1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
|
import unittest
from validateConstraints import *
from openmm.app import *
from openmm import *
from openmm.unit import *
import openmm.app.element as elem
import openmm.app.forcefield as forcefield
import math
import textwrap
try:
from cStringIO import StringIO
except ImportError:
from io import StringIO
import os
import warnings
class TestForceField(unittest.TestCase):
"""Test the ForceField.createSystem() method."""
def setUp(self):
"""Set up the tests by loading the input pdb files and force field
xml files.
"""
# alanine dipeptide with explicit water
self.pdb1 = PDBFile('systems/alanine-dipeptide-explicit.pdb')
self.forcefield1 = ForceField('amber99sb.xml', 'tip3p.xml')
self.topology1 = self.pdb1.topology
self.topology1.setUnitCellDimensions(Vec3(2, 2, 2))
# alanine dipeptide with implicit water
self.pdb2 = PDBFile('systems/alanine-dipeptide-implicit.pdb')
self.forcefield2 = ForceField('amber99sb.xml', 'amber99_obc.xml')
def test_NonbondedMethod(self):
"""Test all six options for the nonbondedMethod parameter."""
methodMap = {NoCutoff:NonbondedForce.NoCutoff,
CutoffNonPeriodic:NonbondedForce.CutoffNonPeriodic,
CutoffPeriodic:NonbondedForce.CutoffPeriodic,
Ewald:NonbondedForce.Ewald,
PME:NonbondedForce.PME,
LJPME:NonbondedForce.LJPME}
for method in methodMap:
system = self.forcefield1.createSystem(self.pdb1.topology,
nonbondedMethod=method)
forces = system.getForces()
self.assertTrue(any(isinstance(f, NonbondedForce) and
f.getNonbondedMethod()==methodMap[method]
for f in forces))
def test_DispersionCorrection(self):
"""Test to make sure that the dispersion/long-range correction is set properly."""
top = Topology()
chain = top.addChain()
for lrc in (True, False):
xml = textwrap.dedent(
"""
<ForceField>
<LennardJonesForce lj14scale="0.3" useDispersionCorrection="{lrc}">
<Atom type="A" sigma="1" epsilon="0.1"/>
<Atom type="B" sigma="2" epsilon="0.2"/>
<NBFixPair type1="A" type2="B" sigma="2.5" epsilon="1.1"/>
</LennardJonesForce>
<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5" useDispersionCorrection="{lrc2}">
<Atom type="A" sigma="0.315" epsilon="0.635"/>
</NonbondedForce>
</ForceField>
"""
)
ff = ForceField(StringIO(xml.format(lrc=lrc, lrc2=lrc)))
system = ff.createSystem(top)
checked_nonbonded = False
checked_custom = False
for force in system.getForces():
if isinstance(force, NonbondedForce):
self.assertEqual(force.getUseDispersionCorrection(), lrc)
checked_nonbonded = True
elif isinstance(force, CustomNonbondedForce):
self.assertEqual(force.getUseLongRangeCorrection(), lrc)
checked_custom = True
self.assertTrue(checked_nonbonded and checked_custom)
# check that the keyword argument overwrites xml input
lrc_kwarg = not lrc
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
system2 = ff.createSystem(top, useDispersionCorrection=lrc_kwarg)
self.assertTrue(len(w) == 2)
assert "conflict" in str(w[-1].message).lower()
checked_nonbonded = False
checked_custom = False
for force in system2.getForces():
if isinstance(force, NonbondedForce):
self.assertEqual(force.getUseDispersionCorrection(), lrc_kwarg)
checked_nonbonded = True
elif isinstance(force, CustomNonbondedForce):
self.assertEqual(force.getUseLongRangeCorrection(), lrc_kwarg)
checked_custom = True
self.assertTrue(checked_nonbonded and checked_custom)
# check that no warning is generated when useDispersionCorrection is not in the xml file
xml = textwrap.dedent(
"""
<ForceField>
<LennardJonesForce lj14scale="0.3">
<Atom type="A" sigma="1" epsilon="0.1"/>
<Atom type="B" sigma="2" epsilon="0.2"/>
<NBFixPair type1="A" type2="B" sigma="2.5" epsilon="1.1"/>
</LennardJonesForce>
<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5">
<Atom type="A" sigma="0.315" epsilon="0.635"/>
</NonbondedForce>
</ForceField>
"""
)
ff = ForceField(StringIO(xml))
system = ff.createSystem(top)
for lrc_kwarg in [True, False]:
with warnings.catch_warnings():
warnings.simplefilter("error")
system2 = ff.createSystem(top, useDispersionCorrection=lrc_kwarg)
def test_Cutoff(self):
"""Test to make sure the nonbondedCutoff parameter is passed correctly."""
for method in [CutoffNonPeriodic, CutoffPeriodic, Ewald, PME, LJPME]:
system = self.forcefield1.createSystem(self.pdb1.topology,
nonbondedMethod=method,
nonbondedCutoff=2*nanometer,
constraints=HBonds)
cutoff_distance = 0.0*nanometer
cutoff_check = 2.0*nanometer
for force in system.getForces():
if isinstance(force, NonbondedForce):
cutoff_distance = force.getCutoffDistance()
self.assertEqual(cutoff_distance, cutoff_check)
def test_SwitchingDistance(self):
"""Test that the switchDistance parameter is processed correctly."""
for switchDistance in [None, 0.9*nanometers]:
system = self.forcefield1.createSystem(self.pdb1.topology,
nonbondedMethod=PME,
switchDistance=switchDistance)
for force in system.getForces():
if isinstance(force, NonbondedForce):
if switchDistance is None:
self.assertFalse(force.getUseSwitchingFunction())
else:
self.assertTrue(force.getUseSwitchingFunction())
self.assertEqual(switchDistance, force.getSwitchingDistance())
def test_RemoveCMMotion(self):
"""Test both options (True and False) for the removeCMMotion parameter."""
for b in [True, False]:
system = self.forcefield1.createSystem(self.pdb1.topology,removeCMMotion=b)
forces = system.getForces()
self.assertEqual(any(isinstance(f, CMMotionRemover) for f in forces), b)
def test_RigidWaterAndConstraints(self):
"""Test all eight options for the constraints and rigidWater parameters."""
