1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
|
#!/bin/env python
#=============================================================================================
# MODULE DOCSTRING
#=============================================================================================
"""
Tools for constructing systems from AMBER prmtop/crd files.
This is part of the OpenMM molecular simulation toolkit originating from
Simbios, the NIH National Center for Physics-Based Simulation of
Biological Structures at Stanford, funded under the NIH Roadmap for
Medical Research, grant U54 GM072970. See https://simtk.org.
Portions copyright (c) 2012-2023 Stanford University and the Authors.
Authors: Randall J. Radmer, John D. Chodera, Peter Eastman
Contributors: Christoph Klein, Michael R. Shirts, Jason Swails, Kye Won Wang
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from __future__ import absolute_import, print_function
#=============================================================================================
# GLOBAL IMPORTS
#=============================================================================================
import os
import re
from math import ceil, cos, sin, asin, sqrt, pi
import warnings
try:
import numpy as np
except:
np = None
import openmm.unit as units
import openmm
from openmm.app import element as elem
from openmm.app.internal.unitcell import computePeriodicBoxVectors
from openmm.vec3 import Vec3
from . import customgbforces as customgb
#=============================================================================================
# AMBER parmtop loader (from 'zander', by Randall J. Radmer)
#=============================================================================================
# A regex for extracting print format info from the FORMAT lines.
FORMAT_RE_PATTERN=re.compile(r"([0-9]+)\(?([a-zA-Z]+)([0-9]+)\.?([0-9]*)\)?")
# Pointer labels which map to pointer numbers at top of prmtop files
POINTER_LABELS = """
NATOM, NTYPES, NBONH, MBONA, NTHETH, MTHETA,
NPHIH, MPHIA, NHPARM, NPARM, NEXT, NRES,
NBONA, NTHETA, NPHIA, NUMBND, NUMANG, NPTRA,
NATYP, NPHB, IFPERT, NBPER, NGPER, NDPER,
MBPER, MGPER, MDPER, IFBOX, NMXRS, IFCAP
"""
# Pointer labels (above) as a list, not string.
POINTER_LABEL_LIST = POINTER_LABELS.replace(',', '').split()
VELSCALE = 20.455 # velocity conversion factor to angstroms/picosecond
TINY = 1.0e-8
class NbfixPresent(Exception):
""" Exception raised when NBFIX is used for the Lennard-Jones terms """
pass
class PrmtopLoader(object):
"""Parsed AMBER prmtop file.
ParmtopLoader reads, parses and manages content from a AMBER prmtop file.
EXAMPLES
Parse a prmtop file of alanine dipeptide in implicit solvent.
>>> import os
>>> directory = os.path.join(os.getenv('YANK_INSTALL_DIR'), 'test', 'systems', 'alanine-dipeptide-gbsa')
>>> prmtop_filename = os.path.join(directory, 'alanine-dipeptide.prmtop')
>>> prmtop = PrmtopLoader(prmtop_filename)
Parse a prmtop file of alanine dipeptide in explicit solvent.
>>> import os
>>> directory = os.path.join(os.getenv('YANK_INSTALL_DIR'), 'test', 'systems', 'alanine-dipeptide-explicit')
>>> prmtop_filename = os.path.join(directory, 'alanine-dipeptide.prmtop')
>>> prmtop = PrmtopLoader(prmtop_filename)
"""
def __init__(self, inFilename):
"""
Create a PrmtopLoader object from an AMBER prmtop file.
ARGUMENTS
inFilename (string) - AMBER 'new-style' prmtop file, probably generated with one of the AMBER tleap/xleap/sleap
"""
self._prmtopVersion=None
self._flags=[]
self._raw_format={}
self._raw_data={}
self._has_nbfix_terms = False
with open(inFilename, 'r') as fIn:
for line in fIn:
if line[0] == '%':
if line.startswith('%VERSION'):
tag, self._prmtopVersion = line.rstrip().split(None, 1)
elif line.startswith('%FLAG'):
tag, flag = line.rstrip().split(None, 1)
self._flags.append(flag)
self._raw_data[flag] = []
elif line.startswith('%FORMAT'):
format = line.rstrip()
index0=format.index('(')
index1=format.index(')')
format = format[index0+1:index1]
try:
m = FORMAT_RE_PATTERN.search(format)
self._raw_format[self._flags[-1]] = (format, m.group(1), m.group(2), int(m.group(3)), m.group(4))
except:
# We couldn't parse the format, so just treat the whole line as a single string.
self._raw_format[self._flags[-1]] = (format, 1, 'a', 80, '')
elif line.startswith('%COMMENT'):
continue
elif self._flags \
and 'TITLE'==self._flags[-1] \
and not self._raw_data['TITLE']:
self._raw_data['TITLE'] = line.rstrip()
else:
flag=self._flags[-1]
(format, numItems, itemType,
iLength, itemPrecision) = self._getFormat(flag)
line = line.rstrip()
for index in range(0, len(line), iLength):
item = line[index:index+iLength]
if item:
self._raw_data[flag].append(item.strip())
# See if this is a CHAMBER-style topology file, which is not supported
# for creating Systems
self.chamber = 'CTITLE' in self._flags
def _getFormat(self, flag=None):
if not flag:
flag=self._flags[-1]
return self._raw_format[flag]
def _getPointerValue(self, pointerLabel):
"""Return pointer value given pointer label
Parameter:
- pointerLabel: a string matching one of the following:
NATOM : total number of atoms
NTYPES : total number of distinct atom types
NBONH : number of bonds containing hydrogen
MBONA : number of bonds not containing hydrogen
NTHETH : number of angles containing hydrogen
MTHETA : number of angles not containing hydrogen
NPHIH : number of dihedrals containing hydrogen
MPHIA : number of dihedrals not containing hydrogen
NHPARM : currently not used
NPARM : currently not used
NEXT : number of excluded atoms
NRES : number of residues
NBONA : MBONA + number of constraint bonds
NTHETA : MTHETA + number of constraint angles
NPHIA : MPHIA + number of constraint dihedrals
NUMBND : number of unique bond types
NUMANG : number of unique angle types
NPTRA : number of unique dihedral types
NATYP : number of atom types in parameter file, see SOLTY below
NPHB : number of distinct 10-12 hydrogen bond pair types
IFPERT : set to 1 if perturbation info is to be read in
NBPER : number of bonds to be perturbed
NGPER : number of angles to be perturbed
NDPER : number of dihedrals to be perturbed
MBPER : number of bonds with atoms completely in perturbed group
MGPER : number of angles with atoms completely in perturbed group
MDPER : number of dihedrals with atoms completely in perturbed groups
IFBOX : set to 1 if standard periodic box, 2 when truncated octahedral
NMXRS : number of atoms in the largest residue
IFCAP : set to 1 if the CAP option from edit was specified
"""
index = POINTER_LABEL_LIST.index(pointerLabel)
return float(self._raw_data['POINTERS'][index])
def getNumAtoms(self):
"""Return the number of atoms in the system"""
return int(self._getPointerValue('NATOM'))
def getNumTypes(self):
"""Return the number of AMBER atoms types in the system"""
return int(self._getPointerValue('NTYPES'))
def getIfBox(self):
"""Return True if the system was build with periodic boundary conditions (PBC)"""
return int(self._getPointerValue('IFBOX'))
def getIfCap(self):
"""Return True if the system was build with the cap option)"""
return int(self._getPointerValue('IFCAP'))
def getIfPert(self):
"""Return True if the system was build with the perturbation parameters)"""
return int(self._getPointerValue('IFPERT'))
def getMasses(self):
"""Return a list of atomic masses in the system"""
try:
return self._massList
except AttributeError:
self._massList = [float(x) for x in self._raw_data['MASS']]
return self._massList
def getCharges(self):
"""Return a list of atomic charges in the system"""
try:
return self._chargeList
except AttributeError:
self._chargeList = [float(x)/18.2223 for x in self._raw_data['CHARGE']]
return self._chargeList
def getAtomName(self, iAtom):
"""Return the atom name for iAtom"""
atomNames = self.getAtomNames()
return atomNames[iAtom]
def getAtomNames(self):
"""Return the list of the system atom names"""
return self._raw_data['ATOM_NAME']
def _getAtomTypeIndexes(self):
try:
return self._atomTypeIndexes
except AttributeError:
self._atomTypeIndexes = [int(x) for x in self._raw_data['ATOM_TYPE_INDEX']]
return self._atomTypeIndexes
def getAtomType(self, iAtom):
"""Return the AMBER atom type for iAtom"""
atomTypes=self.getAtomTypes()
return atomTypes[iAtom]
def getAtomTypes(self):
"""Return the list of the AMBER atom types"""
return self._raw_data['AMBER_ATOM_TYPE']
def getResidueNumber(self, iAtom):
"""Return iAtom's residue number"""
return self._getResiduePointer(iAtom)+1
def getResidueLabel(self, iAtom=None, iRes=None):
"""Return residue label for iAtom OR iRes"""
if iRes is None and iAtom is None:
raise Exception("only specify iRes or iAtom, not both")
if iRes is not None and iAtom is not None:
raise Exception("iRes or iAtom must be set")
if iRes is not None:
return self._raw_data['RESIDUE_LABEL'][iRes]
else:
return self.getResidueLabel(iRes=self._getResiduePointer(iAtom))
def _getResiduePointer(self, iAtom):
try:
return self.residuePointerDict[iAtom]
except:
pass
self.residuePointerDict = {}
resPointers=self._raw_data['RESIDUE_POINTER']
firstAtom = [int(p)-1 for p in resPointers]
firstAtom.append(self.getNumAtoms())
res = 0
for i in range(self.getNumAtoms()):
while firstAtom[res+1] <= i:
res += 1
self.residuePointerDict[i] = res
return self.residuePointerDict[iAtom]
def getNonbondTerms(self):
"""
Return list of all rVdw, epsilon pairs for each atom. If off-diagonal
elements of the Lennard-Jones A and B coefficient matrices are found,
NbfixPresent exception is raised
"""
if self._has_nbfix_terms:
raise NbfixPresent('Off-diagonal Lennard-Jones elements found. '
'Cannot determine LJ parameters for individual atoms.')
