File: TestModeller.py

package info (click to toggle)
openmm 7.7.0%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 114,116 kB
  • sloc: xml: 376,993; cpp: 198,330; python: 31,278; ansic: 5,610; lisp: 2,294; sh: 415; f90: 233; makefile: 223; csh: 19
file content (1197 lines) | stat: -rw-r--r-- 51,844 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
from collections import defaultdict
import unittest
import math
import sys

from validateModeller import *
from openmm.app import *
from openmm import *
from openmm.unit import *

if sys.version_info >= (3, 0):
    from io import StringIO
else:
    from cStringIO import StringIO

class TestModeller(unittest.TestCase):
    """ Test the Modeller class. """

    def setUp(self):
        # load the alanine dipeptide pdb file
        self.pdb = PDBFile('systems/alanine-dipeptide-explicit.pdb')
        self.topology_start = self.pdb.topology
        self.positions = self.pdb.positions
        self.forcefield = ForceField('amber10.xml', 'tip3p.xml')

        # load the T4-lysozyme-L99A receptor pdb file
        self.pdb2 = PDBFile('systems/lysozyme-implicit.pdb')
        self.topology_start2 = self.pdb2.topology
        self.positions2 = self.pdb2.positions

        # load the metallothionein pdb file
        self.pdb3 =  PDBFile('systems/1T2Y.pdb')
        self.topology_start3 = self.pdb3.topology
        self.positions3 = self.pdb3.positions

    def test_deleteWater(self):
        """ Test the deleteWater() method. """

        # build the chain dictionary
        chain_dict = {0:0}
        # 749 water chains are deleted
        chain_delta = -749

        # Build the residue and atom dictionaries for validate_preserved.
        # Also, count the number of deleted residues and atoms.
        residues_preserved = 0
        residue_delta = 0
        residue_dict = {}
        atoms_preserved = 0
        atom_delta = 0
        atom_dict = {}
        for residue in self.topology_start.residues():
            if residue.name!='HOH' and residue.name!='WAT':
                residue_dict[residue.index] = residues_preserved
                residues_preserved += 1
                for atom in residue.atoms():
                    atom_dict[atom.index] = atoms_preserved
                    atoms_preserved += 1
            else:
                residue_delta -= 1
                for atom in residue.atoms():
                    atom_delta -= 1

        modeller = Modeller(self.topology_start, self.positions)
        modeller.deleteWater()
        topology_after = modeller.getTopology()

        validate_preserved(self, self.topology_start, topology_after,
                           chain_dict, residue_dict, atom_dict)
        validate_deltas(self, self.topology_start, topology_after,
                         chain_delta, residue_delta, atom_delta)

    def test_delete(self):
        """ Test the delete() method. """

        modeller = Modeller(self.topology_start, self.positions)
        topology_before = modeller.getTopology()

        # Create the list of items to be deleted.
        # Start with the first 50 water chains
        chains = [chain for chain in topology_before.chains()]
        toDelete = chains[1:51]

        # Next add water residues 103->152 to the list of items to be deleted
        residues = [residue for residue in topology_before.residues()]
        toDelete.extend(residues[103:153])

        # Finally add water atoms 622->771 to the list of items to be deleted
        atoms = [atom for atom in topology_before.atoms()]
        toDelete.extend(atoms[622:772])

        modeller.delete(toDelete)
        topology_after = modeller.getTopology()

        # build the chain dictionary
        chain_dict = {0:0}
        for i in range(1,51):
            chain_dict[i+50] = i
        for i in range(51,101):
            chain_dict[i+100] = i
        for i in range(101, 600):
            chain_dict[i+150] = i

        # build the residue dictionary
        residue_dict = {}
        for i in range(3):
            residue_dict[i] = i
        for i in range(3,53):
            residue_dict[i+50] = i
        for i in range(53, 103):
            residue_dict[i+100] = i
        for i in range(103, 602):
            residue_dict[i+150] = i

        # build the atom dictionary
        atom_dict = {}
        for i in range(22):
            atom_dict[i] = i
        for i in range(22,172):
            atom_dict[i+150] = i
        for i in range(172,322):
            atom_dict[i+300] = i
        for i in range(322,1819):
            atom_dict[i+450] = i

        validate_preserved(self, topology_before, topology_after, chain_dict, residue_dict, atom_dict)

        chain_delta = -150
        residue_delta = -150
        atom_delta = -450

        validate_deltas(self, topology_before, topology_after, chain_delta, residue_delta, atom_delta)

    def test_add(self):
        """ Test the add() method. """

        # load the methanol-box pdb file
        pdb2 = PDBFile('systems/methanol-box.pdb')
        topology_toAdd = pdb2.topology
        positions_toAdd = pdb2.positions

        modeller = Modeller(self.topology_start, self.positions)
        modeller.deleteWater()
        topology_before = modeller.getTopology()

        modeller.add(topology_toAdd, positions_toAdd)
        topology_after = modeller.getTopology()

        # build the first chain dictionary for the first call of validate_preserved()
        chain_counter = 0
        chain_dict = {}
        for chain in topology_before.chains():
            chain_dict[chain.index] = chain_counter
            chain_counter += 1

        # build the residue and atom dictionaries for the first call of validate_preserved()
        residue_counter = 0
        residue_dict = {}
        atom_counter = 0
        atom_dict = {}
        for residue in topology_before.residues():
            residue_dict[residue.index] = residue_counter
            residue_counter += 1
            for atom in residue.atoms():
                atom_dict[atom.index] = atom_counter
                atom_counter += 1

        # Validate that the items from the before topology are preserved after addition of items.
        validate_preserved(self, topology_before, topology_after, chain_dict, residue_dict, atom_dict)

        # Next, we build another set of dictionaries to validate that the items added are
        # preserved.  Also, we calculate the number of chains, residues, and atoms added.