topology = self.pdb1.topology
for constraints_value in [None, HBonds, AllBonds, HAngles]:
for rigidWater_value in [True, False, None]:
system = self.forcefield1.createSystem(topology,
constraints=constraints_value,
rigidWater=rigidWater_value)
validateConstraints(self, topology, system,
constraints_value, rigidWater_value != False)
def test_flexibleConstraints(self):
""" Test the flexibleConstraints keyword """
topology = self.pdb1.topology
system1 = self.forcefield1.createSystem(topology, constraints=HAngles,
rigidWater=True)
system2 = self.forcefield1.createSystem(topology, constraints=HAngles,
rigidWater=True, flexibleConstraints=True)
system3 = self.forcefield1.createSystem(topology, constraints=None, rigidWater=False)
validateConstraints(self, topology, system1, HAngles, True)
# validateConstraints fails for system2 since by definition atom pairs can be in both bond
# and constraint lists. So just check that the number of constraints is the same for both
# system1 and system2
self.assertEqual(system1.getNumConstraints(), system2.getNumConstraints())
for force in system1.getForces():
if isinstance(force, HarmonicBondForce):
bf1 = force
elif isinstance(force, HarmonicAngleForce):
af1 = force
for force in system2.getForces():
if isinstance(force, HarmonicBondForce):
bf2 = force
elif isinstance(force, HarmonicAngleForce):
af2 = force
for force in system3.getForces():
if isinstance(force, HarmonicAngleForce):
af3 = force
# Make sure we picked up extra bond terms with flexibleConstraints
self.assertGreater(bf2.getNumBonds(), bf1.getNumBonds())
# Make sure flexibleConstraints yields just as many angles as no constraints
self.assertEqual(af2.getNumAngles(), af3.getNumAngles())
def test_ImplicitSolvent(self):
"""Test the four types of implicit solvents using the implicitSolvent
parameter.
"""
topology = self.pdb2.topology
system = self.forcefield2.createSystem(topology)
forces = system.getForces()
self.assertTrue(any(isinstance(f, GBSAOBCForce) for f in forces))
def test_ImplicitSolventParameters(self):
"""Test that solventDielectric and soluteDielectric are passed correctly
for the different types of implicit solvent.
"""
topology = self.pdb2.topology
system = self.forcefield2.createSystem(topology, solventDielectric=50.0,
soluteDielectric=0.9)
found_matching_solvent_dielectric=False
found_matching_solute_dielectric=False
for force in system.getForces():
if isinstance(force, GBSAOBCForce):
if force.getSolventDielectric() == 50.0:
found_matching_solvent_dielectric = True
if force.getSoluteDielectric() == 0.9:
found_matching_solute_dielectric = True
if isinstance(force, NonbondedForce):
self.assertEqual(force.getReactionFieldDielectric(), 1.0)
self.assertTrue(found_matching_solvent_dielectric and
found_matching_solute_dielectric)
def test_HydrogenMass(self):
"""Test that altering the mass of hydrogens works correctly."""
topology = self.pdb1.topology
hydrogenMass = 4*amu
system1 = self.forcefield1.createSystem(topology)
system2 = self.forcefield1.createSystem(topology, hydrogenMass=hydrogenMass)
for atom in topology.atoms():
if atom.element == elem.hydrogen:
self.assertNotEqual(hydrogenMass, system1.getParticleMass(atom.index))
if atom.residue.name == 'HOH':
self.assertEqual(system1.getParticleMass(atom.index), system2.getParticleMass(atom.index))
else:
self.assertEqual(hydrogenMass, system2.getParticleMass(atom.index))
totalMass1 = sum([system1.getParticleMass(i) for i in range(system1.getNumParticles())]).value_in_unit(amu)
totalMass2 = sum([system2.getParticleMass(i) for i in range(system2.getNumParticles())]).value_in_unit(amu)
self.assertAlmostEqual(totalMass1, totalMass2)
def test_DrudeMass(self):
"""Test that setting the mass of Drude particles works correctly."""
forcefield = ForceField('charmm_polar_2013.xml')
pdb = PDBFile('systems/ala_ala_ala.pdb')
modeller = Modeller(pdb.topology, pdb.positions)
modeller.addExtraParticles(forcefield)
system = forcefield.createSystem(modeller.topology, drudeMass=0)
trueMass = [system.getParticleMass(i) for i in range(system.getNumParticles())]
drudeMass = 0.3*amu
system = forcefield.createSystem(modeller.topology, drudeMass=drudeMass)
adjustedMass = [system.getParticleMass(i) for i in range(system.getNumParticles())]
drudeForce = [f for f in system.getForces() if isinstance(f, DrudeForce)][0]
drudeParticles = set()
parentParticles = set()
for i in range(drudeForce.getNumParticles()):
params = drudeForce.getParticleParameters(i)
drudeParticles.add(params[0])
parentParticles.add(params[1])
for i in range(system.getNumParticles()):
if i in drudeParticles:
self.assertEqual(0*amu, trueMass[i])
self.assertEqual(drudeMass, adjustedMass[i])
elif i in parentParticles:
self.assertEqual(trueMass[i]-drudeMass, adjustedMass[i])
else:
self.assertEqual(trueMass[i], adjustedMass[i])
def test_UnusedArgs(self):
"""Test that specifying an argument that is never used throws an exception."""
topology = self.pdb1.topology
# Using the default value should not raise an exception.
self.forcefield1.createSystem(topology, drudeMass=0.4*amu)
# Specifying a non-default value should.
with self.assertRaises(ValueError):
self.forcefield1.createSystem(topology, drudeMass=0.5*amu)
# Specifying a nonexistant argument should raise an exception.
with self.assertRaises(ValueError):
self.forcefield1.createSystem(topology, nonbndedCutoff=1.0*nanometer)
def test_Forces(self):
"""Compute forces and compare them to ones generated with a previous version of OpenMM to ensure they haven't changed."""
pdb = PDBFile('systems/lysozyme-implicit.pdb')
system = self.forcefield2.createSystem(pdb.topology)
integrator = VerletIntegrator(0.001)
context = Context(system, integrator)
context.setPositions(pdb.positions)
state1 = context.getState(getForces=True)
with open('systems/lysozyme-implicit-forces.xml') as input:
state2 = XmlSerializer.deserialize(input.read())
numDifferences = 0
for f1, f2, in zip(state1.getForces().value_in_unit(kilojoules_per_mole/nanometer), state2.getForces().value_in_unit(kilojoules_per_mole/nanometer)):
diff = norm(f1-f2)
if diff > 0.1 and diff/norm(f1) > 1e-3:
numDifferences += 1
self.assertTrue(numDifferences < system.getNumParticles()/20) # Tolerate occasional differences from numerical error
def test_ImplicitSolventForces(self):
"""Compute forces for different implicit solvent types, and compare them to ones generated with AmberPrmtopFile."""
