_dict[atom.index] = atom_counter
atom_counter += 1
atom_delta += 1
# validate that the items in the added topology are preserved
validate_preserved(self, topology_toAdd, topology_after, chain_dict, residue_dict, atom_dict)
# validate that the final topology has the correct number of items
validate_deltas(self, topology_before, topology_after, chain_delta, residue_delta, atom_delta)
def test_convertWater(self):
""" Test the convertWater() method. """
for model in ['tip3p', 'spce', 'tip4pew', 'tip5p']:
if model == 'tip5p':
firstmodel = 'tip4pew'
else:
firstmodel = 'tip5p'
modeller = Modeller(self.topology_start, self.positions)
modeller.convertWater(model=firstmodel)
modeller.convertWater(model=model)
topology_after = modeller.getTopology()
for residue in topology_after.residues():
if residue.name == "HOH":
oatom = [atom for atom in residue.atoms() if atom.element == element.oxygen]
hatoms = [atom for atom in residue.atoms() if atom.element == element.hydrogen]
matoms = [atom for atom in residue.atoms() if atom.name == 'M']
m1atoms = [atom for atom in residue.atoms() if atom.name == 'M1']
m2atoms = [atom for atom in residue.atoms() if atom.name == 'M2']
self.assertTrue(len(oatom)==1 and len(hatoms)==2)
if model=='tip3p' or model=='spce':
self.assertTrue(len(matoms)==0 and len(m1atoms)==0 and len(m2atoms)==0)
elif model=='tip4pew':
self.assertTrue(len(matoms)==1 and len(m1atoms)==0 and len(m2atoms)==0)
elif model=='tip5p':
self.assertTrue(len(matoms)==0 and len(m1atoms)==1 and len(m2atoms)==1)
# build the chain dictionary for validate_preserved
chain_counter = 0
chain_dict = {}
chain_delta = 0
for chain in self.topology_start.chains():
chain_dict[chain.index] = chain_counter
chain_counter += 1
# build the residue and atom dictionaries for validate_preserved
residue_counter = 0
residue_dict = {}
residue_delta = 0
atom_counter = 0
atom_dict = {}
atom_delta = 0
for residue in self.topology_start.residues():
residue_dict[residue.index] = residue_counter
residue_counter += 1
for atom in residue.atoms():
atom_dict[atom.index] = atom_counter
atom_counter += 1
if residue.name == 'HOH' and model == 'tip4pew':
atom_counter += 1
atom_delta += 1
if residue.name == 'HOH' and model == 'tip5p':
atom_counter += 2
atom_delta += 2
validate_preserved(self, self.topology_start, topology_after,
chain_dict, residue_dict, atom_dict)
validate_deltas(self, self.topology_start, topology_after,
chain_delta, residue_delta, atom_delta)
def test_addSolventWaterModels(self):
""" Test all addSolvent() method with all possible water models. """
topology_start = self.pdb.topology
topology_start.setUnitCellDimensions(Vec3(3.5, 3.5, 3.5)*nanometers)
for model in ['tip3p', 'spce', 'tip4pew', 'tip5p']:
forcefield = ForceField('amber10.xml', model + '.xml')
modeller = Modeller(topology_start, self.positions)
# delete water to get the "before" topology
modeller.deleteWater()
topology_before = modeller.getTopology()
# add the solvent to get the "after" topology
modeller.addSolvent(forcefield, model=model)
topology_after = modeller.getTopology()
# First, check that everything that was there before has been preserved.
# build the chain dictionary for validate_preserved
chain_counter = 0
chain_dict = {0:0}
for chain in topology_before.chains():
chain_dict[chain.index] = chain_counter
chain_counter += 1
# build the residue and atom dictionaries for validate_preserved
residue_counter = 0
residue_dict = {}
atom_counter = 0
atom_dict = {}
for residue in topology_before.residues():
residue_dict[residue.index] = residue_counter
residue_counter += 1
for atom in residue.atoms():
atom_dict[atom.index] = atom_counter
atom_counter += 1
# validate that the items in the before topology remain after solvent is added
validate_preserved(self, topology_before, topology_after, chain_dict, residue_dict, atom_dict)
# Make sure water that was added was the correct model
for residue in topology_after.residues():
if residue.name == 'HOH':
oatom = [atom for atom in residue.atoms() if atom.element == element.oxygen]
hatoms = [atom for atom in residue.atoms() if atom.element == element.hydrogen]
matoms = [atom for atom in residue.atoms() if atom.name == 'M']
m1atoms = [atom for atom in residue.atoms() if atom.name == 'M1']
m2atoms = [atom for atom in residue.atoms() if atom.name == 'M2']
self.assertTrue(len(oatom)==1 and len(hatoms)==2)
if model=='tip3p' or model=='spce':
self.assertTrue(len(matoms)==0 and len(m1atoms)==0 and len(m2atoms)==0)
elif model=='tip4pew':
self.assertTrue(len(matoms)==1 and len(m1atoms)==0 and len(m2atoms)==0)
elif model=='tip5p':
self.assertTrue(len(matoms)==0 and len(m1atoms)==1 and len(m2atoms)==1)
def test_addSolventPeriodicBox(self):
""" Test the addSolvent() method; test that the five ways of passing in the periodic box all work. """