try:
return self._nonbondTerms
except AttributeError:
pass
# Check if there are any non-zero HBOND terms
for x, y in zip(self._raw_data['HBOND_ACOEF'], self._raw_data['HBOND_BCOEF']):
if float(x) or float(y):
raise Exception('10-12 interactions are not supported')
self._nonbondTerms=[]
lengthConversionFactor = units.angstrom.conversion_factor_to(units.nanometer)
energyConversionFactor = units.kilocalorie_per_mole.conversion_factor_to(units.kilojoule_per_mole)
numTypes = self.getNumTypes()
atomTypeIndexes=self._getAtomTypeIndexes()
type_parameters = [(0, 0) for i in range(numTypes)]
for iAtom in range(self.getNumAtoms()):
index=(numTypes+1)*(atomTypeIndexes[iAtom]-1)
nbIndex=int(self._raw_data['NONBONDED_PARM_INDEX'][index])-1
if nbIndex<0:
raise Exception("10-12 interactions are not supported")
acoef = float(self._raw_data['LENNARD_JONES_ACOEF'][nbIndex])
bcoef = float(self._raw_data['LENNARD_JONES_BCOEF'][nbIndex])
try:
rMin = (2*acoef/bcoef)**(1/6.0)
epsilon = 0.25*bcoef*bcoef/acoef
except ZeroDivisionError:
rMin = 1.0
epsilon = 0.0
type_parameters[atomTypeIndexes[iAtom]-1] = (rMin/2.0, epsilon)
rVdw = rMin/2.0*lengthConversionFactor
epsilon = epsilon*energyConversionFactor
self._nonbondTerms.append( (rVdw, epsilon) )
# Check if we have any off-diagonal modified LJ terms that would require
# an NBFIX-like solution
for i in range(numTypes):
for j in range(numTypes):
index = int(self._raw_data['NONBONDED_PARM_INDEX'][numTypes*i+j]) - 1
if index < 0: continue
rij = type_parameters[i][0] + type_parameters[j][0]
wdij = sqrt(type_parameters[i][1] * type_parameters[j][1])
a = float(self._raw_data['LENNARD_JONES_ACOEF'][index])
b = float(self._raw_data['LENNARD_JONES_BCOEF'][index])
if a == 0 or b == 0:
if a != 0 or b != 0 or (wdij != 0 and rij != 0):
self._has_nbfix_terms = True
raise NbfixPresent('Off-diagonal Lennard-Jones elements'
' found. Cannot determine LJ '
'parameters for individual atoms.')
elif (abs((a - (wdij * rij ** 12)) / a) > 1e-6 or
abs((b - (2 * wdij * rij**6)) / b) > 1e-6):
self._has_nbfix_terms = True
raise NbfixPresent('Off-diagonal Lennard-Jones elements '
'found. Cannot determine LJ parameters '
'for individual atoms.')
return self._nonbondTerms
def _getBonds(self, bondPointers):
forceConstant=self._raw_data["BOND_FORCE_CONSTANT"]
bondEquil=self._raw_data["BOND_EQUIL_VALUE"]
returnList=[]
forceConstConversionFactor = (units.kilocalorie_per_mole/(units.angstrom*units.angstrom)).conversion_factor_to(units.kilojoule_per_mole/(units.nanometer*units.nanometer))
lengthConversionFactor = units.angstrom.conversion_factor_to(units.nanometer)
for ii in range(0,len(bondPointers),3):
if int(bondPointers[ii])<0 or \
int(bondPointers[ii+1])<0:
raise Exception("Found negative bonded atom pointers %s"
% ((bondPointers[ii],
bondPointers[ii+1]),))
iType=int(bondPointers[ii+2])-1
returnList.append((int(bondPointers[ii])//3,
int(bondPointers[ii+1])//3,
float(forceConstant[iType])*forceConstConversionFactor,
float(bondEquil[iType])*lengthConversionFactor))
return returnList
def getBondsWithH(self):
"""Return list of bonded atom pairs, K, and Rmin for each bond with a hydrogen"""
try:
return self._bondListWithH
except AttributeError:
pass
bondPointers=self._raw_data["BONDS_INC_HYDROGEN"]
self._bondListWithH = self._getBonds(bondPointers)
return self._bondListWithH
def getBondsNoH(self):
"""Return list of bonded atom pairs, K, and Rmin for each bond with no hydrogen"""
try:
return self._bondListNoH
except AttributeError:
pass
bondPointers=self._raw_data["BONDS_WITHOUT_HYDROGEN"]
self._bondListNoH = self._getBonds(bondPointers)
return self._bondListNoH
def getAngles(self):
"""Return list of atom triplets, K, and ThetaMin for each bond angle"""
try:
return self._angleList
except AttributeError:
pass
forceConstant=self._raw_data["ANGLE_FORCE_CONSTANT"]
angleEquil=self._raw_data["ANGLE_EQUIL_VALUE"]
anglePointers = self._raw_data["ANGLES_INC_HYDROGEN"] \
+self._raw_data["ANGLES_WITHOUT_HYDROGEN"]
self._angleList=[]
forceConstConversionFactor = (units.kilocalorie_per_mole/(units.radian*units.radian)).conversion_factor_to(units.kilojoule_per_mole/(units.radian*units.radian))
for ii in range(0,len(anglePointers),4):
if int(anglePointers[ii])<0 or \
int(anglePointers[ii+1])<0 or \
int(anglePointers[ii+2])<0:
raise Exception("Found negative angle atom pointers %s"
% ((anglePointers[ii],
anglePointers[ii+1],
anglePointers[ii+2]),))
iType=int(anglePointers[ii+3])-1
self._angleList.append((int(anglePointers[ii])//3,
int(anglePointers[ii+1])//3,
int(anglePointers[ii+2])//3,
float(forceConstant[iType])*forceConstConversionFactor,
float(angleEquil[iType])))
return self._angleList
def getUreyBradleys(self):
"""Return list of atom pairs, K, and Rmin for each Urey-Bradley term"""
try:
return self._ureyBradleyList
except AttributeError:
pass
self._ureyBradleyList = []
if 'CHARMM_UREY_BRADLEY' in self._raw_data:
ureyBradleyPointers = self._raw_data["CHARMM_UREY_BRADLEY"]
forceConstant = self._raw_data["CHARMM_UREY_BRADLEY_FORCE_CONSTANT"]
equilValue = self._raw_data["CHARMM_UREY_BRADLEY_EQUIL_VALUE"]
forceConstConversionFactor = (units.kilocalorie_per_mole/(units.angstrom*units.angstrom)).conversion_factor_to(units.kilojoule_per_mole/(units.nanometer*units.nanometer))
lengthConversionFactor = units.angstrom.conversion_factor_to(units.nanometer)
for ii in range(0, len(ureyBradleyPointers), 3):
if int(ureyBradleyPointers[ii]) < 0 or int(ureyBradleyPointers[ii+1]) < 0:
raise Exception("Found negative Urey-Bradley atom pointers %s"
% ((ureyBradleyPointers[ii], ureyBradleyPointers[ii+1])))
iType = int(ureyBradleyPointers[ii+2])-1
self._ureyBradleyList.append((int(ureyBradleyPointers[ii])-1,
int(ureyBradleyPointers[ii+1])-1,
float(forceConstant[iType])*forceConstConversionFactor,
float(equilValue[iType])*lengthConversionFactor))
return self._ureyBradleyList
def getDihedrals(self):
"""Return list of atom quads, K, phase and periodicity for each dihedral angle"""
try:
return self._dihedralList
except AttributeError:
pass
forceConstant=self._raw_data["DIHEDRAL_FORCE_CONSTANT"]
phase=self._raw_data["DIHEDRAL_PHASE"]