solventType = ['hct', 'obc1', 'obc2', 'gbn', 'gbn2']
nonbondedMethod = [NoCutoff, CutoffNonPeriodic, CutoffNonPeriodic, NoCutoff, NoCutoff]
kappa = [0.0, 0.0, 1.698295227342757, 1.698295227342757, 0.0]
file = [None, 'OBC1_NonPeriodic', 'OBC2_NonPeriodic_Salt', None, 'GBn2_NoCutoff']
for i in range(len(file)):
forcefield = ForceField('amber96.xml', f'implicit/{solventType[i]}.xml')
system = forcefield.createSystem(self.pdb2.topology, nonbondedMethod=nonbondedMethod[i], implicitSolventKappa=kappa[i])
integrator = VerletIntegrator(0.001)
context = Context(system, integrator, Platform.getPlatformByName("Reference"))
context.setPositions(self.pdb2.positions)
state1 = context.getState(getForces=True)
if file[i] is not None:
with open('systems/alanine-dipeptide-implicit-forces/'+file[i]+'.xml') as infile:
state2 = XmlSerializer.deserialize(infile.read())
for f1, f2, in zip(state1.getForces().value_in_unit(kilojoules_per_mole/nanometer), state2.getForces().value_in_unit(kilojoules_per_mole/nanometer)):
diff = norm(f1-f2)
self.assertTrue(diff < 0.1 or diff/norm(f1) < 1e-4)
def test_ProgrammaticForceField(self):
"""Test building a ForceField programmatically."""
# Build the ForceField for TIP3P programmatically.
ff = ForceField()
ff.registerAtomType({'name':'tip3p-O', 'class':'OW', 'mass':15.99943*daltons, 'element':elem.oxygen})
ff.registerAtomType({'name':'tip3p-H', 'class':'HW', 'mass':1.007947*daltons, 'element':elem.hydrogen})
residue = ForceField._TemplateData('HOH')
residue.atoms.append(ForceField._TemplateAtomData('O', 'tip3p-O', elem.oxygen))
residue.atoms.append(ForceField._TemplateAtomData('H1', 'tip3p-H', elem.hydrogen))
residue.atoms.append(ForceField._TemplateAtomData('H2', 'tip3p-H', elem.hydrogen))
residue.addBond(0, 1)
residue.addBond(0, 2)
ff.registerResidueTemplate(residue)
bonds = forcefield.HarmonicBondGenerator(ff)
bonds.registerBond({'class1':'OW', 'class2':'HW', 'length':0.09572*nanometers, 'k':462750.4*kilojoules_per_mole/nanometer})
ff.registerGenerator(bonds)
angles = forcefield.HarmonicAngleGenerator(ff)
angles.registerAngle({'class1':'HW', 'class2':'OW', 'class3':'HW', 'angle':1.82421813418*radians, 'k':836.8*kilojoules_per_mole/radian})
ff.registerGenerator(angles)
nonbonded = forcefield.NonbondedGenerator(ff, 0.833333, 0.5, True)
nonbonded.registerAtom({'type':'tip3p-O', 'charge':-0.834, 'sigma':0.31507524065751241*nanometers, 'epsilon':0.635968*kilojoules_per_mole})
nonbonded.registerAtom({'type':'tip3p-H', 'charge':0.417, 'sigma':1*nanometers, 'epsilon':0*kilojoules_per_mole})
ff.registerGenerator(nonbonded)
# Build a water box.
modeller = Modeller(Topology(), [])
modeller.addSolvent(ff, boxSize=Vec3(3, 3, 3)*nanometers)
# Create a system using the programmatic force field as well as one from an XML file.
system1 = ff.createSystem(modeller.topology)
ff2 = ForceField('tip3p.xml')
system2 = ff2.createSystem(modeller.topology)
self.assertEqual(XmlSerializer.serialize(system1), XmlSerializer.serialize(system2))
def test_PeriodicBoxVectors(self):
"""Test setting the periodic box vectors."""
vectors = (Vec3(5, 0, 0), Vec3(-1.5, 4.5, 0), Vec3(0.4, 0.8, 7.5))*nanometers
self.pdb1.topology.setPeriodicBoxVectors(vectors)
self.assertEqual(Vec3(5, 4.5, 7.5)*nanometers, self.pdb1.topology.getUnitCellDimensions())
system = self.forcefield1.createSystem(self.pdb1.topology)
for i in range(3):
self.assertEqual(vectors[i], self.pdb1.topology.getPeriodicBoxVectors()[i])
self.assertEqual(vectors[i], system.getDefaultPeriodicBoxVectors()[i])
def test_ResidueAttributes(self):
"""Test a ForceField that gets per-particle parameters from residue attributes."""
xml = """
<ForceField>
<AtomTypes>
<Type name="tip3p-O" class="OW" element="O" mass="15.99943"/>
<Type name="tip3p-H" class="HW" element="H" mass="1.007947"/>
</AtomTypes>
<Residues>
<Residue name="HOH">
<Atom name="O" type="tip3p-O" charge="-0.834"/>
<Atom name="H1" type="tip3p-H" charge="0.417"/>
<Atom name="H2" type="tip3p-H" charge="0.417"/>
<Bond from="0" to="1"/>
<Bond from="0" to="2"/>
</Residue>
</Residues>
<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5">
<UseAttributeFromResidue name="charge"/>
<Atom type="tip3p-O" sigma="0.315" epsilon="0.635"/>
<Atom type="tip3p-H" sigma="1" epsilon="0"/>
</NonbondedForce>
</ForceField>"""
ff = ForceField(StringIO(xml))
# Build a water box.
modeller = Modeller(Topology(), [])
modeller.addSolvent(ff, boxSize=Vec3(3, 3, 3)*nanometers)
# Create a system and make sure all nonbonded parameters are correct.
system = ff.createSystem(modeller.topology)
nonbonded = [f for f in system.getForces() if isinstance(f, NonbondedForce)][0]
atoms = list(modeller.topology.atoms())
for i in range(len(atoms)):
params = nonbonded.getParticleParameters(i)
if atoms[i].element == elem.oxygen:
self.assertEqual(params[0], -0.834*elementary_charge)
self.assertEqual(params[1], 0.315*nanometers)
self.assertEqual(params[2], 0.635*kilojoule_per_mole)
else:
self.assertEqual(params[0], 0.417*elementary_charge)
self.assertEqual(params[1], 1.0*nanometers)
self.assertEqual(params[2], 0.0*kilojoule_per_mole)
def test_residueMatcher(self):
"""Test using a custom template matcher to select templates."""