# First way of passing in periodic box vectors: set it in the original topology.
topology_start = self.pdb.topology
topology_start.setUnitCellDimensions(Vec3(3.5, 4.5, 5.5)*nanometers)
modeller = Modeller(topology_start, self.positions)
modeller.deleteWater()
modeller.addSolvent(self.forcefield)
topology_after = modeller.getTopology()
dim3 = topology_after.getPeriodicBoxVectors()
self.assertVecAlmostEqual(dim3[0]/nanometers, Vec3(3.5, 0, 0))
self.assertVecAlmostEqual(dim3[1]/nanometers, Vec3(0, 4.5, 0))
self.assertVecAlmostEqual(dim3[2]/nanometers, Vec3(0, 0, 5.5))
# Second way of passing in the periodic box vectors: with the boxSize parameter to addSolvent()
topology_start = self.pdb.topology
modeller = Modeller(topology_start, self.positions)
modeller.deleteWater()
modeller.addSolvent(self.forcefield, boxSize = Vec3(3.6, 4.6, 5.6)*nanometers)
topology_after = modeller.getTopology()
dim3 = topology_after.getPeriodicBoxVectors()
self.assertVecAlmostEqual(dim3[0]/nanometers, Vec3(3.6, 0, 0))
self.assertVecAlmostEqual(dim3[1]/nanometers, Vec3(0, 4.6, 0))
self.assertVecAlmostEqual(dim3[2]/nanometers, Vec3(0, 0, 5.6))
# Third way of passing in the periodic box vectors: with the boxVectors parameter to addSolvent()
topology_start = self.pdb.topology
modeller = Modeller(topology_start, self.positions)
modeller.deleteWater()
modeller.addSolvent(self.forcefield, boxVectors = (Vec3(3.4, 0, 0), Vec3(0.5, 4.4, 0), Vec3(-1.0, -1.5, 5.4))*nanometers)
topology_after = modeller.getTopology()
dim3 = topology_after.getPeriodicBoxVectors()
self.assertVecAlmostEqual(dim3[0]/nanometers, Vec3(3.4, 0, 0))
self.assertVecAlmostEqual(dim3[1]/nanometers, Vec3(0.5, 4.4, 0))
self.assertVecAlmostEqual(dim3[2]/nanometers, Vec3(-1.0, -1.5, 5.4))
# Fourth way of passing in the periodic box vectors: pass a 'padding' value to addSolvent()
topology_start = self.pdb.topology
modeller = Modeller(topology_start, self.positions)
modeller.deleteWater()
modeller.addSolvent(self.forcefield, padding = 1.0*nanometers)
topology_after = modeller.getTopology()
dim3 = topology_after.getPeriodicBoxVectors()
self.assertVecAlmostEqual(dim3[0]/nanometers, Vec3(2.8802, 0, 0))
self.assertVecAlmostEqual(dim3[1]/nanometers, Vec3(0, 2.8802, 0))
self.assertVecAlmostEqual(dim3[2]/nanometers, Vec3(0, 0, 2.8802))
# Fifth way: specify a number of molecules to add instead of a box size
topology_start = self.pdb.topology
modeller = Modeller(topology_start, self.positions)
modeller.deleteWater()
numInitial = len(list(modeller.topology.residues()))
modeller.addSolvent(self.forcefield, numAdded=1000)
self.assertEqual(numInitial+1000, len(list(modeller.topology.residues())))
def test_addSolventNeutralSolvent(self):
""" Test the addSolvent() method; test adding ions to neutral solvent. """
topology_start = self.pdb.topology
topology_start.setUnitCellDimensions(Vec3(3.5, 3.5, 3.5)*nanometers)
modeller = Modeller(topology_start, self.positions)
modeller.deleteWater()
modeller.addSolvent(self.forcefield, ionicStrength = 2.0*molar)
topology_after = modeller.getTopology()
water_count=0
sodium_count=0
chlorine_count=0
for residue in topology_after.residues():
if residue.name=='HOH':
water_count += 1
elif residue.name=='NA':
sodium_count += 1
elif residue.name=='CL':
chlorine_count += 1
total_added = water_count+sodium_count+chlorine_count
self.assertEqual(total_added, 1364)
expected_ion_fraction = 2.0*molar/(55.4*molar)
expected_ions = math.floor(total_added*expected_ion_fraction+0.5)
self.assertEqual(sodium_count, expected_ions)
self.assertEqual(chlorine_count, expected_ions)
def test_addSolventNegativeSolvent(self):
""" Test the addSolvent() method; test adding ions to a negatively charged solvent. """
topology_start = self.pdb.topology
topology_start.setUnitCellDimensions(Vec3(3.5, 3.5, 3.5)*nanometers)
for neutralize in (True, False):
# set up modeller with no solvent
modeller = Modeller(topology_start, self.positions)
modeller.deleteWater()
# add 5 Cl- ions to the original topology
topology_toAdd = Topology()
newChain = topology_toAdd.addChain()
for i in range(5):
topology_toAdd.addResidue('CL', newChain)
residues = [residue for residue in topology_toAdd.residues()]
for i in range(5):
topology_toAdd.addAtom('Cl',Element.getBySymbol('Cl'), residues[i])
positions_toAdd = [Vec3(1.0,1.2,1.5), Vec3(1.7,1.0,1.4), Vec3(1.5,2.0,1.0),
Vec3(2.0,2.0,2.0), Vec3(2.0,1.5,1.0)]*nanometers
modeller.add(topology_toAdd, positions_toAdd)
modeller.addSolvent(self.forcefield, ionicStrength=1.0*molar, neutralize=neutralize)
topology_after = modeller.getTopology()