periodicity=self._raw_data["DIHEDRAL_PERIODICITY"]
dihedralPointers = self._raw_data["DIHEDRALS_INC_HYDROGEN"] \
+self._raw_data["DIHEDRALS_WITHOUT_HYDROGEN"]
self._dihedralList=[]
forceConstConversionFactor = (units.kilocalorie_per_mole).conversion_factor_to(units.kilojoule_per_mole)
for ii in range(0,len(dihedralPointers),5):
if int(dihedralPointers[ii])<0 or int(dihedralPointers[ii+1])<0:
raise Exception("Found negative dihedral atom pointers %s"
% ((dihedralPointers[ii],
dihedralPointers[ii+1],
dihedralPointers[ii+2],
dihedralPointers[ii+3]),))
iType=int(dihedralPointers[ii+4])-1
self._dihedralList.append((int(dihedralPointers[ii])//3,
int(dihedralPointers[ii+1])//3,
abs(int(dihedralPointers[ii+2]))//3,
abs(int(dihedralPointers[ii+3]))//3,
float(forceConstant[iType])*forceConstConversionFactor,
float(phase[iType]),
int(0.5+float(periodicity[iType]))))
return self._dihedralList
def getImpropers(self):
"""Return list of atom quads, K, and phase for each improper torsion"""
try:
return self._improperList
except AttributeError:
pass
self._improperList = []
if 'CHARMM_IMPROPERS' in self._raw_data:
forceConstant = self._raw_data["CHARMM_IMPROPER_FORCE_CONSTANT"]
phase = self._raw_data["CHARMM_IMPROPER_PHASE"]
improperPointers = self._raw_data["CHARMM_IMPROPERS"]
forceConstConversionFactor = (units.kilocalorie_per_mole).conversion_factor_to(units.kilojoule_per_mole)
for ii in range(0,len(improperPointers),5):
if int(improperPointers[ii])<0 or int(improperPointers[ii+1])<0:
raise Exception("Found negative improper atom pointers %s"
% ((improperPointers[ii],
improperPointers[ii+1],
improperPointers[ii+2],
improperPointers[ii+3]),))
iType = int(improperPointers[ii+4])-1
self._improperList.append((int(improperPointers[ii])-1,
int(improperPointers[ii+1])-1,
abs(int(improperPointers[ii+2]))-1,
abs(int(improperPointers[ii+3]))-1,
float(forceConstant[iType])*forceConstConversionFactor,
float(phase[iType])))
return self._improperList
def getNumMaps(self):
"""Return number of CMAPs. Return 0 if CMAP does not exist"""
try:
return self._numCMAP
except AttributeError:
pass
flag = 'CMAP_COUNT'
if flag not in self._raw_data and self.chamber:
flag = 'CHARMM_CMAP_COUNT'
if flag in self._raw_data:
self._numCMAP = int(self._raw_data[flag][1])
return self._numCMAP
return 0
def getCMAPResolutions(self):
"""Return CMAP resolution info. Return 0 if CMAP does not exist"""
try:
return self._cmapResolution
except AttributeError:
pass
flag = 'CMAP_RESOLUTION'
if flag not in self._raw_data and self.chamber:
flag = 'CHARMM_CMAP_RESOLUTION'
if flag in self._raw_data:
self._cmapResolution=self._raw_data[flag]
return self._cmapResolution
return 0
def getCMAPParameters(self, index):
"""Return list of CMAP energy values"""
flag = "CMAP_PARAMETER_{:02d}".format(index)
if flag not in self._raw_data and self.chamber:
flag = "CHARMM_CMAP_PARAMETER_{:02d}".format(index)
return [float(pointer) for pointer in self._raw_data[flag]]
def getCMAPDihedrals(self):
"""Return CMAP type, list of first four atoms, and list of second four atoms"""
try:
return self._cmapList
except AttributeError:
pass
flag = 'CMAP_INDEX'
if flag not in self._raw_data and self.chamber:
flag = 'CHARMM_CMAP_INDEX'
cmapPointers = self._raw_data[flag]
self._cmapList=[]
forceConstConversionFactor = (units.kilocalorie_per_mole).conversion_factor_to(units.kilojoule_per_mole)
for ii in range(0,len(cmapPointers),6):
if any([int(cmapPointers[ii+jj])<0 for jj in range(5)]):
raise ValueError("Found negative cmap atom pointers %s"
% ((cmapPointers[ii],
cmapPointers[ii+1],
cmapPointers[ii+2],
cmapPointers[ii+3],
cmapPointers[ii+4]),))
iType=int(cmapPointers[ii+5])-1
self._cmapList.append((int(iType),
int(cmapPointers[ii])-1,
int(cmapPointers[ii+1])-1,
int(cmapPointers[ii+2])-1,
int(cmapPointers[ii+3])-1,
int(cmapPointers[ii+1])-1,
int(cmapPointers[ii+2])-1,
int(cmapPointers[ii+3])-1,
int(cmapPointers[ii+4])-1))
return self._cmapList
def get14Interactions(self):
"""Return list of atom pairs, chargeProduct, rMin and epsilon for each 1-4 interaction"""
dihedralPointers = self._raw_data["DIHEDRALS_INC_HYDROGEN"] \
+self._raw_data["DIHEDRALS_WITHOUT_HYDROGEN"]
returnList=[]
charges=self.getCharges()
length_conv = units.angstrom.conversion_factor_to(units.nanometers)
ene_conv = units.kilocalories_per_mole.conversion_factor_to(
units.kilojoules_per_mole)
if self.chamber:
parm_acoef = [float(x) for x in self._raw_data['LENNARD_JONES_14_ACOEF']]
parm_bcoef = [float(x) for x in self._raw_data['LENNARD_JONES_14_BCOEF']]
else:
parm_acoef = [float(x) for x in self._raw_data['LENNARD_JONES_ACOEF']]
parm_bcoef = [float(x) for x in self._raw_data['LENNARD_JONES_BCOEF']]
nbidx = [int(x) for x in self._raw_data['NONBONDED_PARM_INDEX']]
numTypes = self.getNumTypes()
atomTypeIndexes=self._getAtomTypeIndexes()
for ii in range(0, len(dihedralPointers), 5):
if int(dihedralPointers[ii+2])>0 and int(dihedralPointers[ii+3])>0:
iAtom = int(dihedralPointers[ii])//3
lAtom = int(dihedralPointers[ii+3])//3
iidx = int(dihedralPointers[ii+4]) - 1
chargeProd = charges[iAtom]*charges[lAtom]
typ1 = atomTypeIndexes[iAtom] - 1
typ2 = atomTypeIndexes[lAtom] - 1
idx = nbidx[numTypes*typ1+typ2] - 1
if idx < 0: continue
a = parm_acoef[idx]
b = parm_bcoef[idx]
try:
epsilon = b * b / (4 * a) * ene_conv
rMin = (2 * a / b) ** (1/6.0) * length_conv
except ZeroDivisionError:
rMin = 1
epsilon = 0
try:
iScee = float(self._raw_data['SCEE_SCALE_FACTOR'][iidx])
except KeyError:
iScee = 1.0 if self.chamber else 1.2
try:
iScnb = float(self._raw_data['SCNB_SCALE_FACTOR'][iidx])
except KeyError:
iScnb = 1.0 if self.chamber else 2.0
returnList.append((iAtom, lAtom, chargeProd, rMin, epsilon, iScee, iScnb))
return returnList
def getExcludedAtoms(self):
"""Return list of lists, giving all pairs of atoms that should have no non-bond interactions"""
try:
return self._excludedAtoms
except AttributeError:
pass
self._excludedAtoms=[]
numExcludedAtomsList=self._raw_data["NUMBER_EXCLUDED_ATOMS"]
excludedAtomsList=self._raw_data["EXCLUDED_ATOMS_LIST"]
total=0
for iAtom in range(self.getNumAtoms()):
index0=total
n=int(numExcludedAtomsList[iAtom])