        # build the chain dictionary
        chain_delta = 0
        chain_dict = {}
        for chain in topology_toAdd.chains():
            chain_dict[chain.index] = chain_counter
            chain_counter += 1
            chain_delta += 1

        # build the residue and atom dictionaries for the second call of validate_preserved
        residue_delta = 0
        residue_dict = {}
        atom_delta = 0
        atom_dict = {}
        for residue in topology_toAdd.residues():
            residue_dict[residue.index] = residue_counter
            residue_counter += 1
            residue_delta += 1
            for atom in residue.atoms():
                atom_dict[atom.index] = atom_counter
                atom_counter += 1
                atom_delta += 1

        # validate that the items in the added topology are preserved
        validate_preserved(self, topology_toAdd, topology_after, chain_dict, residue_dict, atom_dict)
        # validate that the final topology has the correct number of items
        validate_deltas(self, topology_before, topology_after, chain_delta, residue_delta, atom_delta)

    def test_convertWater(self):
        """ Test the convertWater() method. """

        for model in ['tip3p', 'spce', 'tip4pew', 'tip5p']:
            if model == 'tip5p':
                firstmodel = 'tip4pew'
            else:
                firstmodel = 'tip5p'

            modeller = Modeller(self.topology_start, self.positions)
            modeller.convertWater(model=firstmodel)
            modeller.convertWater(model=model)
            topology_after = modeller.getTopology()

            for residue in topology_after.residues():
                if residue.name == "HOH":
                    oatom = [atom for atom in residue.atoms() if atom.element == element.oxygen]
                    hatoms = [atom for atom in residue.atoms() if atom.element == element.hydrogen]
                    matoms = [atom for atom in residue.atoms() if atom.name == 'M']
                    m1atoms = [atom for atom in residue.atoms() if atom.name == 'M1']
                    m2atoms = [atom for atom in residue.atoms() if atom.name == 'M2']
                    self.assertTrue(len(oatom)==1 and len(hatoms)==2)
                    if model=='tip3p' or model=='spce':
                        self.assertTrue(len(matoms)==0 and len(m1atoms)==0 and len(m2atoms)==0)
                    elif model=='tip4pew':
                        self.assertTrue(len(matoms)==1 and len(m1atoms)==0 and len(m2atoms)==0)
                    elif model=='tip5p':
                        self.assertTrue(len(matoms)==0 and len(m1atoms)==1 and len(m2atoms)==1)

                    # build the chain dictionary for validate_preserved
                    chain_counter = 0
                    chain_dict = {}
                    chain_delta = 0
                    for chain in self.topology_start.chains():
                        chain_dict[chain.index] = chain_counter
                        chain_counter += 1

                    # build the residue and atom dictionaries for validate_preserved
                    residue_counter = 0
                    residue_dict = {}
                    residue_delta = 0
                    atom_counter = 0
                    atom_dict = {}
                    atom_delta = 0
                    for residue in self.topology_start.residues():
                        residue_dict[residue.index] = residue_counter
                        residue_counter += 1
                        for atom in residue.atoms():
                            atom_dict[atom.index] = atom_counter
                            atom_counter += 1
                        if residue.name == 'HOH' and model == 'tip4pew':
                            atom_counter += 1
                            atom_delta += 1
                        if residue.name == 'HOH' and model == 'tip5p':
                            atom_counter += 2
                            atom_delta += 2

            validate_preserved(self, self.topology_start, topology_after,
                               chain_dict, residue_dict, atom_dict)

            validate_deltas(self, self.topology_start, topology_after,
                            chain_delta, residue_delta, atom_delta)

    def test_addSolventWaterModels(self):
        """ Test all addSolvent() method with all possible water models. """

        topology_start = self.pdb.topology
        topology_start.setUnitCellDimensions(Vec3(3.5, 3.5, 3.5)*nanometers)
        for model in ['tip3p', 'spce', 'tip4pew', 'tip5p']:
            forcefield = ForceField('amber10.xml', model + '.xml')
            modeller = Modeller(topology_start, self.positions)
            # delete water to get the "before" topology
            modeller.deleteWater()
            topology_before = modeller.getTopology()
            # add the solvent to get the "after" topology
            modeller.addSolvent(forcefield, model=model)
            topology_after = modeller.getTopology()

            # First, check that everything that was there before has been preserved.

            # build the chain dictionary for validate_preserved
            chain_counter = 0
            chain_dict = {0:0}
            for chain in topology_before.chains():
                chain_dict[chain.index] = chain_counter
                chain_counter += 1

            # build the residue and atom dictionaries for validate_preserved
            residue_counter = 0
            residue_dict = {}
            atom_counter = 0
            atom_dict = {}
            for residue in topology_before.residues():
                residue_dict[residue.index] = residue_counter
                residue_counter += 1
                for atom in residue.atoms():
                    atom_dict[atom.index] = atom_counter
                    atom_counter += 1

            # validate that the items in the before topology remain after solvent is added
            validate_preserved(self, topology_before, topology_after, chain_dict, residue_dict, atom_dict)

            # Make sure water that was added was the correct model
            for residue in topology_after.residues():
                if residue.name == 'HOH':
                    oatom = [atom for atom in residue.atoms() if atom.element == element.oxygen]
                    hatoms = [atom for atom in residue.atoms() if atom.element == element.hydrogen]
                    matoms = [atom for atom in residue.atoms() if atom.name == 'M']
                    m1atoms = [atom for atom in residue.atoms() if atom.name == 'M1']
                    m2atoms = [atom for atom in residue.atoms() if atom.name == 'M2']
                    self.assertTrue(len(oatom)==1 and len(hatoms)==2)
                    if model=='tip3p' or model=='spce':
                        self.assertTrue(len(matoms)==0 and len(m1atoms)==0 and len(m2atoms)==0)
                    elif model=='tip4pew':
                        self.assertTrue(len(matoms)==1 and len(m1atoms)==0 and len(m2atoms)==0)
                    elif model=='tip5p':
                        self.assertTrue(len(matoms)==0 and len(m1atoms)==1 and len(m2atoms)==1)

    def test_addSolventPeriodicBox(self):
        """ Test the addSolvent() method; test that the five ways of passing in the periodic box all work. """