xml = """
<ForceField>
<AtomTypes>
<Type name="tip3p-O" class="OW" element="O" mass="15.99943"/>
<Type name="tip3p-H" class="HW" element="H" mass="1.007947"/>
</AtomTypes>
<Residues>
<Residue name="HOH">
<Atom name="O" type="tip3p-O" charge="-0.834"/>
<Atom name="H1" type="tip3p-H" charge="0.417"/>
<Atom name="H2" type="tip3p-H" charge="0.417"/>
<Bond from="0" to="1"/>
<Bond from="0" to="2"/>
</Residue>
<Residue name="HOH2">
<Atom name="O" type="tip3p-O" charge="0.834"/>
<Atom name="H1" type="tip3p-H" charge="-0.417"/>
<Atom name="H2" type="tip3p-H" charge="-0.417"/>
<Bond from="0" to="1"/>
<Bond from="0" to="2"/>
</Residue>
</Residues>
<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5">
<UseAttributeFromResidue name="charge"/>
<Atom type="tip3p-O" sigma="0.315" epsilon="0.635"/>
<Atom type="tip3p-H" sigma="1" epsilon="0"/>
</NonbondedForce>
</ForceField>"""
ff = ForceField(StringIO(xml))
# Load a water box.
prmtop = AmberPrmtopFile('systems/water-box-216.prmtop')
top = prmtop.topology
# Building a System should fail, because two templates match each residue.
self.assertRaises(Exception, lambda: ff.createSystem(top))
# Register a template matcher that selects a particular one.
def matcher(ff, res, bondedToAtom, ignoreExternalBonds, ignoreExtraParticles):
return ff._templates['HOH2']
ff.registerTemplateMatcher(matcher)
# It should now succeed in building a System.
system = ff.createSystem(top)
# Make sure it used the correct parameters.
nb = [f for f in system.getForces() if isinstance(f, NonbondedForce)][0]
for atom in top.atoms():
charge, sigma, epsilon = nb.getParticleParameters(atom.index)
if atom.name == 'O':
self.assertEqual(0.834*elementary_charge, charge)
else:
self.assertEqual(-0.417*elementary_charge, charge)
def test_residueTemplateGenerator(self):
"""Test the ability to add residue template generators to parameterize unmatched residues."""
def simpleTemplateGenerator(forcefield, residue):
"""\
Simple residue template generator.
This implementation uses the programmatic API to define residue templates.
NOTE: We presume we have already loaded the force definitions into ForceField.
"""
# Generate a unique prefix name for generating parameters.
from uuid import uuid4
template_name = uuid4()
# Create residue template.
from openmm.app.forcefield import _createResidueTemplate
template = _createResidueTemplate(residue) # use helper function
template.name = template_name # replace template name
for (template_atom, residue_atom) in zip(template.atoms, residue.atoms()):
template_atom.type = 'XXX' # replace atom type
# Register the template.
forcefield.registerResidueTemplate(template)
# Signal that we have successfully parameterized the residue.
return True
# Define forcefield parameters used by simpleTemplateGenerator.
# NOTE: This parameter definition file will currently only work for residues that either have
# no external bonds or external bonds to other residues parameterized by the simpleTemplateGenerator.
simple_ffxml_contents = """
<ForceField>
<AtomTypes>
<Type name="XXX" class="XXX" element="C" mass="12.0"/>
</AtomTypes>
<HarmonicBondForce>
<Bond type1="XXX" type2="XXX" length="0.1409" k="392459.2"/>
</HarmonicBondForce>
<HarmonicAngleForce>
<Angle type1="XXX" type2="XXX" type3="XXX" angle="2.09439510239" k="527.184"/>
</HarmonicAngleForce>
<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5">
<Atom type="XXX" charge="0.000" sigma="0.315" epsilon="0.635"/>
</NonbondedForce>
</ForceField>"""
#
# Test where we generate parameters for only a ligand.
#
# Load the PDB file.
pdb = PDBFile(os.path.join('systems', 'T4-lysozyme-L99A-p-xylene-implicit.pdb'))
# Create a ForceField object.
forcefield = ForceField('amber99sb.xml', 'tip3p.xml', StringIO(simple_ffxml_contents))
# Add the residue template generator.
forcefield.registerTemplateGenerator(simpleTemplateGenerator)
# Parameterize system.
system = forcefield.createSystem(pdb.topology, nonbondedMethod=NoCutoff)
# TODO: Test energies are finite?
#
# Test for a few systems where we generate all parameters.
#
tests = [
{ 'pdb_filename' : 'alanine-dipeptide-implicit.pdb', 'nonbondedMethod' : NoCutoff },
{ 'pdb_filename' : 'lysozyme-implicit.pdb', 'nonbondedMethod' : NoCutoff },
{ 'pdb_filename' : 'alanine-dipeptide-explicit.pdb', 'nonbondedMethod' : CutoffPeriodic },
]
# Test all systems with separate ForceField objects.
for test in tests:
# Load the PDB file.
pdb = PDBFile(os.path.join('systems', test['pdb_filename']))
# Create a ForceField object.
forcefield = ForceField(StringIO(simple_ffxml_contents))
# Add the residue template generator.
forcefield.registerTemplateGenerator(simpleTemplateGenerator)
# Parameterize system.
system = forcefield.createSystem(pdb.topology, nonbondedMethod=test['nonbondedMethod'])
# TODO: Test energies are finite?
# Now test all systems with a single ForceField object.
# Create a ForceField object.
forcefield = ForceField(StringIO(simple_ffxml_contents))
# Add the residue template generator.
forcefield.registerTemplateGenerator(simpleTemplateGenerator)
for test in tests:
# Load the PDB file.
pdb = PDBFile(os.path.join('systems', test['pdb_filename']))
# Parameterize system.
system = forcefield.createSystem(pdb.topology, nonbondedMethod=test['nonbondedMethod'])
# TODO: Test energies are finite?
def test_getUnmatchedResidues(self):
"""Test retrieval of list of residues for which no templates are available."""