total+=n
index1=total
atomList=[]
for jAtom in excludedAtomsList[index0:index1]:
j=int(jAtom)
if j>0:
atomList.append(j-1)
self._excludedAtoms.append(atomList)
return self._excludedAtoms
def getBoxBetaAndDimensions(self):
"""Return periodic boundary box beta angle and dimensions"""
beta=float(self._raw_data["BOX_DIMENSIONS"][0])
x=float(self._raw_data["BOX_DIMENSIONS"][1])
y=float(self._raw_data["BOX_DIMENSIONS"][2])
z=float(self._raw_data["BOX_DIMENSIONS"][3])
return (units.Quantity(beta, units.degree),
units.Quantity(x, units.angstrom),
units.Quantity(y, units.angstrom),
units.Quantity(z, units.angstrom))
@property
def has_scee_scnb(self):
return ("SCEE_SCALE_FACTOR" in self._raw_data and "SCNB_SCALE_FACTOR" in self._raw_data)
@property
def has_atomic_number(self):
return 'ATOMIC_NUMBER' in self._raw_data
#=============================================================================================
# AMBER System builder (based on, but not identical to, systemManager from 'zander')
#=============================================================================================
def readAmberSystem(topology, prmtop_filename=None, prmtop_loader=None, shake=None, gbmodel=None,
soluteDielectric=1.0, solventDielectric=78.5,
implicitSolventKappa=0.0*(1/units.nanometer), nonbondedCutoff=None,
nonbondedMethod='NoCutoff', scee=None, scnb=None, mm=None, verbose=False,
EwaldErrorTolerance=None, flexibleConstraints=True, rigidWater=True, elements=None,
gbsaModel='ACE'):
"""
Create an OpenMM System from an Amber prmtop file.
REQUIRED ARGUMENT
topology (forcefield.Topology) The topology for the system that is about
to be created
ARGUMENTS (specify one or the other, but not both)
prmtop_filename (String) - name of Amber prmtop file (new-style only)
prmtop_loader (PrmtopLoader) - the loaded prmtop file
OPTIONAL ARGUMENTS
shake (String) - if 'h-bonds', will SHAKE all bonds to hydrogen and water; if 'all-bonds', will SHAKE all bonds and water (default: None)
gbmodel (String) - if 'OBC', OBC GBSA will be used (default: None)
soluteDielectric (float) - The solute dielectric constant to use in the implicit solvent model (default: 1.0)
solventDielectric (float) - The solvent dielectric constant to use in the implicit solvent model (default: 78.5)
implicitSolventKappa (float) - The Debye screening parameter corresponding to implicit solvent ionic strength
nonbondedCutoff (float) - if specified, will set nonbondedCutoff (default: None)
scnb (float) - 1-4 Lennard-Jones scaling factor (default: taken from prmtop or 1.2 if not present there)
scee (float) - 1-4 electrostatics scaling factor (default: taken from prmtop or 2.0 if not present there)
mm - if specified, this module will be used in place of pyopenmm (default: None)
verbose (boolean) - if True, print out information on progress (default: False)
flexibleConstraints (boolean) - if True, flexible bonds will be added in addition ot constrained bonds
rigidWater (boolean=True) If true, water molecules will be fully rigid regardless of the value passed for the shake argument
gbsaModel (str='ACE') The string representing the SA model to use for GB calculations. Must be 'ACE' or None
NOTES
Even if bonds are SHAKEn, their harmonic stretch terms are still included in the potential.
TODO
Should these option names be changed to reflect their 'sander' counterparts?
EXAMPLES
Create a system of alanine dipeptide in implicit solvent.
>>> directory = os.path.join(os.getenv('YANK_INSTALL_DIR'), 'test', 'systems', 'alanine-dipeptide-gbsa')
>>> prmtop_filename = os.path.join(directory, 'alanine-dipeptide.prmtop')
>>> system = readAmberSystem(prmtop_filename)
Parse a prmtop file of alanine dipeptide in explicit solvent.
>>> directory = os.path.join(os.getenv('YANK_INSTALL_DIR'), 'test', 'systems', 'alanine-dipeptide-explicit')
>>> prmtop_filename = os.path.join(directory, 'alanine-dipeptide.prmtop')
>>> system = readAmberSystem(prmtop_filename)
"""
if prmtop_filename is None and prmtop_loader is None:
raise Exception("Must specify a filename or loader")
if prmtop_filename is not None and prmtop_loader is not None:
raise Exception("Cannot specify both a filename and a loader")
if prmtop_filename is not None:
# Load prmtop file.
if verbose: print("Reading prmtop file '%s'..." % prmtop_filename)
prmtop = PrmtopLoader(prmtop_filename)
else:
prmtop = prmtop_loader
if prmtop.getIfCap()>0:
raise Exception("CAP option not currently supported")
if prmtop.getIfPert()>0:
raise Exception("perturbation not currently supported")
if prmtop.has_scee_scnb and (scee is not None or scnb is not None):
warnings.warn("1-4 scaling parameters in topology file are being ignored. "
"This is not recommended unless you know what you are doing.")
if gbmodel is not None and gbsaModel not in ('ACE', None):
raise ValueError('gbsaModel must be ACE or None')
has_1264 = 'LENNARD_JONES_CCOEF' in prmtop._raw_data.keys()
if has_1264:
parm_ccoef = [float(x) for x in prmtop._raw_data['LENNARD_JONES_CCOEF']]
# Use pyopenmm implementation of OpenMM by default.
if mm is None:
mm = openmm
# Create OpenMM System.
if verbose: print("Creating OpenMM system...")
system = mm.System()
# Populate system with atomic masses.
if verbose: print("Adding particles...")
for mass in prmtop.getMasses():
system.addParticle(mass)
# Add constraints.
isWater = [prmtop.getResidueLabel(i) in ('WAT', 'HOH', 'TP4', 'TP5', 'T4E') for i in range(prmtop.getNumAtoms())]
isEP = [a.element is None for a in topology.atoms()]
if shake in ('h-bonds', 'all-bonds', 'h-angles'):
for (iAtom, jAtom, k, rMin) in prmtop.getBondsWithH():
if not (isEP[iAtom] or isEP[jAtom]):
system.addConstraint(iAtom, jAtom, rMin)
if shake in ('all-bonds', 'h-angles'):
for (iAtom, jAtom, k, rMin) in prmtop.getBondsNoH():
if not (isEP[iAtom] or isEP[jAtom]):
system.addConstraint(iAtom, jAtom, rMin)
if rigidWater and shake is None:
for (iAtom, jAtom, k, rMin) in prmtop.getBondsWithH():
if isWater[iAtom] and isWater[jAtom] and not (isEP[iAtom] or isEP[jAtom]):
system.addConstraint(iAtom, jAtom, rMin)
# Add harmonic bonds.
if verbose: print("Adding bonds...")