water_count = 0
sodium_count = 0
chlorine_count = 0
for residue in topology_after.residues():
if residue.name=='HOH':
water_count += 1
elif residue.name=='NA':
sodium_count += 1
elif residue.name=='CL':
chlorine_count += 1
total_water_ions = water_count+sodium_count+chlorine_count
expected_ion_fraction = 1.0*molar/(55.4*molar)
expected_chlorine = math.floor((total_water_ions-10)*expected_ion_fraction+0.5)+5
expected_sodium = expected_chlorine if neutralize else expected_chlorine-5
self.assertEqual(sodium_count, expected_sodium)
self.assertEqual(chlorine_count, expected_chlorine)
def test_addSolventPositiveSolvent(self):
""" Test the addSolvent() method; test adding ions to a positively charged solvent. """
topology_start = self.pdb.topology
topology_start.setUnitCellDimensions(Vec3(3.5, 3.5, 3.5)*nanometers)
for neutralize in (True, False):
# set up modeller with no solvent
modeller = Modeller(topology_start, self.positions)
modeller.deleteWater()
# add 5 Na+ ions to the original topology
topology_toAdd = Topology()
newChain = topology_toAdd.addChain()
for i in range(5):
topology_toAdd.addResidue('NA', newChain)
residues = [residue for residue in topology_toAdd.residues()]
for i in range(5):
topology_toAdd.addAtom('Na',Element.getBySymbol('Na'), residues[i])
positions_toAdd = [Vec3(1.0,1.2,1.5), Vec3(1.7,1.0,1.4), Vec3(1.5,2.0,1.0),
Vec3(2.0,2.0,2.0), Vec3(2.0,1.5,1.0)]*nanometers
# positions_toAdd doesn't need to change
modeller.add(topology_toAdd, positions_toAdd)
modeller.addSolvent(self.forcefield, ionicStrength=1.0*molar, neutralize=neutralize)
topology_after = modeller.getTopology()
water_count = 0
sodium_count = 0
chlorine_count = 0
for residue in topology_after.residues():
if residue.name=='HOH':
water_count += 1
elif residue.name=='NA':
sodium_count += 1
elif residue.name=='CL':
chlorine_count += 1
total_water_ions = water_count+sodium_count+chlorine_count
expected_ion_fraction = 1.0*molar/(55.4*molar)
expected_sodium = math.floor((total_water_ions-10)*expected_ion_fraction+0.5)+5
expected_chlorine = expected_sodium if neutralize else expected_sodium-5
self.assertEqual(sodium_count, expected_sodium)
self.assertEqual(chlorine_count, expected_chlorine)
def test_addSolventIons(self):
""" Test the addSolvent() method with all possible choices for positive and negative ions. """
topology_start = self.pdb.topology
topology_start.setUnitCellDimensions(Vec3(3.5, 3.5, 3.5)*nanometers)
# set up modeller with no solvent
modeller = Modeller(topology_start, self.positions)
modeller.deleteWater()
topology_nowater = modeller.getTopology()
positions_nowater = modeller.getPositions()
expected_ion_fraction = 1.0*molar/(55.4*molar)
for positiveIon in ['Cs+', 'K+', 'Li+', 'Na+', 'Rb+']:
ionName = positiveIon[:-1].upper()
modeller = Modeller(topology_nowater, positions_nowater)
modeller.addSolvent(self.forcefield, positiveIon=positiveIon, ionicStrength=1.0*molar)
topology_after = modeller.getTopology()
water_count = 0
positive_ion_count = 0
chlorine_count = 0
for residue in topology_after.residues():
if residue.name=='HOH':
water_count += 1
elif residue.name==ionName:
positive_ion_count += 1
elif residue.name=='CL':
chlorine_count += 1
total_added = water_count+positive_ion_count+chlorine_count
self.assertEqual(total_added, 1364)
expected_ions = math.floor(total_added*expected_ion_fraction+0.5)
self.assertEqual(positive_ion_count, expected_ions)
self.assertEqual(chlorine_count, expected_ions)
for negativeIon in ['Cl-', 'Br-', 'F-', 'I-']:
ionName = negativeIon[:-1].upper()
modeller = Modeller(topology_nowater, positions_nowater)
modeller.addSolvent(self.forcefield, negativeIon=negativeIon, ionicStrength=1.0*molar)
topology_after = modeller.getTopology()
water_count = 0
sodium_count = 0
negative_ion_count = 0
for residue in topology_after.residues():
if residue.name=='HOH':
water_count += 1
elif residue.name=='NA':
sodium_count += 1
elif residue.name==ionName:
negative_ion_count += 1
total_added = water_count+sodium_count+negative_ion_count
self.assertEqual(total_added, 1364)
expected_ions = math.floor(total_added*expected_ion_fraction+0.5)
self.assertEqual(positive_ion_count, expected_ions)
self.assertEqual(chlorine_count, expected_ions)
def test_addHydrogensPdb2(self):
""" Test the addHydrogens() method on the T4-lysozyme-L99A pdb file. """
# build the Modeller
topology_start = self.topology_start2
positions = self.positions2
modeller = Modeller(topology_start, positions)
# remove hydrogens from the topology
toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
modeller.delete(toDelete)