# Load the PDB file.
pdb = PDBFile(os.path.join('systems', 'T4-lysozyme-L99A-p-xylene-implicit.pdb'))
# Create a ForceField object.
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
# Get list of unmatched residues.
unmatched_residues = forcefield.getUnmatchedResidues(pdb.topology)
# Check results.
self.assertEqual(len(unmatched_residues), 1)
self.assertEqual(unmatched_residues[0].name, 'TMP')
self.assertEqual(unmatched_residues[0].id, '163')
# Load the PDB file.
pdb = PDBFile(os.path.join('systems', 'ala_ala_ala.pdb'))
# Create a ForceField object.
forcefield = ForceField('tip3p.xml')
# Get list of unmatched residues.
unmatched_residues = forcefield.getUnmatchedResidues(pdb.topology)
# Check results.
self.assertEqual(len(unmatched_residues), 3)
self.assertEqual(unmatched_residues[0].name, 'ALA')
self.assertEqual(unmatched_residues[0].chain.id, 'X')
self.assertEqual(unmatched_residues[0].id, '1')
def test_generateTemplatesForUnmatchedResidues(self):
"""Test generation of blank forcefield residue templates for unmatched residues."""
#
# Test where we generate parameters for only a ligand.
#
# Load the PDB file.
pdb = PDBFile(os.path.join('systems', 'nacl-water.pdb'))
# Create a ForceField object.
forcefield = ForceField('tip3p.xml')
# Get list of unmatched residues.
unmatched_residues = forcefield.getUnmatchedResidues(pdb.topology)
[templates, residues] = forcefield.generateTemplatesForUnmatchedResidues(pdb.topology)
# Check results.
self.assertEqual(len(unmatched_residues), 24)
self.assertEqual(len(residues), 2)
self.assertEqual(len(templates), 2)
unique_names = set([ residue.name for residue in residues ])
self.assertTrue('HOH' not in unique_names)
self.assertTrue('NA' in unique_names)
self.assertTrue('CL' in unique_names)
template_names = set([ template.name for template in templates ])
self.assertTrue('HOH' not in template_names)
self.assertTrue('NA' in template_names)
self.assertTrue('CL' in template_names)
# Define forcefield parameters using returned templates.
# NOTE: This parameter definition file will currently only work for residues that either have
# no external bonds or external bonds to other residues parameterized by the simpleTemplateGenerator.
simple_ffxml_contents = """
<ForceField>
<AtomTypes>
<Type name="XXX" class="XXX" element="C" mass="12.0"/>
</AtomTypes>
<HarmonicBondForce>
<Bond type1="XXX" type2="XXX" length="0.1409" k="392459.2"/>
</HarmonicBondForce>
<HarmonicAngleForce>
<Angle type1="XXX" type2="XXX" type3="XXX" angle="2.09439510239" k="527.184"/>
</HarmonicAngleForce>
<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5">
<Atom type="XXX" charge="0.000" sigma="0.315" epsilon="0.635"/>
</NonbondedForce>
</ForceField>"""
#
# Test the pre-geenration of missing residue template for a ligand.
#
# Load the PDB file.
pdb = PDBFile(os.path.join('systems', 'T4-lysozyme-L99A-p-xylene-implicit.pdb'))
# Create a ForceField object.
forcefield = ForceField('amber99sb.xml', 'tip3p.xml', StringIO(simple_ffxml_contents))
# Get list of unique unmatched residues.
[templates, residues] = forcefield.generateTemplatesForUnmatchedResidues(pdb.topology)
# Add residue templates to forcefield.
for template in templates:
# Replace atom types.
for atom in template.atoms:
atom.type = 'XXX'
# Register the template.
forcefield.registerResidueTemplate(template)
# Parameterize system.
system = forcefield.createSystem(pdb.topology, nonbondedMethod=NoCutoff)
# TODO: Test energies are finite?
def test_getMatchingTemplates(self):
"""Test retrieval of list of templates that match residues in a topology."""
# Load the PDB file.
pdb = PDBFile(os.path.join('systems', 'ala_ala_ala.pdb'))
# Create a ForceField object.
forcefield = ForceField('amber99sb.xml')
# Get list of matching residue templates.
templates = forcefield.getMatchingTemplates(pdb.topology)
# Check results.
residues = [ residue for residue in pdb.topology.residues() ]
self.assertEqual(len(templates), len(residues))
self.assertEqual(templates[0].name, 'NALA')
self.assertEqual(templates[1].name, 'ALA')
self.assertEqual(templates[2].name, 'CALA')
def test_Wildcard(self):
"""Test that PeriodicTorsionForces using wildcard ('') for atom types / classes in the ffxml are correctly registered"""
# Use wildcards in types
xml = """
<ForceField>
<AtomTypes>
<Type name="C" class="C" element="C" mass="12.010000"/>
<Type name="O" class="O" element="O" mass="16.000000"/>
</AtomTypes>
<PeriodicTorsionForce>
<Proper type1="" type2="C" type3="C" type4="" periodicity1="2" phase1="3.141593" k1="15.167000"/>
<Improper type1="C" type2="" type3="" type4="O" periodicity1="2" phase1="3.141593" k1="43.932000"/>
</PeriodicTorsionForce>
</ForceField>"""
ff = ForceField(StringIO(xml))
self.assertEqual(len(ff._forces[0].proper), 1)
self.assertEqual(len(ff._forces[0].improper), 1)
# Use wildcards in classes
xml = """
<ForceField>
<AtomTypes>
<Type name="C" class="C" element="C" mass="12.010000"/>
<Type name="O" class="O" element="O" mass="16.000000"/>
</AtomTypes>
<PeriodicTorsionForce>
<Proper class1="" class2="C" class3="C" class4="" periodicity1="2" phase1="3.141593" k1="15.167000"/>
<Improper class1="C" class2="" class3="" class4="O" periodicity1="2" phase1="3.141593" k1="43.932000"/>
</PeriodicTorsionForce>
</ForceField>"""
ff = ForceField(StringIO(xml))
self.assertEqual(len(ff._forces[0].proper), 1)
self.assertEqual(len(ff._forces[0].improper), 1)
def test_ScalingFactorCombining(self):
""" Tests that FFs can be combined if their scaling factors are very close """
forcefield = ForceField('amber99sb.xml', os.path.join('systems', 'test_amber_ff.xml'))
# This would raise an exception if it didn't work
def test_MultipleFilesandForceTags(self):
"""Test that the order of listing of multiple ffxmls does not matter.