force = mm.HarmonicBondForce()
if flexibleConstraints or (shake not in ('h-bonds', 'all-bonds', 'h-angles')):
for (iAtom, jAtom, k, rMin) in prmtop.getBondsWithH():
if flexibleConstraints or not (rigidWater and isWater[iAtom] and isWater[jAtom]):
force.addBond(iAtom, jAtom, rMin, 2*k)
if flexibleConstraints or (shake not in ('all-bonds', 'h-angles')):
for (iAtom, jAtom, k, rMin) in prmtop.getBondsNoH():
force.addBond(iAtom, jAtom, rMin, 2*k)
system.addForce(force)
# Add Urey-Bradley terms.
if len(prmtop.getUreyBradleys()) > 0:
if verbose: print("Adding Urey-Bradley terms...")
force = mm.HarmonicBondForce()
force.setName('UreyBradleyForce')
for (iAtom, jAtom, k, rMin) in prmtop.getUreyBradleys():
force.addBond(iAtom, jAtom, rMin, 2*k)
system.addForce(force)
# Add harmonic angles.
if verbose: print("Adding angles...")
force = mm.HarmonicAngleForce()
if shake == 'h-angles':
numConstrainedBonds = system.getNumConstraints()
atomConstraints = [[]]*system.getNumParticles()
for i in range(numConstrainedBonds):
c = system.getConstraintParameters(i)
distance = c[2].value_in_unit(units.nanometer)
atomConstraints[c[0]].append((c[1], distance))
atomConstraints[c[1]].append((c[0], distance))
topatoms = list(topology.atoms())
for (iAtom, jAtom, kAtom, k, aMin) in prmtop.getAngles():
if shake == 'h-angles':
atomI = topatoms[iAtom]
atomJ = topatoms[jAtom]
atomK = topatoms[kAtom]
numH = ((atomI.element.atomic_number == 1) + (atomK.element.atomic_number == 1))
constrained = (numH == 2 or (numH == 1 and atomJ.element is elem.oxygen))
else:
constrained = False
if constrained:
# Find the two bonds that make this angle.
l1 = None
l2 = None
for bond in atomConstraints[jAtom]:
if bond[0] == iAtom:
l1 = bond[1]
elif bond[0] == kAtom:
l2 = bond[1]
# Compute the distance between atoms and add a constraint
length = sqrt(l1*l1 + l2*l2 - 2*l1*l2*cos(aMin))
system.addConstraint(iAtom, kAtom, length)
if flexibleConstraints or not constrained:
force.addAngle(iAtom, jAtom, kAtom, aMin, 2*k)
system.addForce(force)
# Add torsions.
if verbose: print("Adding torsions...")
force = mm.PeriodicTorsionForce()
for (iAtom, jAtom, kAtom, lAtom, forceConstant, phase, periodicity) in prmtop.getDihedrals():
force.addTorsion(iAtom, jAtom, kAtom, lAtom, periodicity, phase, forceConstant)
system.addForce(force)
# Add impropers.
if len(prmtop.getImpropers()) > 0:
if verbose: print("Adding impropers...")
force = mm.CustomTorsionForce(f'k*min(dtheta, 2*{pi}-dtheta)^2; dtheta = abs(theta-theta0)')
force.addPerTorsionParameter('k')
force.addPerTorsionParameter('theta0')
force.setName('ImproperTorsionForce')
for (iAtom, jAtom, kAtom, lAtom, forceConstant, phase) in prmtop.getImpropers():
force.addTorsion(iAtom, jAtom, kAtom, lAtom, (forceConstant, phase))
system.addForce(force)
# Add CMAP info.
## Get mapSize and Resolutions
numMap = prmtop.getNumMaps()
mapSize = prmtop.getCMAPResolutions()
if numMap > 0:
if verbose: print("Adding CMAPs...")
force = mm.CMAPTorsionForce()
### Get map energies
for field in range(numMap):
index = field + 1
ngrid = int(mapSize[field])
cmap = []
cmap_param = prmtop.getCMAPParameters(index)
forceConstConversionFactor = (units.kilocalorie_per_mole).conversion_factor_to(units.kilojoule_per_mole)
for i in range(ngrid):
for j in range(ngrid):
idx = ngrid*((j+ngrid//2)%ngrid)+((i+ngrid//2)%ngrid)
cmap.append(cmap_param[idx]*forceConstConversionFactor)
cmap = tuple(cmap)
force.addMap(ngrid, cmap)
#### Add CMAPtorsions.
if verbose: print("Adding CMAP torsions...")
for (Type, iAtom, jAtom, kAtom, lAtom, jAtom, kAtom, lAtom, mAtom) in prmtop.getCMAPDihedrals():
index=force.addTorsion(Type, iAtom, jAtom, kAtom, lAtom, jAtom, kAtom, lAtom, mAtom)
system.addForce(force)
# Add nonbonded interactions.
if verbose: print("Adding nonbonded interactions...")
force = mm.NonbondedForce()
if topology.getPeriodicBoxVectors() is None and prmtop.getIfBox() == 0:
# System is non-periodic.
if nonbondedMethod == 'NoCutoff':
force.setNonbondedMethod(mm.NonbondedForce.NoCutoff)
elif nonbondedMethod == 'CutoffNonPeriodic':
if nonbondedCutoff is None:
raise Exception("No cutoff value specified")
force.setNonbondedMethod(mm.NonbondedForce.CutoffNonPeriodic)
force.setCutoffDistance(nonbondedCutoff)
else:
raise Exception("Illegal nonbonded method for a non-periodic system")
else:
# System is periodic.
# Set periodic box vectors for periodic system
if topology.getPeriodicBoxVectors() is None:
(boxBeta, boxX, boxY, boxZ) = prmtop.getBoxBetaAndDimensions()
xVec, yVec, zVec = computePeriodicBoxVectors(boxX, boxY, boxZ, boxBeta, boxBeta, boxBeta)
system.setDefaultPeriodicBoxVectors(xVec, yVec, zVec)
else:
system.setDefaultPeriodicBoxVectors(*topology.getPeriodicBoxVectors())
# Set cutoff.
if nonbondedCutoff is None:
# Compute cutoff automatically.
min_box_width = min([boxX / units.nanometers, boxY / units.nanometers, boxZ / units.nanometers])
CLEARANCE_FACTOR = 0.97 # reduce the cutoff to be a bit smaller than 1/2 smallest box length
nonbondedCutoff = units.Quantity((min_box_width * CLEARANCE_FACTOR) / 2.0, units.nanometers)
if nonbondedMethod != 'NoCutoff':
force.setCutoffDistance(nonbondedCutoff)
# Set nonbonded method.
if nonbondedMethod == 'NoCutoff':
force.setNonbondedMethod(mm.NonbondedForce.NoCutoff)
elif nonbondedMethod == 'CutoffNonPeriodic':
force.setNonbondedMethod(mm.NonbondedForce.CutoffNonPeriodic)
elif nonbondedMethod == 'CutoffPeriodic':
force.setNonbondedMethod(mm.NonbondedForce.CutoffPeriodic)
elif nonbondedMethod == 'Ewald':
force.setNonbondedMethod(mm.NonbondedForce.Ewald)
elif nonbondedMethod == 'PME':
force.setNonbondedMethod(mm.NonbondedForce.PME)
elif nonbondedMethod == 'LJPME':
force.setNonbondedMethod(mm.NonbondedForce.LJPME)
else:
raise Exception("Cutoff method not understood.")