# Create a variants list to force the one histidine to be of the right variation.
residues = [residue for residue in topology_start.residues()]
variants = [None]*len(residues)
# For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
# By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
# that it will match the topology in topology_start.
variants[30] = 'HIE'
# add the hydrogens back
modeller.addHydrogens(self.forcefield, variants=variants)
topology_after = modeller.getTopology()
validate_equivalence(self, topology_start, topology_after)
def test_addHydrogensPdb3(self):
""" Test the addHydrogens() method on the metallothionein pdb file. """
# build the Modeller
topology_start = self.topology_start3
positions = self.positions3
modeller = Modeller(topology_start, positions)
# remove hydrogens from the topology
toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
modeller.delete(toDelete)
# add the hydrogens back
modeller.addHydrogens(self.forcefield)
topology_after = modeller.getTopology()
validate_equivalence(self, topology_start, topology_after)
def test_addHydrogensPdb3_keepPositions(self):
""" Test addHydrogens() does not change existing Hs positions """
# build the Modeller
topology_start = self.topology_start3
positions = self.positions3.value_in_unit(nanometers)
modeller = Modeller(topology_start, positions)
# Record original hydrogen positions
oriH = [atom.index for atom in modeller.topology.atoms() if atom.element == element.hydrogen]
oriH_pos = [positions[i] for i in oriH]
# Remove hydrogens from last residue
res_list = list(topology_start.residues())
toDelete = [atom for atom in res_list[-1].atoms() if atom.element == element.hydrogen]
modeller.delete(toDelete)
n_deleted = len(toDelete)
# Add hydrogen atoms back.
modeller.addHydrogens(self.forcefield)
topology_after = modeller.getTopology()
# Fetch 'new' positions
new_positions = modeller.positions.value_in_unit(nanometers)
newH = [atom.index for atom in topology_after.atoms() if atom.element == element.hydrogen]
newH_pos = [new_positions[i] for i in newH]
# Did we add all Hs back in correctly?
self.assertEqual(len(newH), len(oriH))
# Are the old ones at the same position?
# Negative control
oriH_fixed = oriH_pos[:-1*n_deleted]
newH_fixed = newH_pos[:-1*n_deleted]
xyz_diff = any([norm(o-n) > 1e-6 for o, n in zip(oriH_fixed, newH_fixed)])
self.assertEqual(xyz_diff, False)
# Were the new ones optimized?
# Positive control
oriH_added = oriH_pos[-1*n_deleted:]
newH_added = newH_pos[-1*n_deleted:]
xyz_diff = all([norm(o-n) > 1e-6 for o, n in zip(oriH_added, newH_added)])
self.assertEqual(xyz_diff, True)
def test_addHydrogensASH(self):
""" Test of addHydrogens() in which we force ASH to be a variant using the variants parameter. """
# use the T4-lysozyme-L99A pdb file
topology_start = self.topology_start2
positions = self.positions2
# build the Modeller
modeller = Modeller(topology_start, positions)
# remove hydrogens from the topology
toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
modeller.delete(toDelete)
# Create a variants list to force the one histidine to be of the right variation.
residues = [residue for residue in topology_start.residues()]
variants = [None]*len(residues)
# For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
# By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
# that it will match the topology in topology_start.
variants[30] = 'HIE'
ASP_residue_list = [9,19,46,60,69,71,88,91,126,158]
for residue_index in ASP_residue_list:
variants[residue_index] = 'ASH'
# add the hydrogens back, using the variants list we just built
modeller.addHydrogens(self.forcefield, variants=variants)
topology_ASH = modeller.getTopology()