        # First way of passing in periodic box vectors:  set it in the original topology.
        topology_start = self.pdb.topology
        topology_start.setUnitCellDimensions(Vec3(3.5, 4.5, 5.5)*nanometers)
        modeller = Modeller(topology_start, self.positions)
        modeller.deleteWater()
        modeller.addSolvent(self.forcefield)
        topology_after = modeller.getTopology()
        dim3 = topology_after.getPeriodicBoxVectors()

        self.assertVecAlmostEqual(dim3[0]/nanometers, Vec3(3.5, 0, 0))
        self.assertVecAlmostEqual(dim3[1]/nanometers, Vec3(0, 4.5, 0))
        self.assertVecAlmostEqual(dim3[2]/nanometers, Vec3(0, 0, 5.5))

        # Second way of passing in the periodic box vectors: with the boxSize parameter to addSolvent()
        topology_start = self.pdb.topology
        modeller = Modeller(topology_start, self.positions)
        modeller.deleteWater()
        modeller.addSolvent(self.forcefield, boxSize = Vec3(3.6, 4.6, 5.6)*nanometers)
        topology_after = modeller.getTopology()
        dim3 = topology_after.getPeriodicBoxVectors()

        self.assertVecAlmostEqual(dim3[0]/nanometers, Vec3(3.6, 0, 0))
        self.assertVecAlmostEqual(dim3[1]/nanometers, Vec3(0, 4.6, 0))
        self.assertVecAlmostEqual(dim3[2]/nanometers, Vec3(0, 0, 5.6))

        # Third way of passing in the periodic box vectors: with the boxVectors parameter to addSolvent()
        topology_start = self.pdb.topology
        modeller = Modeller(topology_start, self.positions)
        modeller.deleteWater()
        modeller.addSolvent(self.forcefield, boxVectors = (Vec3(3.4, 0, 0), Vec3(0.5, 4.4, 0), Vec3(-1.0, -1.5, 5.4))*nanometers)
        topology_after = modeller.getTopology()
        dim3 = topology_after.getPeriodicBoxVectors()

        self.assertVecAlmostEqual(dim3[0]/nanometers, Vec3(3.4, 0, 0))
        self.assertVecAlmostEqual(dim3[1]/nanometers, Vec3(0.5, 4.4, 0))
        self.assertVecAlmostEqual(dim3[2]/nanometers, Vec3(-1.0, -1.5, 5.4))

        # Fourth way of passing in the periodic box vectors: pass a 'padding' value to addSolvent()
        topology_start = self.pdb.topology
        modeller = Modeller(topology_start, self.positions)
        modeller.deleteWater()
        modeller.addSolvent(self.forcefield, padding = 1.0*nanometers)
        topology_after = modeller.getTopology()
        dim3 = topology_after.getPeriodicBoxVectors()

        self.assertVecAlmostEqual(dim3[0]/nanometers, Vec3(2.8802, 0, 0))
        self.assertVecAlmostEqual(dim3[1]/nanometers, Vec3(0, 2.8802, 0))
        self.assertVecAlmostEqual(dim3[2]/nanometers, Vec3(0, 0, 2.8802))

        # Fifth way: specify a number of molecules to add instead of a box size
        topology_start = self.pdb.topology
        modeller = Modeller(topology_start, self.positions)
        modeller.deleteWater()
        numInitial = len(list(modeller.topology.residues()))
        modeller.addSolvent(self.forcefield, numAdded=1000)
        self.assertEqual(numInitial+1000, len(list(modeller.topology.residues())))

    def test_addSolventNeutralSolvent(self):
        """ Test the addSolvent() method; test adding ions to neutral solvent. """

        topology_start = self.pdb.topology
        topology_start.setUnitCellDimensions(Vec3(3.5, 3.5, 3.5)*nanometers)
        modeller = Modeller(topology_start, self.positions)
        modeller.deleteWater()
        modeller.addSolvent(self.forcefield, ionicStrength = 2.0*molar)
        topology_after = modeller.getTopology()

        water_count=0
        sodium_count=0
        chlorine_count=0
        for residue in topology_after.residues():
            if residue.name=='HOH':
                water_count += 1
            elif residue.name=='NA':
                sodium_count += 1
            elif residue.name=='CL':
                chlorine_count += 1

        total_added = water_count+sodium_count+chlorine_count
        self.assertEqual(total_added, 1364)
        expected_ion_fraction = 2.0*molar/(55.4*molar)
        expected_ions = math.floor(total_added*expected_ion_fraction+0.5)
        self.assertEqual(sodium_count, expected_ions)
        self.assertEqual(chlorine_count, expected_ions)

    def test_addSolventNegativeSolvent(self):
        """ Test the addSolvent() method; test adding ions to a negatively charged solvent. """

        topology_start = self.pdb.topology
        topology_start.setUnitCellDimensions(Vec3(3.5, 3.5, 3.5)*nanometers)

        for neutralize in (True, False):
            # set up modeller with no solvent
            modeller = Modeller(topology_start, self.positions)
            modeller.deleteWater()

            # add 5 Cl- ions to the original topology
            topology_toAdd = Topology()
            newChain = topology_toAdd.addChain()
            for i in range(5):
                topology_toAdd.addResidue('CL',  newChain)
            residues = [residue for residue in topology_toAdd.residues()]
            for i in range(5):
                topology_toAdd.addAtom('Cl',Element.getBySymbol('Cl'), residues[i])
            positions_toAdd = [Vec3(1.0,1.2,1.5), Vec3(1.7,1.0,1.4), Vec3(1.5,2.0,1.0),
                               Vec3(2.0,2.0,2.0), Vec3(2.0,1.5,1.0)]*nanometers
            modeller.add(topology_toAdd, positions_toAdd)
            modeller.addSolvent(self.forcefield, ionicStrength=1.0*molar, neutralize=neutralize)
            topology_after = modeller.getTopology()