Tests that one generator per force type is created and that the ffxml
defining atom types does not have to be listed first"""
ffxml = """<ForceField>
<Residues>
<Residue name="ACE-Test">
<Atom name="HH31" type="710"/>
<Atom name="CH3" type="711"/>
<Atom name="HH32" type="710"/>
<Atom name="HH33" type="710"/>
<Atom name="C" type="712"/>
<Atom name="O" type="713"/>
<Bond from="0" to="1"/>
<Bond from="1" to="2"/>
<Bond from="1" to="3"/>
<Bond from="1" to="4"/>
<Bond from="4" to="5"/>
<ExternalBond from="4"/>
</Residue>
</Residues>
<PeriodicTorsionForce>
<Proper class1="C" class2="C" class3="C" class4="C" periodicity1="2" phase1="3.14159265359" k1="10.46"/>
<Improper class1="C" class2="C" class3="C" class4="C" periodicity1="2" phase1="3.14159265359" k1="43.932"/>
</PeriodicTorsionForce>
</ForceField>"""
ff1 = ForceField(StringIO(ffxml), 'amber99sbildn.xml')
ff2 = ForceField('amber99sbildn.xml', StringIO(ffxml))
self.assertEqual(len(ff1._forces), 4)
self.assertEqual(len(ff2._forces), 4)
pertorsion1 = ff1._forces[0]
pertorsion2 = ff2._forces[2]
self.assertEqual(len(pertorsion1.proper), 110)
self.assertEqual(len(pertorsion1.improper), 42)
self.assertEqual(len(pertorsion2.proper), 110)
self.assertEqual(len(pertorsion2.improper), 42)
def test_ResidueTemplateUserChoice(self):
"""Test createSystem does not allow multiple matching templates, unless
user has specified which template to use via residueTemplates arg"""
ffxml = """<ForceField>
<AtomTypes>
<Type name="Fe2+" class="Fe2+" element="Fe" mass="55.85"/>
<Type name="Fe3+" class="Fe3+" element="Fe" mass="55.85"/>
</AtomTypes>
<Residues>
<Residue name="FE2">
<Atom name="FE2" type="Fe2+" charge="2.0"/>
</Residue>
<Residue name="FE">
<Atom name="FE" type="Fe3+" charge="3.0"/>
</Residue>
</Residues>
<NonbondedForce coulomb14scale="0.833333333333" lj14scale="0.5">
<UseAttributeFromResidue name="charge"/>
<Atom type="Fe2+" sigma="0.227535532613" epsilon="0.0150312292"/>
<Atom type="Fe3+" sigma="0.192790482606" epsilon="0.00046095128"/>
</NonbondedForce>
</ForceField>"""
pdb_string = "ATOM 1 FE FE A 1 20.956 27.448 -29.067 1.00 0.00 Fe"
ff = ForceField(StringIO(ffxml))
pdb = PDBFile(StringIO(pdb_string))
self.assertRaises(Exception, lambda: ff.createSystem(pdb.topology))
sys = ff.createSystem(pdb.topology, residueTemplates={list(pdb.topology.residues())[0] : 'FE2'})
# confirm charge
self.assertEqual(sys.getForce(0).getParticleParameters(0)[0]._value, 2.0)
sys = ff.createSystem(pdb.topology, residueTemplates={list(pdb.topology.residues())[0] : 'FE'})
# confirm charge
self.assertEqual(sys.getForce(0).getParticleParameters(0)[0]._value, 3.0)
def test_ResidueOverriding(self):
"""Test residue overriding via override tag in the XML"""
ffxml1 = """<ForceField>
<AtomTypes>
<Type name="Fe2+_tip3p_HFE" class="Fe2+_tip3p_HFE" element="Fe" mass="55.85"/>
</AtomTypes>
<Residues>
<Residue name="FE2">
<Atom name="FE2" type="Fe2+_tip3p_HFE" charge="2.0"/>
</Residue>
</Residues>
<NonbondedForce coulomb14scale="0.833333333333" lj14scale="0.5">
<UseAttributeFromResidue name="charge"/>
<Atom type="Fe2+_tip3p_HFE" sigma="0.227535532613" epsilon="0.0150312292"/>
</NonbondedForce>
</ForceField>"""
ffxml2 = """<ForceField>
<AtomTypes>
<Type name="Fe2+_tip3p_standard" class="Fe2+_tip3p_standard" element="Fe" mass="55.85"/>
</AtomTypes>
<Residues>
<Residue name="FE2">
<Atom name="FE2" type="Fe2+_tip3p_standard" charge="2.0"/>
</Residue>
</Residues>
<NonbondedForce coulomb14scale="0.833333333333" lj14scale="0.5">
<UseAttributeFromResidue name="charge"/>
<Atom type="Fe2+_tip3p_standard" sigma="0.241077193129" epsilon="0.03940482832"/>
</NonbondedForce>
</ForceField>"""
ffxml3 = """<ForceField>
<AtomTypes>
<Type name="Fe2+_tip3p_standard" class="Fe2+_tip3p_standard" element="Fe" mass="55.85"/>
</AtomTypes>
<Residues>
<Residue name="FE2" override="1">
<Atom name="FE2" type="Fe2+_tip3p_standard" charge="2.0"/>
</Residue>
</Residues>
<NonbondedForce coulomb14scale="0.833333333333" lj14scale="0.5">
<UseAttributeFromResidue name="charge"/>
<Atom type="Fe2+_tip3p_standard" sigma="0.241077193129" epsilon="0.03940482832"/>
</NonbondedForce>
</ForceField>"""
pdb_string = "ATOM 1 FE FE A 1 20.956 27.448 -29.067 1.00 0.00 Fe"
pdb = PDBFile(StringIO(pdb_string))
self.assertRaises(Exception, lambda: ForceField(StringIO(ffxml1), StringIO(ffxml2)))
ff = ForceField(StringIO(ffxml1), StringIO(ffxml3))
self.assertEqual(ff._templates['FE2'].atoms[0].type, 'Fe2+_tip3p_standard')
ff.createSystem(pdb.topology)
def test_LennardJonesGenerator(self):
""" Test the LennardJones generator"""
warnings.filterwarnings('ignore', category=CharmmPSFWarning)
psf = CharmmPsfFile('systems/ions.psf')
pdb = PDBFile('systems/ions.pdb')
params = CharmmParameterSet('systems/toppar_water_ions.str'
)
# Box dimensions (found from bounding box)
psf.setBox(12.009*angstroms, 12.338*angstroms, 11.510*angstroms)
# Turn off charges so we only test the Lennard-Jones energies
for a in psf.atom_list:
a.charge = 0.0
# Now compute the full energy
plat = Platform.getPlatformByName('Reference')
system = psf.createSystem(params, nonbondedMethod=PME,
nonbondedCutoff=5*angstroms)
con = Context(system, VerletIntegrator(2*femtoseconds), plat)
con.setPositions(pdb.positions)