# There should be extra hydrogens on the ASP residues. Assert that they exist,
# then we delete them and validate that the topology matches what we started with.
index_list_ASH = [176, 357, 761, 976, 1121, 1150, 1430, 1473, 2028, 2556]
atoms = [atom for atom in topology_ASH.atoms()]
toDelete2 = []
for index in index_list_ASH:
self.assertTrue(atoms[index].element.symbol=='H')
toDelete2.append(atoms[index])
modeller.delete(toDelete2)
topology_ASP = modeller.getTopology()
validate_equivalence(self, topology_ASP, topology_start)
def test_addHydrogensCYX(self):
""" Test of addHydrogens() in which we force CYX to be a variant using the variants parameter. """
# use the metallothionein pdb file
topology_start = self.topology_start3
positions = self.positions3
# build the Modeller
modeller = Modeller(topology_start, positions)
# remove hydrogens from the topology
toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
modeller.delete(toDelete)
# Create a variants list to force the cysteins to be of the CYX variety.
residues = [residue for residue in topology_start.residues()]
variants = [None]*len(residues)
CYS_residues = [2,4,10,12,16,18,21]
for index in CYS_residues:
variants[index] = 'CYX'
# add the hydrogens
modeller.addHydrogens(self.forcefield, variants=variants)
topology_CYX = modeller.getTopology()
# create a second modeller that we will attempt to match with topology_CYX
modeller2 = Modeller(topology_start, positions)
topology2 = modeller2.getTopology()
# There should be extra hydrogens on the CYS residues. Assert that they exist
# on modeller2, then delete them and validate that the topologies match.
# These are the indices of the hydrogens to delete from CYS to make CYX.
index_list_CYS = [31, 49, 110, 135, 171, 193, 229]
atoms = [atom for atom in topology2.atoms()]
toDelete2 = []
for index in index_list_CYS:
self.assertTrue(atoms[index].element.symbol=='H')
toDelete2.append(atoms[index])
modeller2.delete(toDelete2)
topology_after = modeller2.getTopology()
validate_equivalence(self, topology_CYX, topology_after)
def test_addHydrogensGLH(self):
""" Test of addHydrogens() in which we force GLH to be a variant using the variants parameter. """
# use the T4-lysozyme-L99A pdb file
topology_start = self.topology_start2
positions = self.positions2
# build the Modeller
modeller = Modeller(topology_start, positions)
# remove hydrogens from the topology
toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
modeller.delete(toDelete)
# Create a variants list to force the one histidine to be of the right variation.
residues = [residue for residue in topology_start.residues()]
variants = [None]*len(residues)
# For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
# By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
# that it will match the topology in topology_start.
variants[30] = 'HIE'
GLU_residue_list = [4,10,21,44,61,63,107,127]
for residue_index in GLU_residue_list:
variants[residue_index] = 'GLH'
# add the hydrogens back, this time with the GLH variant in place of GLU
modeller.addHydrogens(self.forcefield, variants=variants)
topology_GLH = modeller.getTopology()
# There should be extra hydrogens on the GLU residues. Assert that they exist,
# then we delete them and validate that the topology matches what we started with.
index_list_GLH = [85, 192, 387, 731, 992, 1018, 1718, 2042]
atoms = [atom for atom in topology_GLH.atoms()]
toDelete2 = []
for index in index_list_GLH:
self.assertTrue(atoms[index].element.symbol=='H')
toDelete2.append(atoms[index])
modeller.delete(toDelete2)
topology_GLU = modeller.getTopology()
validate_equivalence(self, topology_GLU, topology_start)
def test_addHydrogensLYN(self):
""" Test of addHydrogens() in which we force LYN to be a variant using the variants parameter. """
# use the T4-lysozyme-L99A pdb file
topology_start = self.topology_start2
positions = self.positions2
# build the Modeller
modeller = Modeller(topology_start, positions)
# remove hydrogens from topology
toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
modeller.delete(toDelete)
# Create a variants list to force the one histidine to be of the right variation.
residues = [residue for residue in topology_start.residues()]
variants = [None]*len(residues)
# For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
# By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
# that it will match the topology in topology_start.
variants[30] = 'HIE'
# Here we add the residues in which LYS is present to the variant list. The final
# LYS residue, 161, is not on the list because Amber force fields do not have an
# entry for a terminal LYN residue.
residue_list_LYS = [15,18,34,42,47,59,64,82,84,123,134,146]
for residue_index in residue_list_LYS:
variants[residue_index] = 'LYN'
# add the hydrogens back, using the variants list we just built
modeller.addHydrogens(self.forcefield, variants=variants)
topology_LYN = modeller.getTopology()
# create a second modeller that we will attempt to match with topology_LYN
modeller2 = Modeller(topology_start, positions)