            water_count = 0
            sodium_count = 0
            chlorine_count = 0
            for residue in topology_after.residues():
                if residue.name=='HOH':
                    water_count += 1
                elif residue.name=='NA':
                    sodium_count += 1
                elif residue.name=='CL':
                    chlorine_count += 1

            total_water_ions = water_count+sodium_count+chlorine_count
            expected_ion_fraction = 1.0*molar/(55.4*molar)
            expected_chlorine = math.floor((total_water_ions-10)*expected_ion_fraction+0.5)+5
            expected_sodium = expected_chlorine if neutralize else expected_chlorine-5
            self.assertEqual(sodium_count, expected_sodium)
            self.assertEqual(chlorine_count, expected_chlorine)

    def test_addSolventPositiveSolvent(self):
        """ Test the addSolvent() method; test adding ions to a positively charged solvent. """

        topology_start = self.pdb.topology
        topology_start.setUnitCellDimensions(Vec3(3.5, 3.5, 3.5)*nanometers)

        for neutralize in (True, False):
            # set up modeller with no solvent
            modeller = Modeller(topology_start, self.positions)
            modeller.deleteWater()

            # add 5 Na+ ions to the original topology
            topology_toAdd = Topology()
            newChain = topology_toAdd.addChain()
            for i in range(5):
                topology_toAdd.addResidue('NA', newChain)
            residues = [residue for residue in topology_toAdd.residues()]
            for i in range(5):
                 topology_toAdd.addAtom('Na',Element.getBySymbol('Na'), residues[i])
            positions_toAdd = [Vec3(1.0,1.2,1.5), Vec3(1.7,1.0,1.4), Vec3(1.5,2.0,1.0),
                               Vec3(2.0,2.0,2.0), Vec3(2.0,1.5,1.0)]*nanometers

            # positions_toAdd doesn't need to change
            modeller.add(topology_toAdd, positions_toAdd)
            modeller.addSolvent(self.forcefield, ionicStrength=1.0*molar, neutralize=neutralize)
            topology_after = modeller.getTopology()

            water_count = 0
            sodium_count = 0
            chlorine_count = 0
            for residue in topology_after.residues():
                if residue.name=='HOH':
                    water_count += 1
                elif residue.name=='NA':
                    sodium_count += 1
                elif residue.name=='CL':
                    chlorine_count += 1

            total_water_ions = water_count+sodium_count+chlorine_count
            expected_ion_fraction = 1.0*molar/(55.4*molar)
            expected_sodium = math.floor((total_water_ions-10)*expected_ion_fraction+0.5)+5
            expected_chlorine = expected_sodium if neutralize else expected_sodium-5
            self.assertEqual(sodium_count, expected_sodium)
            self.assertEqual(chlorine_count, expected_chlorine)

    def test_addSolventIons(self):
        """ Test the addSolvent() method with all possible choices for positive and negative ions. """

        topology_start = self.pdb.topology
        topology_start.setUnitCellDimensions(Vec3(3.5, 3.5, 3.5)*nanometers)

        # set up modeller with no solvent
        modeller = Modeller(topology_start, self.positions)
        modeller.deleteWater()
        topology_nowater = modeller.getTopology()
        positions_nowater = modeller.getPositions()

        expected_ion_fraction = 1.0*molar/(55.4*molar)

        for positiveIon in ['Cs+', 'K+', 'Li+', 'Na+', 'Rb+']:
            ionName = positiveIon[:-1].upper()
            modeller = Modeller(topology_nowater, positions_nowater)
            modeller.addSolvent(self.forcefield, positiveIon=positiveIon, ionicStrength=1.0*molar)
            topology_after = modeller.getTopology()

            water_count = 0
            positive_ion_count = 0
            chlorine_count = 0
            for residue in topology_after.residues():
                if residue.name=='HOH':
                    water_count += 1
                elif residue.name==ionName:
                    positive_ion_count += 1
                elif residue.name=='CL':
                    chlorine_count += 1

            total_added = water_count+positive_ion_count+chlorine_count
            self.assertEqual(total_added, 1364)
            expected_ions = math.floor(total_added*expected_ion_fraction+0.5)
            self.assertEqual(positive_ion_count, expected_ions)
            self.assertEqual(chlorine_count, expected_ions)

        for negativeIon in ['Cl-', 'Br-', 'F-', 'I-']:
            ionName = negativeIon[:-1].upper()
            modeller = Modeller(topology_nowater, positions_nowater)
            modeller.addSolvent(self.forcefield, negativeIon=negativeIon, ionicStrength=1.0*molar)

            topology_after = modeller.getTopology()

            water_count = 0
            sodium_count = 0
            negative_ion_count = 0
            for residue in topology_after.residues():
                if residue.name=='HOH':
                    water_count += 1
                elif residue.name=='NA':
                    sodium_count += 1
                elif residue.name==ionName:
                    negative_ion_count += 1

            total_added = water_count+sodium_count+negative_ion_count
            self.assertEqual(total_added, 1364)
            expected_ions = math.floor(total_added*expected_ion_fraction+0.5)
            self.assertEqual(positive_ion_count, expected_ions)
            self.assertEqual(chlorine_count, expected_ions)

    def test_addHydrogensPdb2(self):
        """ Test the addHydrogens() method on the T4-lysozyme-L99A pdb file. """

        # build the Modeller
        topology_start = self.topology_start2
        positions = self.positions2
        modeller = Modeller(topology_start, positions)

        # remove hydrogens from the topology
        toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
        modeller.delete(toDelete)

        # Create a variants list to force the one histidine to be of the right variation.
        residues = [residue for residue in topology_start.residues()]
        variants = [None]*len(residues)
        # For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
        # By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
        # that it will match the topology in topology_start.
        variants[30] = 'HIE'

        # add the hydrogens back
        modeller.addHydrogens(self.forcefield, variants=variants)
        topology_after = modeller.getTopology()

        validate_equivalence(self, topology_start, topology_after)

    def test_addHydrogensPdb3(self):
        """ Test the addHydrogens() method on the metallothionein pdb file. """