# Now set up system from ffxml.
xml = """
<ForceField>
<AtomTypes>
<Type name="SOD" class="SOD" element="Na" mass="22.98977"/>
<Type name="CLA" class="CLA" element="Cl" mass="35.45"/>
</AtomTypes>
<Residues>
<Residue name="CLA">
<Atom name="CLA" type="CLA"/>
</Residue>
<Residue name="SOD">
<Atom name="SOD" type="SOD"/>
</Residue>
</Residues>
<LennardJonesForce lj14scale="1.0" useDispersionCorrection="False">
<Atom type="CLA" sigma="0.404468018036" epsilon="0.6276"/>
<Atom type="SOD" sigma="0.251367073323" epsilon="0.1962296"/>
<NBFixPair type1="CLA" type2="SOD" sigma="0.33239431" epsilon="0.350933"/>
</LennardJonesForce>
</ForceField> """
ff = ForceField(StringIO(xml))
system2 = ff.createSystem(pdb.topology, nonbondedMethod=PME,
nonbondedCutoff=5*angstroms)
con2 = Context(system2, VerletIntegrator(2*femtoseconds), plat)
con2.setPositions(pdb.positions)
state = con.getState(getEnergy=True, enforcePeriodicBox=True)
ene = state.getPotentialEnergy().value_in_unit(kilocalories_per_mole)
state2 = con2.getState(getEnergy=True, enforcePeriodicBox=True)
ene2 = state2.getPotentialEnergy().value_in_unit(kilocalories_per_mole)
self.assertAlmostEqual(ene, ene2)
def test_NBFix(self):
"""Test using LennardJonesGenerator to implement NBFix terms."""
# Create a chain of five atoms.
top = Topology()
chain = top.addChain()
res = top.addResidue('RES', chain)
top.addAtom('A', elem.oxygen, res)
top.addAtom('B', elem.carbon, res)
top.addAtom('C', elem.carbon, res)
top.addAtom('D', elem.carbon, res)
top.addAtom('E', elem.nitrogen, res)
atoms = list(top.atoms())
top.addBond(atoms[0], atoms[1])
top.addBond(atoms[1], atoms[2])
top.addBond(atoms[2], atoms[3])
top.addBond(atoms[3], atoms[4])
# Create the force field and system.
xml = """
<ForceField>
<AtomTypes>
<Type name="A" class="A" element="O" mass="1"/>
<Type name="B" class="B" element="C" mass="1"/>
<Type name="C" class="C" element="C" mass="1"/>
<Type name="D" class="D" element="C" mass="1"/>
<Type name="E" class="E" element="N" mass="1"/>
</AtomTypes>
<Residues>
<Residue name="RES">
<Atom name="A" type="A"/>
<Atom name="B" type="B"/>
<Atom name="C" type="C"/>
<Atom name="D" type="D"/>
<Atom name="E" type="E"/>
<Bond atomName1="A" atomName2="B"/>
<Bond atomName1="B" atomName2="C"/>
<Bond atomName1="C" atomName2="D"/>
<Bond atomName1="D" atomName2="E"/>
</Residue>
</Residues>
<LennardJonesForce lj14scale="0.3">
<Atom type="A" sigma="1" epsilon="0.1"/>
<Atom type="B" sigma="2" epsilon="0.2"/>
<Atom type="C" sigma="3" epsilon="0.3"/>
<Atom type="D" sigma="4" epsilon="0.4"/>
<Atom type="E" sigma="4" epsilon="0.4"/>
<NBFixPair type1="A" type2="D" sigma="2.5" epsilon="1.1"/>
<NBFixPair type1="A" type2="E" sigma="3.5" epsilon="1.5"/>
</LennardJonesForce>
</ForceField> """
ff = ForceField(StringIO(xml))
system = ff.createSystem(top)
# Check that it produces the correct energy.
integrator = VerletIntegrator(0.001)
context = Context(system, integrator, Platform.getPlatform(0))
positions = [Vec3(i, 0, 0) for i in range(5)]*nanometers
context.setPositions(positions)
def ljEnergy(sigma, epsilon, r):
return 4*epsilon*((sigma/r)**12-(sigma/r)**6)
expected = 0.3*ljEnergy(2.5, 1.1, 3) + 0.3*ljEnergy(3.0, sqrt(0.08), 3) + ljEnergy(3.5, 1.5, 4)
self.assertAlmostEqual(expected, context.getState(getEnergy=True).getPotentialEnergy().value_in_unit(kilojoules_per_mole))
def test_IgnoreExternalBonds(self):
"""Test the ignoreExternalBonds option"""
modeller = Modeller(self.pdb2.topology, self.pdb2.positions)
modeller.delete([next(modeller.topology.residues())])
self.assertRaises(Exception, lambda: self.forcefield2.createSystem(modeller.topology))
system = self.forcefield2.createSystem(modeller.topology, ignoreExternalBonds=True)
templates = self.forcefield2.getMatchingTemplates(modeller.topology, ignoreExternalBonds=True)
self.assertEqual(2, len(templates))
self.assertEqual('ALA', templates[0].name)
self.assertEqual('NME', templates[1].name)
def test_Includes(self):
"""Test using a ForceField that includes other files."""
forcefield = ForceField(os.path.join('systems', 'ff_with_includes.xml'))
self.assertTrue(len(forcefield._atomTypes) > 10)
self.assertTrue('spce-O' in forcefield._atomTypes)
self.assertTrue('HOH' in forcefield._templates)
def test_ImpropersOrdering(self):
"""Test correctness of the ordering of atom indexes in improper torsions
and the torsion.ordering parameter.