# There should be extra hydrogens on the LYS residues. Assert that they exist
# on modeller2, then delete them and validate that the topologies match.
# These are the indices of the hydrogens to delete from LYN to make LYS.
index_list_LYN = [281,343,590,701,780,960,1034,1319,1360,1959,2135,2344]
atoms = [atom for atom in topology_start.atoms()]
toDelete2 = []
for index in index_list_LYN:
self.assertTrue(atoms[index].element.symbol=='H')
toDelete2.append(atoms[index])
modeller2.delete(toDelete2)
topology_after = modeller2.getTopology()
validate_equivalence(self, topology_LYN, topology_after)
def test_addHydrogenspH4(self):
""" Test of addHydrogens() with pH=4. """
# use the T4-lysozyme-L99A pdb file
topology_start = self.topology_start2
positions = self.positions2
# build the Modeller
modeller = Modeller(topology_start, positions)
# remove hydrogens from the topology
toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
modeller.delete(toDelete)
# Create a variants list to force the one histidine to be of the right variation.
residues = [residue for residue in topology_start.residues()]
variants = [None]*len(residues)
# For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
# By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
# that it will match the topology in topology_start.
variants[30] = 'HIE'
# add the hydrogens back, this time at a lower pH
modeller.addHydrogens(self.forcefield, variants=variants, pH=4.0)
topology_ASH_GLH = modeller.getTopology()
# There should be extra hydrogens on the ASP and GLU residues. Assert that they exist,
# then we delete them and validate that the topology matches what we started with.
index_list_ASH = [177, 359, 765, 980, 1127, 1156, 1436, 1479, 2035, 2564]
index_list_GLH = [85, 193, 389, 733, 996, 1022, 1726, 2051]
atoms = [atom for atom in topology_ASH_GLH.atoms()]
toDelete2 = []
for index in index_list_ASH:
self.assertTrue(atoms[index].element.symbol=='H')
toDelete2.append(atoms[index])
for index in index_list_GLH:
self.assertTrue(atoms[index].element.symbol=='H')
toDelete2.append(atoms[index])
modeller.delete(toDelete2)
topology_ASP_GLU = modeller.getTopology()
validate_equivalence(self, topology_ASP_GLU, topology_start)
def test_addHydrogenspH9(self):
""" Test of addHydrogens() with pH=9. """
# use the metallothionein pdb file
topology_start = self.topology_start3
positions = self.positions3
# build the Modeller
modeller = Modeller(topology_start, positions)
# remove hydrogens from topology
toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
modeller.delete(toDelete)
# add hydrogens with pH=9, so that the variation CYX will be chosen
modeller.addHydrogens(self.forcefield, pH=9.0)
topology_CYX = modeller.getTopology()
# create a second modeller that we will attempt to match with topology_CYX
modeller2 = Modeller(topology_start, positions)
topology2 = modeller2.getTopology()
# There should be extra hydrogens on the CYS residues. Assert that they exist
# on modeller2, then delete them and validate that the topologies match.
# These are the indices of the hydrogens to delete from CYS to make CYX.
index_list_CYS = [31, 49, 110, 135, 171, 193, 229]
atoms = [atom for atom in topology2.atoms()]
toDelete2 = []
for index in index_list_CYS:
self.assertTrue(atoms[index].element.symbol=='H')
toDelete2.append(atoms[index])
modeller2.delete(toDelete2)
topology_after = modeller2.getTopology()
validate_equivalence(self, topology_CYX, topology_after)
def test_addHydrogenspH11(self):
""" Test of addHydrogens() with pH=11. """
# use the T4-lysozyme-L99A pdb file
topology_start = self.topology_start2
positions = self.positions2
# build the Modeller
modeller = Modeller(topology_start, positions)
# remove hydrogens from topology
toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
modeller.delete(toDelete)
# Create a variants list to force the one histidine to be of the right variation.
residues = [residue for residue in topology_start.residues()]
variants = [None]*len(residues)
# For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
# By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
# that it will match the topology in topology_start.
variants[30] = 'HIE'
# The Amber force fields do not have an entry for terminal LYN residues, so we need to
# force residue 161 to be the LYS variant.
variants[161] = 'LYS'
# add the hydrogens back at pH = 11
modeller.addHydrogens(self.forcefield, variants=variants, pH=11.0)
topology_LYN = modeller.getTopology()
# create a second modeller that we will attempt to match with topology_LYN
modeller2 = Modeller(topology_start, positions)
# There should be extra hydrogens on the LYS residues. Assert that they exist
# on modeller2, then delete them and validate that the topologies match.
index_list_LYN = [281,343,590,701,780,960,1034,1319,1360,1959,2135,2344]
atoms = [atom for atom in topology_start.atoms()]
toDelete2 = []
for index in index_list_LYN:
self.assertTrue(atoms[index].element.symbol=='H')
toDelete2.append(atoms[index])
modeller2.delete(toDelete2)
topology_after = modeller2.getTopology()
validate_equivalence(self, topology_LYN, topology_after)
def test_addHydrogensGlycam(self):
"""Test adding hydrogens for GLYCAM."""