        # build the Modeller
        topology_start = self.topology_start3
        positions = self.positions3
        modeller = Modeller(topology_start, positions)

        # remove hydrogens from the topology
        toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
        modeller.delete(toDelete)

        # add the hydrogens back
        modeller.addHydrogens(self.forcefield)
        topology_after = modeller.getTopology()

        validate_equivalence(self, topology_start, topology_after)

    def test_addHydrogensPdb3_keepPositions(self):
        """ Test addHydrogens() does not change existing Hs positions """

        # build the Modeller
        topology_start = self.topology_start3
        positions = self.positions3.value_in_unit(nanometers)
        modeller = Modeller(topology_start, positions)

        # Record original hydrogen positions
        oriH = [atom.index for atom in modeller.topology.atoms() if atom.element == element.hydrogen]
        oriH_pos = [positions[i] for i in oriH]

        # Remove hydrogens from last residue
        res_list = list(topology_start.residues())
        toDelete = [atom for atom in res_list[-1].atoms() if atom.element == element.hydrogen]
        modeller.delete(toDelete)

        n_deleted = len(toDelete)

        # Add hydrogen atoms back.
        modeller.addHydrogens(self.forcefield)
        topology_after = modeller.getTopology()

        # Fetch 'new' positions
        new_positions = modeller.positions.value_in_unit(nanometers)
        newH = [atom.index for atom in topology_after.atoms() if atom.element == element.hydrogen]
        newH_pos = [new_positions[i] for i in newH]

        # Did we add all Hs back in correctly?
        self.assertEqual(len(newH), len(oriH))

        # Are the old ones at the same position?
        # Negative control
        oriH_fixed = oriH_pos[:-1*n_deleted]
        newH_fixed = newH_pos[:-1*n_deleted]
        xyz_diff = any([norm(o-n) > 1e-6 for o, n in zip(oriH_fixed, newH_fixed)])
        self.assertEqual(xyz_diff, False)

        # Were the new ones optimized?
        # Positive control
        oriH_added = oriH_pos[-1*n_deleted:]
        newH_added = newH_pos[-1*n_deleted:]
        xyz_diff = all([norm(o-n) > 1e-6 for o, n in zip(oriH_added, newH_added)])
        self.assertEqual(xyz_diff, True)

    def test_addHydrogensASH(self):
        """ Test of addHydrogens() in which we force ASH to be a variant using the variants parameter. """

        # use the T4-lysozyme-L99A pdb file
        topology_start = self.topology_start2
        positions = self.positions2

        # build the Modeller
        modeller = Modeller(topology_start, positions)

        # remove hydrogens from the topology
        toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
        modeller.delete(toDelete)

        # Create a variants list to force the one histidine to be of the right variation.
        residues = [residue for residue in topology_start.residues()]
        variants = [None]*len(residues)
        # For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
        # By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
        # that it will match the topology in topology_start.
        variants[30] = 'HIE'

        ASP_residue_list = [9,19,46,60,69,71,88,91,126,158]
        for residue_index in ASP_residue_list:
            variants[residue_index] = 'ASH'

        # add the hydrogens back, using the variants list we just built
        modeller.addHydrogens(self.forcefield, variants=variants)
        topology_ASH = modeller.getTopology()

        # There should be extra hydrogens on the ASP residues.  Assert that they exist,
        # then we delete them and validate that the topology matches what we started with.
        index_list_ASH = [176, 357, 761, 976, 1121, 1150, 1430, 1473, 2028, 2556]
        atoms = [atom for atom in topology_ASH.atoms()]
        toDelete2 = []
        for index in index_list_ASH:
            self.assertTrue(atoms[index].element.symbol=='H')
            toDelete2.append(atoms[index])
        modeller.delete(toDelete2)
        topology_ASP = modeller.getTopology()

        validate_equivalence(self, topology_ASP, topology_start)

    def test_addHydrogensCYX(self):
        """ Test of addHydrogens() in which we force CYX to be a variant using the variants parameter. """

        # use the metallothionein pdb file
        topology_start = self.topology_start3
        positions = self.positions3

        # build the Modeller
        modeller = Modeller(topology_start, positions)

        # remove hydrogens from the topology
        toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
        modeller.delete(toDelete)

        # Create a variants list to force the cysteins to be of the CYX variety.
        residues = [residue for residue in topology_start.residues()]
        variants = [None]*len(residues)
        CYS_residues = [2,4,10,12,16,18,21]
        for index in CYS_residues:
             variants[index] = 'CYX'

        # add the hydrogens
        modeller.addHydrogens(self.forcefield, variants=variants)
        topology_CYX = modeller.getTopology()

        # create a second modeller that we will attempt to match with topology_CYX
        modeller2 = Modeller(topology_start, positions)
        topology2 = modeller2.getTopology()

        # There should be extra hydrogens on the CYS residues.  Assert that they exist
        # on modeller2, then delete them and validate that the topologies match.

       # These are the indices of the hydrogens to delete from CYS to make CYX.
        index_list_CYS = [31, 49, 110, 135, 171, 193, 229]
        atoms = [atom for atom in topology2.atoms()]
        toDelete2 = []
        for index in index_list_CYS:
            self.assertTrue(atoms[index].element.symbol=='H')
            toDelete2.append(atoms[index])
        modeller2.delete(toDelete2)
        topology_after = modeller2.getTopology()

        validate_equivalence(self, topology_CYX, topology_after)

    def test_addHydrogensGLH(self):
        """ Test of addHydrogens() in which we force GLH to be a variant using the variants parameter. """

        # use the T4-lysozyme-L99A pdb file
        topology_start = self.topology_start2
        positions = self.positions2

        # build the Modeller
        modeller = Modeller(topology_start, positions)

        # remove hydrogens from the topology
        toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
        modeller.delete(toDelete)

        # Create a variants list to force the one histidine to be of the right variation.
        residues = [residue for residue in topology_start.residues()]
        variants = [None]*len(residues)
        # For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
        # By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
        # that it will match the topology in topology_start.
        variants[30] = 'HIE'