if EwaldErrorTolerance is not None:
force.setEwaldErrorTolerance(EwaldErrorTolerance)
# Add per-particle nonbonded parameters.
sigmaScale = 2**(-1./6.) * 2.0
nbfix = False
try:
nonbondTerms = prmtop.getNonbondTerms()
except NbfixPresent:
nbfix = True
for charge in prmtop.getCharges():
force.addParticle(charge, 1.0, 0.0)
numTypes = prmtop.getNumTypes()
parm_acoef = [float(x) for x in prmtop._raw_data['LENNARD_JONES_ACOEF']]
parm_bcoef = [float(x) for x in prmtop._raw_data['LENNARD_JONES_BCOEF']]
nbidx = [int(x) for x in prmtop._raw_data['NONBONDED_PARM_INDEX']]
acoef = [0 for i in range(numTypes*numTypes)]
bcoef = acoef[:] # copy
ene_conv = units.kilocalories_per_mole.conversion_factor_to(units.kilojoules_per_mole)
length_conv = units.angstroms.conversion_factor_to(units.nanometers)
afac = sqrt(ene_conv) * length_conv**6
bfac = ene_conv * length_conv**6
for i in range(numTypes):
for j in range(numTypes):
idx = nbidx[numTypes*i+j] - 1
if idx < 0: continue
acoef[i+numTypes*j] = sqrt(parm_acoef[idx]) * afac
bcoef[i+numTypes*j] = parm_bcoef[idx] * bfac
if has_1264:
cfac = ene_conv * length_conv**4
ccoef = [0 for i in range(numTypes*numTypes)]
for i in range(numTypes):
for j in range(numTypes):
idx = nbidx[numTypes*i+j] - 1
if idx < 0: continue
ccoef[i+numTypes*j] = parm_ccoef[idx] * cfac
cforce = mm.CustomNonbondedForce('(a/r6)^2-b/r6-c/r^4; r6=r^6;'
'a=acoef(type1, type2);'
'b=bcoef(type1, type2);'
'c=ccoef(type1, type2);')
else:
cforce = mm.CustomNonbondedForce('(a/r6)^2-b/r6; r6=r^6;'
'a=acoef(type1, type2);'
'b=bcoef(type1, type2);')
cforce.addTabulatedFunction('acoef',
mm.Discrete2DFunction(numTypes, numTypes, acoef))
cforce.addTabulatedFunction('bcoef',
mm.Discrete2DFunction(numTypes, numTypes, bcoef))
if has_1264:
cforce.addTabulatedFunction('ccoef',
mm.Discrete2DFunction(numTypes, numTypes, ccoef))
cforce.addPerParticleParameter('type')
for atom in prmtop._getAtomTypeIndexes():
cforce.addParticle((atom-1,))
else:
for (charge, (rVdw, epsilon)) in zip(prmtop.getCharges(), nonbondTerms):
sigma = rVdw * sigmaScale
force.addParticle(charge, sigma, epsilon)
if has_1264:
numTypes = prmtop.getNumTypes()
nbidx = [int(x) for x in prmtop._raw_data['NONBONDED_PARM_INDEX']]
ccoef = [0 for i in range(numTypes*numTypes)]
ene_conv = units.kilocalories_per_mole.conversion_factor_to(units.kilojoules_per_mole)
length_conv = units.angstroms.conversion_factor_to(units.nanometers)
cfac = ene_conv * length_conv**4
for i in range(numTypes):
for j in range(numTypes):
idx = nbidx[numTypes*i+j] - 1
if idx < 0: continue
ccoef[i+numTypes*j] = parm_ccoef[idx] * cfac
cforce = mm.CustomNonbondedForce('-c/r^4; c=ccoef(type1, type2)')
cforce.addTabulatedFunction('ccoef',
mm.Discrete2DFunction(numTypes, numTypes, ccoef))
cforce.addPerParticleParameter('type')
for atom in prmtop._getAtomTypeIndexes():
cforce.addParticle((atom-1,))
# Add 1-4 Interactions
excludedAtomPairs = set()
sigmaScale = 2**(-1./6.)
_scee, _scnb = scee, scnb
for (iAtom, lAtom, chargeProd, rMin, epsilon, iScee, iScnb) in prmtop.get14Interactions():
if scee is None: _scee = iScee
if scnb is None: _scnb = iScnb
chargeProd /= _scee
epsilon /= _scnb
sigma = rMin * sigmaScale
force.addException(iAtom, lAtom, chargeProd, sigma, epsilon)
excludedAtomPairs.add(min((iAtom, lAtom), (lAtom, iAtom)))
# Add Excluded Atoms
excludedAtoms=prmtop.getExcludedAtoms()
excludeParams = (0.0, 0.1, 0.0)
for iAtom in range(prmtop.getNumAtoms()):
for jAtom in excludedAtoms[iAtom]:
if min((iAtom, jAtom), (jAtom, iAtom)) in excludedAtomPairs: continue
force.addException(iAtom, jAtom, excludeParams[0], excludeParams[1], excludeParams[2])
# Copy the exceptions as exclusions to the CustomNonbondedForce if we have
# NBFIX terms
if nbfix or has_1264:
for i in range(force.getNumExceptions()):
ii, jj, chg, sig, eps = force.getExceptionParameters(i)
cforce.addExclusion(ii, jj)
# Now set the various properties based on the NonbondedForce object
if nonbondedMethod in ('PME', 'LJPME', 'Ewald', 'CutoffPeriodic'):
cforce.setNonbondedMethod(cforce.CutoffPeriodic)
cforce.setCutoffDistance(nonbondedCutoff)
cforce.setUseLongRangeCorrection(True)
elif nonbondedMethod == 'CutoffNonPeriodic':
cforce.setNonbondedMethod(cforce.CutoffNonPeriodic)
cforce.setCutoffDistance(nonbondedCutoff)
elif nonbondedMethod == 'NoCutoff':
cforce.setNonbondedMethod(cforce.NoCutoff)
else:
raise ValueError('Unrecognized cutoff option %s' % nonbondedMethod)
# Add this force to the system
system.addForce(cforce)
system.addForce(force)
# Add virtual sites for water.
epNames = ['EP', 'LP']
ep = [i for i in range(prmtop.getNumAtoms()) if isWater[i] and prmtop.getAtomName(i)[:2] in epNames]
if len(ep) > 0:
epRes = set((prmtop.getResidueNumber(i) for i in ep))
numRes = max(epRes)+1
# For each residue that contains an "extra point", find the oxygen, hydrogens, and points.
waterO = []
waterH = []
waterEP = []
for i in range(numRes):
waterO.append([])
waterH.append([])
waterEP.append([])
for i in range(prmtop.getNumAtoms()):
res = prmtop.getResidueNumber(i)
if res in epRes:
name = prmtop.getAtomName(i)
if name[0] == 'O':
waterO[res].append(i)
if name[0] == 'H':
waterH[res].append(i)
if name[:2] in epNames:
waterEP[res].append(i)
# Record bond lengths for faster access.
distOH = [None]*numRes
distHH = [None]*numRes
distOE = [None]*numRes
for (atom1, atom2, k, dist) in prmtop.getBondsWithH()+prmtop.getBondsNoH():
res = prmtop.getResidueNumber(atom1)
if res in epRes:
name1 = prmtop.getAtomName(atom1)
name2 = prmtop.getAtomName(atom2)
if name1[0] == 'H' or name2[0] == 'H':
if name1[0] == 'H' and name2[0] == 'H':
distHH[res] = dist
if name1[0] == 'O' or name2[0] == 'O':
distOH[res] = dist
elif (name1[0] == 'O' or name2[0] == 'O') and ((name1[:2] in epNames or name2[:2] in epNames)):
distOE[res] = dist
# Loop over residues and add the virtual sites.
outOfPlaneAngle = 54.735*units.degree
cosOOP = units.cos(outOfPlaneAngle)
sinOOP = units.sin(outOfPlaneAngle)
for res in range(numRes):
if len(waterO[res]) == 1 and len(waterH[res]) == 2:
if len(waterEP[res]) == 1:
# Four point water
weightH = distOE[res]/sqrt(distOH[res]**2-(0.5*distHH[res])**2)
system.setVirtualSite(waterEP[res][0], mm.ThreeParticleAverageSite(waterO[res][0], waterH[res][0], waterH[res][1], 1-weightH, weightH/2, weightH/2))
elif len(waterEP[res]) == 2:
# Five point water
weightH = cosOOP*distOE[res]/sqrt(distOH[res]**2-(0.5*distHH[res])**2)
angleHOH = 2*asin(0.5*distHH[res]/distOH[res])
lenCross = (distOH[res]**2)*sin(angleHOH)
weightCross = sinOOP*distOE[res]/lenCross
system.setVirtualSite(waterEP[res][0], mm.OutOfPlaneSite(waterO[res][0], waterH[res][0], waterH[res][1], weightH/2, weightH/2, weightCross))
system.setVirtualSite(waterEP[res][1], mm.OutOfPlaneSite(waterO[res][0], waterH[res][0], waterH[res][1], weightH/2, weightH/2, -weightCross))
# Add GBSA model.
if gbmodel is not None:
# Convert implicitSolventKappa to nanometers if it is a unit.
if units.is_quantity(implicitSolventKappa):
implicitSolventKappa = implicitSolventKappa.value_in_unit((1/units.nanometers).unit)
if verbose: print("Adding GB parameters...")