pdb = PDBFile('systems/glycopeptide.pdb')
Modeller.loadHydrogenDefinitions('glycam-hydrogens.xml')
modeller = Modeller(pdb.topology, pdb.positions)
hydrogens = [a for a in modeller.topology.atoms() if a.element == element.hydrogen]
modeller.delete(hydrogens)
self.assertTrue(modeller.topology.getNumAtoms() < pdb.topology.getNumAtoms())
modeller.addHydrogens()
self.assertEqual(modeller.topology.getNumAtoms(), pdb.topology.getNumAtoms())
for res1, res2 in zip(pdb.topology.residues(), modeller.topology.residues()):
names1 = sorted([a.name for a in res1.atoms()])
names2 = sorted([a.name for a in res2.atoms()])
self.assertEqual(names1, names2)
def test_removeExtraHydrogens(self):
"""Test that addHydrogens() can remove hydrogens that shouldn't be there. """
topology_start = self.topology_start3
positions = self.positions3
modeller = Modeller(topology_start, positions)
# Add hydrogens, forcing residue 1 to be ASH.
variants = [None]*25
variants[1] = 'ASH'
modeller.addHydrogens(self.forcefield, variants=variants)
residue = list(modeller.topology.residues())[1]
self.assertTrue(any(a.name == 'HD2' for a in residue.atoms()))
# Now force it to be ASP and see if HD2 gets removed.
variants[1] = 'ASP'
modeller.addHydrogens(self.forcefield, variants=variants)
residue = list(modeller.topology.residues())[1]
self.assertFalse(any(a.name == 'HD2' for a in residue.atoms()))
def test_addExtraParticles(self):
"""Test addExtraParticles()."""
# Create a box of water.
ff1 = ForceField('tip3p.xml')
modeller = Modeller(Topology(), []*nanometers)
modeller.addSolvent(ff1, 'tip3p', boxSize=Vec3(2,2,2)*nanometers)
# Now convert the water to TIP4P.
ff2 = ForceField('tip4pew.xml')
modeller.addExtraParticles(ff2)
for residue in modeller.topology.residues():
atoms = list(residue.atoms())
self.assertEqual(4, len(atoms))
ep = [atom for atom in atoms if atom.element is None]
self.assertEqual(1, len(ep))
def test_addVirtualSites(self):
"""Test adding extra particles defined by virtual sites."""
xml = """
<ForceField>
<AtomTypes>
<Type name="C" class="C" element="C" mass="10"/>
<Type name="N" class="N" element="N" mass="10"/>
<Type name="O" class="O" element="O" mass="10"/>
<Type name="V" class="V" mass="0.0"/>
</AtomTypes>
<Residues>
<Residue name="Test">
<Atom name="C" type="C"/>
<Atom name="N" type="N"/>
<Atom name="O" type="O"/>
<Atom name="V1" type="V"/>
<Atom name="V2" type="V"/>
<Atom name="V3" type="V"/>
<Atom name="V4" type="V"/>
<VirtualSite type="average2" index="3" atom1="0" atom2="1" weight1="0.7" weight2="0.3"/>
<VirtualSite type="average3" index="4" atom1="0" atom2="1" atom3="2" weight1="0.2" weight2="0.3" weight3="0.5"/>
<VirtualSite type="outOfPlane" index="5" atom1="0" atom2="1" atom3="2" weight12="0.1" weight13="-0.2" weightCross="0.8"/>
<VirtualSite type="localCoords" index="6" atom1="0" atom2="1" atom3="2" wo1="0.1" wo2="0.5" wo3="0.4" wx1="1" wx2="-0.6" wx3="-0.4" wy1="0.1" wy2="0.9" wy3="-1" p1="-0.5" p2="0.4" p3="1.1"/>
</Residue>
</Residues>
</ForceField>"""
ff = ForceField(StringIO(xml))
# Create the three real atoms.
topology = Topology()
chain = topology.addChain()
residue = topology.addResidue('Test', chain)
topology.addAtom('C', element.carbon, residue)
topology.addAtom('N', element.nitrogen, residue)
topology.addAtom('V', element.oxygen, residue)
# Add the virtual sites.
modeller = Modeller(topology, [Vec3(0.1, 0.2, 0.3), Vec3(1.0, 0.9, 0.8), Vec3(1.5, 1.1, 0.7)]*nanometers)
modeller.addExtraParticles(ff)
top = modeller.topology
pos = modeller.positions
# Check that the correct particles were added.
self.assertEqual(len(pos), 7)
for atom, elem in zip(top.atoms(), [element.carbon, element.nitrogen, element.oxygen, None, None, None, None]):
self.assertEqual(elem, atom.element)
# Check that the positions were calculated correctly.
system = ff.createSystem(top)
integ = VerletIntegrator(1.0)
context = Context(system, integ)
context.setPositions(pos)
context.computeVirtualSites()
state = context.getState(getPositions=True)
for p1, p2 in zip (pos, state.getPositions()):
self.assertVecAlmostEqual(p1.value_in_unit(nanometers), p2.value_in_unit(nanometers), 1e-6)
def test_multiSiteIon(self):
"""Test adding extra particles whose positions are determined based on bonds."""