        GLU_residue_list = [4,10,21,44,61,63,107,127]
        for residue_index in GLU_residue_list:
            variants[residue_index] = 'GLH'

        # add the hydrogens back, this time with the GLH variant in place of GLU
        modeller.addHydrogens(self.forcefield, variants=variants)
        topology_GLH = modeller.getTopology()

        # There should be extra hydrogens on the GLU residues.  Assert that they exist,
        # then we delete them and validate that the topology matches what we started with.
        index_list_GLH = [85, 192, 387, 731, 992, 1018, 1718, 2042]
        atoms = [atom for atom in topology_GLH.atoms()]
        toDelete2 = []
        for index in index_list_GLH:
            self.assertTrue(atoms[index].element.symbol=='H')
            toDelete2.append(atoms[index])
        modeller.delete(toDelete2)
        topology_GLU = modeller.getTopology()

        validate_equivalence(self, topology_GLU, topology_start)

    def test_addHydrogensLYN(self):
        """ Test of addHydrogens() in which we force LYN to be a variant using the variants parameter. """

        # use the T4-lysozyme-L99A pdb file
        topology_start = self.topology_start2
        positions = self.positions2

        # build the Modeller
        modeller = Modeller(topology_start, positions)

        # remove hydrogens from topology
        toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
        modeller.delete(toDelete)

        # Create a variants list to force the one histidine to be of the right variation.
        residues = [residue for residue in topology_start.residues()]
        variants = [None]*len(residues)
        # For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
        # By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
        # that it will match the topology in topology_start.
        variants[30] = 'HIE'

        # Here we add the residues in which LYS is present to the variant list.  The final
        # LYS residue, 161, is not on the list because Amber force fields do not have an
        # entry for a terminal LYN residue.
        residue_list_LYS = [15,18,34,42,47,59,64,82,84,123,134,146]
        for residue_index in residue_list_LYS:
            variants[residue_index] = 'LYN'

        # add the hydrogens back, using the variants list we just built
        modeller.addHydrogens(self.forcefield, variants=variants)

        topology_LYN = modeller.getTopology()

        # create a second modeller that we will attempt to match with topology_LYN
        modeller2 = Modeller(topology_start, positions)

        # There should be extra hydrogens on the LYS residues.  Assert that they exist
        # on modeller2, then delete them and validate that the topologies match.

        # These are the indices of the hydrogens to delete from LYN to make LYS.
        index_list_LYN = [281,343,590,701,780,960,1034,1319,1360,1959,2135,2344]
        atoms = [atom for atom in topology_start.atoms()]
        toDelete2 = []
        for index in index_list_LYN:
             self.assertTrue(atoms[index].element.symbol=='H')
             toDelete2.append(atoms[index])
        modeller2.delete(toDelete2)
        topology_after = modeller2.getTopology()

        validate_equivalence(self, topology_LYN, topology_after)

    def test_addHydrogenspH4(self):
        """ Test of addHydrogens() with pH=4. """

        # use the T4-lysozyme-L99A pdb file
        topology_start = self.topology_start2
        positions = self.positions2

        # build the Modeller
        modeller = Modeller(topology_start, positions)

        # remove hydrogens from the topology
        toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
        modeller.delete(toDelete)

        # Create a variants list to force the one histidine to be of the right variation.
        residues = [residue for residue in topology_start.residues()]
        variants = [None]*len(residues)
        # For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
        # By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
        # that it will match the topology in topology_start.
        variants[30] = 'HIE'

        # add the hydrogens back, this time at a lower pH
        modeller.addHydrogens(self.forcefield, variants=variants, pH=4.0)

        topology_ASH_GLH = modeller.getTopology()

        # There should be extra hydrogens on the ASP and GLU residues.  Assert that they exist,
        # then we delete them and validate that the topology matches what we started with.
        index_list_ASH = [177, 359, 765, 980, 1127, 1156, 1436, 1479, 2035, 2564]
        index_list_GLH = [85, 193, 389, 733, 996, 1022, 1726, 2051]
        atoms = [atom for atom in topology_ASH_GLH.atoms()]
        toDelete2 = []
        for index in index_list_ASH:
            self.assertTrue(atoms[index].element.symbol=='H')
            toDelete2.append(atoms[index])
        for index in index_list_GLH:
            self.assertTrue(atoms[index].element.symbol=='H')
            toDelete2.append(atoms[index])
        modeller.delete(toDelete2)
        topology_ASP_GLU = modeller.getTopology()

        validate_equivalence(self, topology_ASP_GLU, topology_start)

    def test_addHydrogenspH9(self):
        """ Test of addHydrogens() with pH=9. """

        # use the metallothionein pdb file
        topology_start = self.topology_start3
        positions = self.positions3

        # build the Modeller
        modeller = Modeller(topology_start, positions)

        # remove hydrogens from topology
        toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
        modeller.delete(toDelete)

        # add hydrogens with pH=9, so that the variation CYX will be chosen
        modeller.addHydrogens(self.forcefield, pH=9.0)
        topology_CYX = modeller.getTopology()

        # create a second modeller that we will attempt to match with topology_CYX
        modeller2 = Modeller(topology_start, positions)
        topology2 = modeller2.getTopology()

        # There should be extra hydrogens on the CYS residues.  Assert that they exist
        # on modeller2, then delete them and validate that the topologies match.