charges = prmtop.getCharges()
cutoff = None
if nonbondedMethod != 'NoCutoff':
cutoff = nonbondedCutoff
if units.is_quantity(cutoff):
cutoff = cutoff.value_in_unit(units.nanometers)
if gbmodel == 'HCT':
gb = customgb.GBSAHCTForce(solventDielectric, soluteDielectric, gbsaModel, cutoff, implicitSolventKappa)
elif gbmodel == 'OBC1':
gb = customgb.GBSAOBC1Force(solventDielectric, soluteDielectric, gbsaModel, cutoff, implicitSolventKappa)
elif gbmodel == 'OBC2':
if implicitSolventKappa > 0:
gb = customgb.GBSAOBC2Force(solventDielectric, soluteDielectric, gbsaModel, cutoff, implicitSolventKappa)
else:
gb = mm.GBSAOBCForce()
gb.setSoluteDielectric(soluteDielectric)
gb.setSolventDielectric(solventDielectric)
if gbsaModel is None:
gb.setSurfaceAreaEnergy(0)
elif gbmodel == 'GBn':
gb = customgb.GBSAGBnForce(solventDielectric, soluteDielectric, gbsaModel, cutoff, implicitSolventKappa)
elif gbmodel == 'GBn2':
gb = customgb.GBSAGBn2Force(solventDielectric, soluteDielectric, gbsaModel, cutoff, implicitSolventKappa)
else:
raise ValueError("Illegal value specified for implicit solvent model")
if isinstance(gb, mm.GBSAOBCForce):
# Built-in GBSAOBCForce does not have getStandardParameters, so use
# the one from the equivalent CustomGBForce
gb_parms = customgb.GBSAOBC2Force.getStandardParameters(topology)
else:
gb_parms = type(gb).getStandardParameters(topology)
# Replace radii and screen, but screen *only* gets replaced by the
# prmtop contents for HCT, OBC1, and OBC2. GBn and GBn2 both override
# the prmtop screen factors from LEaP in sander and pmemd
if gbmodel in ('HCT', 'OBC1', 'OBC2'):
screen = [float(s) for s in prmtop._raw_data['SCREEN']]
else:
screen = [gb_parm[1] for gb_parm in gb_parms]
radii = [float(r)/10 for r in prmtop._raw_data['RADII']]
warned = False
for i, (r, s) in enumerate(zip(radii, screen)):
if abs(r - gb_parms[i][0]) > 1e-4 or abs(s - gb_parms[i][1]) > 1e-4:
if not warned:
warnings.warn(
'Non-optimal GB parameters detected for GB model %s' % gbmodel)
warned = True
gb_parms[i][0], gb_parms[i][1] = r, s
for charge, gb_parm in zip(charges, gb_parms):
if gbmodel == 'OBC2' and implicitSolventKappa == 0:
gb.addParticle(charge, gb_parm[0], gb_parm[1])
elif gbmodel == 'GBn2':
gb.addParticle([charge, gb_parm[0], gb_parm[1],
gb_parm[2], gb_parm[3], gb_parm[4]])
else:
gb.addParticle([charge, gb_parm[0], gb_parm[1]])
# OBC2 with kappa == 0 uses mm.GBSAOBC2Force, which doesn't have
# a finalize method
if not (gbmodel == 'OBC2' and implicitSolventKappa == 0.):
gb.finalize()
system.addForce(gb)
if nonbondedMethod == 'NoCutoff':
gb.setNonbondedMethod(mm.NonbondedForce.NoCutoff)
elif nonbondedMethod == 'CutoffNonPeriodic':
gb.setNonbondedMethod(mm.NonbondedForce.CutoffNonPeriodic)
gb.setCutoffDistance(nonbondedCutoff)
elif nonbondedMethod == 'CutoffPeriodic':
gb.setNonbondedMethod(mm.NonbondedForce.CutoffPeriodic)
gb.setCutoffDistance(nonbondedCutoff)
else:
raise Exception("Illegal nonbonded method for use with GBSA")
# This applies the reaction field dielectric to the NonbondedForce
# created above. Do not bind force to another name before this!
force.setReactionFieldDielectric(1.0)
return system
#=============================================================================================
# AMBER INPCRD loader classes
#=============================================================================================
class AmberAsciiRestart(object):
"""
Class responsible for parsing Amber coordinates in the ASCII format.
Automatically detects the presence of velocities or box parameters in the
file.
Parameters
----------
filename : str
Name of the restart file
asNumpy : bool (False)
Load the coordinates, velocities, and box as numpy ndarray objects
Attributes
----------
coordinates : natom x 3 array, Quantity
Particle positions with units of length
velocities : natom x 3 array, Quantity
Particle velocities with units of length per time (None if velocities
are not present in the inpcrd file)
boxVectors : 3 x 3 array, Quantity
Box vectors with units of length (None if no box is present in the
inpcrd file)
time : float, Quantity
Simulation time (None if not present) with units of time
title : str
Title of the inpcrd file
filename : str
Name of the file we are parsing
natom : int
Number of atoms in the inpcrd file
Raises
------
`IOError' if the file does not exist
`TypeError' if the format of the file is not recognized
`ValueError' if not all fields are numbers (for example, if a field is
filled with ****'s)
`IndexError' if the file is empty
`ImportError' if numpy is requested but could not be imported
Example
-------
>>> f = AmberAsciiRestart('alanine-dipeptide.inpcrd')
>>> coordinates = f.coordinates
"""
def __init__(self, filename, asNumpy=False):
# Make sure numpy is available if requested
if asNumpy and np is None:
raise ImportError('asNumpy=True: numpy is not available')
self._asNumpy = asNumpy
self.filename = filename
with open(filename, 'r') as f:
lines = f.readlines()
# Get rid of trailing blank lines
while lines and not lines[-1].strip():
lines.pop()
self._parse(lines)
def __str__(self):
return self.filename
def _parse(self, lines):
""" Parses through the inpcrd file """
global VELSCALE
self.title = lines[0].strip()
self.time = None
try:
words = lines[1].split()
self.natom = int(words[0])
except (IndexError, ValueError):
raise TypeError('Unrecognized file type [%s]' % self.filename)
if len(words) >= 2:
self.time = float(words[1]) * units.picoseconds
if len(lines) == int(ceil(self.natom / 2.0) + 2):
hasbox = hasvels = False
self.boxVectors = self.velocities = None
elif self.natom in (1, 2) and len(lines) == 4:
# This is the _only_ case where line counting does not work -- there
# is either 1 or 2 atoms and there are 4 lines. The 1st 3 lines are
# the title, natom/time, and coordinates. The 4th are almost always
# velocities since Amber does not make it easy to make a periodic
# system with only 2 atoms. If natom is 1, the 4th line is either a
# velocity (3 #'s) or a box (6 #'s). If natom is 2, it is a bit
# ambiguous. However, velocities (which are scaled by 20.445) have a
# ~0% chance of being 60+, so we can pretty easily tell if the last
# line has box dimensions and angles or velocities. I cannot
# envision a _plausible_ scenario where the detection here will fail
# in real life.
line = lines[3]
if self.natom == 1:
tmp = [line[i:i+12] for i in range(0, 72, 12) if line[i:i+12]]
if len(tmp) == 3:
hasvels = True
hasbox = False
self.boxVectors = False
elif len(tmp) == 6:
hasbox = True
hasvels = False
self.velocities = None
else:
raise TypeError('Unrecognized line in restart file %s' %
self.filename)
else:
# Ambiguous case
tmp = [float(line[i:i+12]) >= 60.0 for i in range(0, 72, 12)]
if any(tmp):
hasbox = True
hasvels = False
self.velocities = False
else:
hasvels = True
hasbox = False
self.boxVectors = False
elif len(lines) == int(ceil(self.natom / 2.0) + 3):
hasbox = True
hasvels = False
self.velocities = None
elif len(lines) == int(2 * ceil(self.natom / 2.0) + 2):
hasbox = False
self.boxVectors = None
hasvels = True
elif len(lines) == int(2 * ceil(self.natom / 2.0) + 3):
hasbox = hasvels = True
else:
raise TypeError('Badly formatted restart file. Has %d lines '
'for %d atoms.' % (len(self.lines), self.natom))
if self._asNumpy:
coordinates = np.zeros((self.natom, 3), np.float32)
if hasvels:
velocities = np.zeros((self.natom, 3), np.float32)
else:
coordinates = [Vec3(0.0, 0.0, 0.0) for i in range(self.natom)]
if hasvels:
velocities = [Vec3(0.0, 0.0, 0.0) for i in range(self.natom)]
# Now it's time to parse. Coordinates first
startline = 2
endline = startline + int(ceil(self.natom / 2.0))
idx = 0
for i in range(startline, endline):
line = lines[i]
x = float(line[ 0:12])
y = float(line[12:24])
z = float(line[24:36])
coordinates[idx] = Vec3(x, y, z)
idx += 1
if idx < self.natom:
x = float(line[36:48])
y = float(line[48:60])
z = float(line[60:72])
coordinates[idx] = Vec3(x, y, z)
idx += 1
self.coordinates = units.Quantity(coordinates, units.angstroms)
startline = endline
# Now it's time to parse velocities if we have them
if hasvels:
endline = startline + int(ceil(self.natom / 2.0))
idx = 0
for i in range(startline, endline):
line = lines[i]
x = float(line[ 0:12]) * VELSCALE
y = float(line[12:24]) * VELSCALE
z = float(line[24:36]) * VELSCALE
velocities[idx] = Vec3(x, y, z)
idx += 1
if idx < self.natom:
x = float(line[36:48]) * VELSCALE
y = float(line[48:60]) * VELSCALE
z = float(line[60:72]) * VELSCALE
velocities[idx] = Vec3(x, y, z)
idx += 1
startline = endline
self.velocities = units.Quantity(velocities,
units.angstroms/units.picoseconds)
if hasbox:
line = lines[startline]
try:
tmp = [float(line[i:i+12]) for i in range(0, 72, 12)]
except (IndexError, ValueError):
raise ValueError('Could not parse box line in %s' %
self.filename)
lengths = tmp[:3] * units.angstroms
angles = tmp[3:] * units.degrees
self.boxVectors = computePeriodicBoxVectors(lengths[0], lengths[1],
lengths[2], angles[0], angles[1], angles[2])
class AmberNetcdfRestart(object):
"""
Amber restart/inpcrd file in the NetCDF format (full double-precision
coordinates, velocities, and unit cell parameters). Reads NetCDF restarts
written by LEaP and pmemd/sander. Requires scipy to parse NetCDF files.
Parameters
----------
filename : str
Name of the restart file
asNumpy : bool (False)
Load the coordinates, velocities, and box as numpy ndarray objects
Attributes
----------
coordinates : natom x 3 array, Quantity
Particle positions with units of length
velocities : natom x 3 array, Quantity
Particle velocities with units of length per time (None if velocities
are not present in the inpcrd file)
boxVectors : 3 x 3 array, Quantity
Box vectors with units of length (None if no box is present in the
inpcrd file)
time : float, Quantity
Simulation time (None if not present) with units of time
title : str
Title of the inpcrd file
filename : str
Name of the file we are parsing
natom : int
Number of atoms in the inpcrd file
Raises
------
`IOError' if the file does not exist
`TypeError' if the file is not a NetCDF v3 file
`ImportError' if scipy is not available
Example
-------
>>> f = AmberNetcdfRestart('alanine-dipeptide.ncrst')
>>> coordinates = f.coordinates
"""
def __init__(self, filename, asNumpy=False):
try:
from scipy.io import netcdf_file
except ImportError:
raise ImportError('scipy is necessary to parse NetCDF restarts')
self.filename = filename
self.velocities = self.boxVectors = self.time = None
# Extract the information from the NetCDF file. We need to make copies
# here because the NetCDF variables are mem-mapped, but is only mapped
# to valid memory while the file handle is open. Since the context
# manager GCs the ncfile handle, the memory for the original variables
# is no longer valid. So copy those arrays while the handle is still
# open. This is unnecessary in scipy v.0.12 and lower because netcdf_file
# accidentally leaks the file handle, but that was 'fixed' in 0.13. This
# fix taken from MDTraj
ncfile = netcdf_file(filename, 'r')
try:
self.natom = ncfile.dimensions['atom']
self.coordinates = np.array(ncfile.variables['coordinates'][:])
if 'velocities' in ncfile.variables:
vels = ncfile.variables['velocities']
self.velocities = np.array(vels[:]) * vels.scale_factor
del vels # Get rid of reference to variable to avoid warnings
if ('cell_lengths' in ncfile.variables and
'cell_angles' in ncfile.variables):
self.boxVectors = np.zeros((3,3), np.float32)
leng = units.Quantity(ncfile.variables['cell_lengths'][:],
units.angstroms)
angl = units.Quantity(ncfile.variables['cell_angles'][:],
units.degrees)
self.boxVectors = computePeriodicBoxVectors(leng[0], leng[1],
leng[2], angl[0], angl[1], angl[2])
del leng, angl # Avoid warnings
if 'time' in ncfile.variables:
self.time = ncfile.variables['time'].getValue()
finally:
ncfile.close()
# They are already numpy -- convert to list if we don't want numpy
if not asNumpy:
self.coordinates = [Vec3(*x) for x in self.coordinates]
if self.velocities is not None:
self.velocities = [Vec3(*x) for x in self.velocities]
else:
if self.boxVectors is not None:
self.boxVectors = np.asarray(self.boxVectors.value_in_unit(units.nanometers))
self.boxVectors = units.Quantity(self.boxVectors, units.nanometers)
# Now add the units
self.coordinates = units.Quantity(self.coordinates, units.angstroms)
if self.velocities is not None:
self.velocities = units.Quantity(self.velocities,
units.angstroms/units.picoseconds)
self.time = units.Quantity(self.time, units.picosecond)
def readAmberCoordinates(filename, asNumpy=False):
"""
Read atomic coordinates (and optionally, box vectors) from Amber formatted coordinate file.
ARGUMENTS
filename (string) - name of Amber coordinates file to be read in
OPTIONAL ARGUMENTS
asNumpy (boolean) - if True, results will be returned as Numpy arrays instead of lists of Vec3s
RETURNS
coordinates, velocities, boxVectors
The velocities and boxVectors will be None if they are not found in the
restart file
EXAMPLES
Read coordinates in vacuum.
>>> directory = os.path.join(os.getenv('YANK_INSTALL_DIR'), 'test', 'systems', 'alanine-dipeptide-gbsa')
>>> crd_filename = os.path.join(directory, 'alanine-dipeptide.inpcrd')
>>> coordinates, velocities, box_vectors = readAmberCoordinates(crd_filename)
Read coordinates in solvent.
>>> directory = os.path.join(os.getenv('YANK_INSTALL_DIR'), 'test', 'systems', 'alanine-dipeptide-explicit')
>>> crd_filename = os.path.join(directory, 'alanine-dipeptide.inpcrd')
>>> coordinates, velocities, box_vectors = readAmberCoordinates(crd_filename)
"""
try:
crdfile = AmberNetcdfRestart(filename)
except ImportError:
# See if it's an ASCII file. If so, no need to complain
try:
crdfile = AmberAsciiRestart(filename)
except TypeError:
raise TypeError('Problem parsing %s as an ASCII Amber restart file '
'and scipy could not be imported to try reading as '
'a NetCDF restart file.' % filename)
except (IndexError, ValueError):
raise TypeError('Could not parse Amber ASCII restart file %s' %
filename)
except ImportError:
raise ImportError('Could not find numpy; cannot use asNumpy=True')
except TypeError:
# We had scipy, but this is not a NetCDF v3 file. Try as ASCII now
try:
crdfile = AmberAsciiRestart(filename)
except TypeError:
raise
raise TypeError('Problem parsing %s as an ASCII Amber restart file'
% filename)
except (IndexError, ValueError):
raise TypeError('Could not parse Amber ASCII restart file %s' %
filename)
# Import error cannot happen, since we had scipy which has numpy as a
# prereq. Do not catch that exception (only catch what you intend to
# catch...)
# We got here... one of the file types worked. Return the coordinates,
# velocities, and boxVectors
return crdfile.coordinates, crdfile.velocities, crdfile.boxVectors
#=============================================================================================
# MAIN AND TESTS
#=============================================================================================
if __name__ == "__main__":
import doctest
doctest.testmod()
|