xml = """
<ForceField>
<AtomTypes>
<Type name="Zn" class="Zn" element="Zn" mass="53.380"/>
<Type name="DA" class="DA" mass="3.0"/>
</AtomTypes>
<Residues>
<Residue name="ZN">
<Atom name="ZN" type="Zn"/>
<Atom name="D1" type="DA"/>
<Atom name="D2" type="DA"/>
<Atom name="D3" type="DA"/>
<Atom name="D4" type="DA"/>
<Bond from="0" to="2"/>
<Bond from="0" to="1"/>
<Bond from="0" to="3"/>
<Bond from="0" to="4"/>
<Bond from="1" to="2"/>
<Bond from="1" to="3"/>
<Bond from="1" to="4"/>
<Bond from="2" to="4"/>
<Bond from="2" to="3"/>
<Bond from="3" to="4"/>
</Residue>
</Residues>
<HarmonicBondForce>
<Bond class1="DA" class2="Zn" length="0.09" k="535552.0"/>
<Bond class1="DA" class2="DA" length="0.147" k="535552.0"/>
</HarmonicBondForce>
</ForceField>"""
ff = ForceField(StringIO(xml))
# Create two zinc atoms.
topology = Topology()
chain = topology.addChain()
residue = topology.addResidue('ZN', chain)
topology.addAtom('ZN', element.zinc, residue)
residue = topology.addResidue('ZN', chain)
topology.addAtom('ZN', element.zinc, residue)
# Add the extra particles.
modeller = Modeller(topology, [Vec3(0.5, 1.0, 1.5), Vec3(2.0, 2.0, 0.0)]*nanometers)
modeller.addExtraParticles(ff)
top = modeller.topology
pos = modeller.positions
# Check that the correct particles were added.
self.assertEqual(len(pos), 10)
for i, atom in enumerate(top.atoms()):
self.assertEqual(element.zinc if i in (0,5) else None, atom.element)
# Check that the positions in the first residue are reasonable.
center = Vec3(0.5, 1.0, 1.5)*nanometers
self.assertEqual(center, modeller.positions[0])
for i in range(1, 5):
for j in range(i):
dist = norm(pos[i]-pos[j])
expectedDist = 0.09 if j == 0 else 0.147
self.assertTrue(dist > (expectedDist-0.01)*nanometers and dist < (expectedDist+0.01)*nanometers)
@unittest.skipIf(True, "Skipping a test which takes too long")
def test_addMembrane(self):
"""Test adding a membrane to a realistic system."""
mol = PDBxFile('systems/gpcr.cif')
modeller = Modeller(mol.topology, mol.positions)
ff = ForceField('amber14-all.xml', 'amber14/tip3p.xml')
# Add a membrane around the GPCR
modeller.addMembrane(ff, minimumPadding=1.1*nanometers, ionicStrength=1*molar)
# Make sure we added everything correctly
resCount = defaultdict(int)
for res in modeller.topology.residues():
resCount[res.name] += 1
self.assertEqual(16, resCount['ALA'])
self.assertEqual(226, resCount['POP']) # 2x128 - overlapping
self.assertTrue(resCount['HOH'] > 1)
deltaQ = resCount['CL'] - resCount['NA']
self.assertEqual(deltaQ, 10) # protein net q: +10
# Check _addIons did the right thing.
expected_ion_fraction = 1.0*molar/(55.4*molar)
total_water = resCount['HOH']
total_water_ions = resCount['HOH'] + resCount['CL'] + resCount['NA']
# total_water_ions - protein charge
expected_sodium = math.floor((total_water_ions-10)*expected_ion_fraction+0.5)
expected_chlorine = expected_sodium + 10
self.assertEqual(resCount['CL'], expected_chlorine)
self.assertEqual(resCount['NA'], expected_sodium)
# Check lipid numbering for repetitions
lipidIdList = [(r.chain.id, r.id) for r in modeller.topology.residues()
if r.name == 'POP']
self.assertEqual(len(lipidIdList), len(set(lipidIdList)))
# Check dimensions to see if padding was respected
originalSize = max(mol.positions) - min(mol.positions)
newSize = modeller.topology.getUnitCellDimensions()
for i in range(3):
self.assertTrue(newSize[i] >= originalSize[i]+1.1*nanometers)
def assertVecAlmostEqual(self, p1, p2, tol=1e-7):
scale = max(1.0, norm(p1),)
for i in range(3):
diff = abs(p1[i]-p2[i])/scale
self.assertTrue(diff < tol)
if __name__ == '__main__':
unittest.main()
|