        # These are the indices of the hydrogens to delete from CYS to make CYX.
        index_list_CYS = [31, 49, 110, 135, 171, 193, 229]
        atoms = [atom for atom in topology2.atoms()]
        toDelete2 = []
        for index in index_list_CYS:
            self.assertTrue(atoms[index].element.symbol=='H')
            toDelete2.append(atoms[index])
        modeller2.delete(toDelete2)
        topology_after = modeller2.getTopology()

        validate_equivalence(self, topology_CYX, topology_after)

    def test_addHydrogenspH11(self):
        """ Test of addHydrogens() with pH=11. """

        # use the T4-lysozyme-L99A pdb file
        topology_start = self.topology_start2
        positions = self.positions2

        # build the Modeller
        modeller = Modeller(topology_start, positions)

        # remove hydrogens from topology
        toDelete = [atom for atom in topology_start.atoms() if atom.element==Element.getBySymbol('H')]
        modeller.delete(toDelete)

        # Create a variants list to force the one histidine to be of the right variation.
        residues = [residue for residue in topology_start.residues()]
        variants = [None]*len(residues)
        # For this protein, when you add hydrogens, the hydrogen is added to the delta nitrogen.
        # By setting variants[30] to 'HIE', we force the hydrogen onto the epsilon nitrogen, so
        # that it will match the topology in topology_start.
        variants[30] = 'HIE'

        # The Amber force fields do not have an entry for terminal LYN residues, so we need to
        # force residue 161 to be the LYS variant.
        variants[161] = 'LYS'

        # add the hydrogens back at pH = 11
        modeller.addHydrogens(self.forcefield, variants=variants, pH=11.0)
        topology_LYN = modeller.getTopology()

        # create a second modeller that we will attempt to match with topology_LYN
        modeller2 = Modeller(topology_start, positions)

        # There should be extra hydrogens on the LYS residues.  Assert that they exist
        # on modeller2, then delete them and validate that the topologies match.
        index_list_LYN = [281,343,590,701,780,960,1034,1319,1360,1959,2135,2344]
        atoms = [atom for atom in topology_start.atoms()]
        toDelete2 = []
        for index in index_list_LYN:
            self.assertTrue(atoms[index].element.symbol=='H')
            toDelete2.append(atoms[index])

        modeller2.delete(toDelete2)
        topology_after = modeller2.getTopology()

        validate_equivalence(self, topology_LYN, topology_after)

    def test_addHydrogensGlycam(self):
        """Test adding hydrogens for GLYCAM."""
        pdb = PDBFile('systems/glycopeptide.pdb')
        Modeller.loadHydrogenDefinitions('glycam-hydrogens.xml')
        modeller = Modeller(pdb.topology, pdb.positions)
        hydrogens = [a for a in modeller.topology.atoms() if a.element == element.hydrogen]
        modeller.delete(hydrogens)
        self.assertTrue(modeller.topology.getNumAtoms() < pdb.topology.getNumAtoms())
        modeller.addHydrogens()
        self.assertEqual(modeller.topology.getNumAtoms(), pdb.topology.getNumAtoms())
        for res1, res2 in zip(pdb.topology.residues(), modeller.topology.residues()):
            names1 = sorted([a.name for a in res1.atoms()])
            names2 = sorted([a.name for a in res2.atoms()])
            self.assertEqual(names1, names2)

    def test_removeExtraHydrogens(self):
        """Test that addHydrogens() can remove hydrogens that shouldn't be there. """

        topology_start = self.topology_start3
        positions = self.positions3
        modeller = Modeller(topology_start, positions)

        # Add hydrogens, forcing residue 1 to be ASH.

        variants = [None]*25
        variants[1] = 'ASH'
        modeller.addHydrogens(self.forcefield, variants=variants)
        residue = list(modeller.topology.residues())[1]
        self.assertTrue(any(a.name == 'HD2' for a in residue.atoms()))

        # Now force it to be ASP and see if HD2 gets removed.

        variants[1] = 'ASP'
        modeller.addHydrogens(self.forcefield, variants=variants)
        residue = list(modeller.topology.residues())[1]
        self.assertFalse(any(a.name == 'HD2' for a in residue.atoms()))


    def test_addExtraParticles(self):
        """Test addExtraParticles()."""

        # Create a box of water.

        ff1 = ForceField('tip3p.xml')
        modeller = Modeller(Topology(), []*nanometers)
        modeller.addSolvent(ff1, 'tip3p', boxSize=Vec3(2,2,2)*nanometers)

        # Now convert the water to TIP4P.

        ff2 = ForceField('tip4pew.xml')
        modeller.addExtraParticles(ff2)
        for residue in modeller.topology.residues():
            atoms = list(residue.atoms())
            self.assertEqual(4, len(atoms))
            ep = [atom for atom in atoms if atom.element is None]
            self.assertEqual(1, len(ep))


    def test_addVirtualSites(self):
        """Test adding extra particles defined by virtual sites."""
        xml = """
            <ForceField>
             <AtomTypes>
              <Type name="C" class="C" element="C" mass="10"/>
              <Type name="N" class="N" element="N" mass="10"/>
              <Type name="O" class="O" element="O" mass="10"/>
              <Type name="V" class="V" mass="0.0"/>
             </AtomTypes>
             <Residues>
              <Residue name="Test">
               <Atom name="C" type="C"/>
               <Atom name="N" type="N"/>
               <Atom name="O" type="O"/>
               <Atom name="V1" type="V"/>
               <Atom name="V2" type="V"/>
               <Atom name="V3" type="V"/>
               <Atom name="V4" type="V"/>
               <VirtualSite type="average2" index="3" atom1="0" atom2="1" weight1="0.7" weight2="0.3"/>
               <VirtualSite type="average3" index="4" atom1="0" atom2="1" atom3="2" weight1="0.2" weight2="0.3" weight3="0.5"/>
               <VirtualSite type="outOfPlane" index="5" atom1="0" atom2="1" atom3="2" weight12="0.1" weight13="-0.2" weightCross="0.8"/>
               <VirtualSite type="localCoords" index="6" atom1="0" atom2="1" atom3="2" wo1="0.1" wo2="0.5" wo3="0.4" wx1="1" wx2="-0.6" wx3="-0.4" wy1="0.1" wy2="0.9" wy3="-1" p1="-0.5" p2="0.4" p3="1.1"/>
              </Residue>
             </Residues>
            </ForceField>"""
        ff = ForceField(StringIO(xml))

        # Create the three real atoms.

        topology = Topology()
        chain = topology.addChain()
        residue = topology.addResidue('Test', chain)
        topology.addAtom('C', element.carbon, residue)
        topology.addAtom('N', element.nitrogen, residue)
        topology.addAtom('V', element.oxygen, residue)


        # Add the virtual sites.

        modeller = Modeller(topology, [Vec3(0.1, 0.2, 0.3), Vec3(1.0, 0.9, 0.8), Vec3(1.5, 1.1, 0.7)]*nanometers)
        modeller.addExtraParticles(ff)
        top = modeller.topology
        pos = modeller.positions

        # Check that the correct particles were added.

        self.assertEqual(len(pos), 7)
        for atom, elem in zip(top.atoms(), [element.carbon, element.nitrogen, element.oxygen, None, None, None, None]):
            self.assertEqual(elem, atom.element)

        # Check that the positions were calculated correctly.

        system = ff.createSystem(top)
        integ = VerletIntegrator(1.0)
        context = Context(system, integ)
        context.setPositions(pos)
        context.computeVirtualSites()
        state = context.getState(getPositions=True)
        for p1, p2 in zip (pos, state.getPositions()):
            self.assertVecAlmostEqual(p1.value_in_unit(nanometers), p2.value_in_unit(nanometers), 1e-6)


    def test_multiSiteIon(self):
        """Test adding extra particles whose positions are determined based on bonds."""
        xml = """
            <ForceField>
             <AtomTypes>
              <Type name="Zn" class="Zn" element="Zn" mass="53.380"/>
              <Type name="DA" class="DA" mass="3.0"/>
             </AtomTypes>
             <Residues>
              <Residue name="ZN">
               <Atom name="ZN" type="Zn"/>
               <Atom name="D1" type="DA"/>
               <Atom name="D2" type="DA"/>
               <Atom name="D3" type="DA"/>
               <Atom name="D4" type="DA"/>
               <Bond from="0" to="2"/>
               <Bond from="0" to="1"/>
               <Bond from="0" to="3"/>
               <Bond from="0" to="4"/>
               <Bond from="1" to="2"/>
               <Bond from="1" to="3"/>
               <Bond from="1" to="4"/>
               <Bond from="2" to="4"/>
               <Bond from="2" to="3"/>
               <Bond from="3" to="4"/>
              </Residue>
             </Residues>
             <HarmonicBondForce>
              <Bond class1="DA" class2="Zn" length="0.09" k="535552.0"/>
              <Bond class1="DA" class2="DA" length="0.147" k="535552.0"/>
             </HarmonicBondForce>
            </ForceField>"""
        ff = ForceField(StringIO(xml))

        # Create two zinc atoms.

        topology = Topology()
        chain = topology.addChain()
        residue = topology.addResidue('ZN', chain)
        topology.addAtom('ZN', element.zinc, residue)
        residue = topology.addResidue('ZN', chain)
        topology.addAtom('ZN', element.zinc, residue)

        # Add the extra particles.

        modeller = Modeller(topology, [Vec3(0.5, 1.0, 1.5), Vec3(2.0, 2.0, 0.0)]*nanometers)
        modeller.addExtraParticles(ff)
        top = modeller.topology
        pos = modeller.positions

        # Check that the correct particles were added.

        self.assertEqual(len(pos), 10)
        for i, atom in enumerate(top.atoms()):
            self.assertEqual(element.zinc if i in (0,5) else None, atom.element)

        # Check that the positions in the first residue are reasonable.

        center = Vec3(0.5, 1.0, 1.5)*nanometers
        self.assertEqual(center, modeller.positions[0])
        for i in range(1, 5):
            for j in range(i):
                dist = norm(pos[i]-pos[j])
                expectedDist = 0.09 if j == 0 else 0.147
                self.assertTrue(dist > (expectedDist-0.01)*nanometers and dist < (expectedDist+0.01)*nanometers)

    @unittest.skipIf(True, "Skipping a test which takes too long")
    def test_addMembrane(self):
        """Test adding a membrane to a realistic system."""

        mol = PDBxFile('systems/gpcr.cif')
        modeller = Modeller(mol.topology, mol.positions)
        ff = ForceField('amber14-all.xml', 'amber14/tip3p.xml')

        # Add a membrane around the GPCR
        modeller.addMembrane(ff, minimumPadding=1.1*nanometers, ionicStrength=1*molar)

        # Make sure we added everything correctly
        resCount = defaultdict(int)
        for res in modeller.topology.residues():
            resCount[res.name] += 1

        self.assertEqual(16, resCount['ALA'])
        self.assertEqual(226, resCount['POP'])  # 2x128 - overlapping
        self.assertTrue(resCount['HOH'] > 1)

        deltaQ = resCount['CL'] - resCount['NA']
        self.assertEqual(deltaQ, 10)  # protein net q: +10

        # Check _addIons did the right thing.
        expected_ion_fraction = 1.0*molar/(55.4*molar)

        total_water = resCount['HOH']
        total_water_ions = resCount['HOH'] + resCount['CL'] + resCount['NA']

        # total_water_ions - protein charge
        expected_sodium = math.floor((total_water_ions-10)*expected_ion_fraction+0.5)
        expected_chlorine = expected_sodium + 10

        self.assertEqual(resCount['CL'], expected_chlorine)
        self.assertEqual(resCount['NA'], expected_sodium)

        # Check lipid numbering for repetitions
        lipidIdList = [(r.chain.id, r.id) for r in modeller.topology.residues()
                       if r.name == 'POP']
        self.assertEqual(len(lipidIdList), len(set(lipidIdList)))

        # Check dimensions to see if padding was respected
        originalSize = max(mol.positions) - min(mol.positions)
        newSize = modeller.topology.getUnitCellDimensions()
        for i in range(3):
            self.assertTrue(newSize[i] >= originalSize[i]+1.1*nanometers)


    def assertVecAlmostEqual(self, p1, p2, tol=1e-7):
        scale = max(1.0, norm(p1),)
        for i in range(3):
            diff = abs(p1[i]-p2[i])/scale
            self.assertTrue(diff < tol)

if __name__ == '__main__':
    unittest.main()