"""
xml = """
<ForceField>
<PeriodicTorsionForce ordering="amber">
<Improper class1="C" class2="" class3="O2" class4="O2" periodicity1="2" phase1="3.14159265359" k1="43.932"/>
</PeriodicTorsionForce>
</ForceField>
"""
pdb = PDBFile('systems/impropers_ordering_tetrapeptide.pdb')
# ff1 uses default ordering of impropers, ff2 uses "amber" for the one
# problematic improper
ff1 = ForceField('amber99sbildn.xml')
ff2 = ForceField(StringIO(xml), 'amber99sbildn.xml')
system1 = ff1.createSystem(pdb.topology)
system2 = ff2.createSystem(pdb.topology)
imp1 = system1.getForce(1).getTorsionParameters(158)
imp2 = system2.getForce(0).getTorsionParameters(158)
system1_indexes = [imp1[0], imp1[1], imp1[2], imp1[3]]
system2_indexes = [imp2[0], imp2[1], imp2[2], imp2[3]]
self.assertEqual(system1_indexes, [51, 55, 54, 56])
self.assertEqual(system2_indexes, [51, 55, 54, 56])
def test_ImpropersOrdering_smirnoff(self):
"""Test correctness of the ordering of atom indexes in improper torsions
and the torsion.ordering parameter when using the 'smirnoff' mode.
"""
# SMIRNOFF parameters for formaldehyde
xml = """
<ForceField>
<AtomTypes>
<Type name="[H]C(=O)[H]$C1#0" element="C" mass="12.01078" class="[H]C(=O)[H]$C1#0"/>
<Type name="[H]C(=O)[H]$O1#1" element="O" mass="15.99943" class="[H]C(=O)[H]$O1#1"/>
<Type name="[H]C(=O)[H]$H1#2" element="H" mass="1.007947" class="[H]C(=O)[H]$H1#2"/>
<Type name="[H]C(=O)[H]$H2#3" element="H" mass="1.007947" class="[H]C(=O)[H]$H2#3"/>
</AtomTypes>
<PeriodicTorsionForce ordering="smirnoff">
<Improper class1="[H]C(=O)[H]$C1#0" class2="[H]C(=O)[H]$O1#1" class3="[H]C(=O)[H]$H1#2" class4="[H]C(=O)[H]$H2#3" periodicity1="2" phase1="3.141592653589793" k1="1.5341333333333336"/>
<Improper class1="[H]C(=O)[H]$C1#0" class2="[H]C(=O)[H]$H1#2" class3="[H]C(=O)[H]$H2#3" class4="[H]C(=O)[H]$O1#1" periodicity1="2" phase1="3.141592653589793" k1="1.5341333333333336"/>
<Improper class1="[H]C(=O)[H]$C1#0" class2="[H]C(=O)[H]$H2#3" class3="[H]C(=O)[H]$O1#1" class4="[H]C(=O)[H]$H1#2" periodicity1="2" phase1="3.141592653589793" k1="1.5341333333333336"/>
</PeriodicTorsionForce>
<Residues>
<Residue name="[H]C(=O)[H]">
<Atom name="C1" type="[H]C(=O)[H]$C1#0" charge="0.5632799863815308"/>
<Atom name="O1" type="[H]C(=O)[H]$O1#1" charge="-0.514739990234375"/>
<Atom name="H1" type="[H]C(=O)[H]$H1#2" charge="-0.02426999807357788"/>
<Atom name="H2" type="[H]C(=O)[H]$H2#3" charge="-0.02426999807357788"/>
<Bond atomName1="C1" atomName2="O1"/>
<Bond atomName1="C1" atomName2="H1"/>
<Bond atomName1="C1" atomName2="H2"/>
</Residue>
</Residues>
</ForceField>
"""
pdb = PDBFile('systems/formaldehyde.pdb')
# ff1 uses default ordering of impropers, ff2 uses "amber" for the one
# problematic improper
ff = ForceField(StringIO(xml))
system = ff.createSystem(pdb.topology)
# Check that impropers are applied in the correct three-fold trefoil pattern
forces = { force.__class__.__name__ : force for force in system.getForces() }
force = forces['PeriodicTorsionForce']
created_torsions = set()
for index in range(force.getNumTorsions()):
i,j,k,l,_,_,_ = force.getTorsionParameters(index)
created_torsions.add((i,j,k,l))
expected_torsions = set([(0,3,1,2), (0,1,2,3), (0,2,3,1)])
self.assertEqual(expected_torsions, created_torsions)
def test_Disulfides(self):
"""Test that various force fields handle disulfides correctly."""
pdb = PDBFile('systems/bpti.pdb')
for ff in ['amber99sb.xml', 'amber14-all.xml', 'charmm36.xml', 'amberfb15.xml', 'amoeba2013.xml']:
forcefield = ForceField(ff)
system = forcefield.createSystem(pdb.topology)
def test_IdenticalTemplates(self):
"""Test a case where patches produce two identical templates."""
ff = ForceField('charmm36.xml')
pdb = PDBFile(StringIO("""
ATOM 1 N HIS 1A -2.670 -0.476 0.475 1.00 0.00 N
ATOM 2 HT1 HIS 1A -2.645 -1.336 1.036 1.00 0.00 H
ATOM 3 HT2 HIS 1A -2.859 -0.751 -0.532 1.00 0.00 H
ATOM 4 HT3 HIS 1A -3.415 0.201 0.731 1.00 0.00 H
ATOM 5 CA HIS 1A -1.347 0.163 0.471 1.00 0.00 C
ATOM 6 HA HIS 1A -1.111 0.506 1.479 1.00 0.00 H
ATOM 7 CB HIS 1A -0.352 -0.857 -0.040 1.00 0.00 C
ATOM 8 HB1 HIS 1A -0.360 -1.741 0.636 1.00 0.00 H
ATOM 9 HB2 HIS 1A -0.640 -1.175 -1.046 1.00 0.00 H
ATOM 10 CG HIS 1A 1.003 -0.275 -0.063 1.00 0.00 C
ATOM 11 CD2 HIS 1A 2.143 -0.931 -0.476 1.00 0.00 C
ATOM 12 HD2 HIS 1A 2.217 -1.952 -0.840 1.00 0.00 H
ATOM 13 NE2 HIS 1A 3.137 -0.024 -0.328 1.00 0.00 N
ATOM 14 HE2 HIS 1A 4.132 -0.238 -0.565 1.00 0.00 H
ATOM 15 CE1 HIS 1A 2.649 1.130 0.150 1.00 0.00 C
ATOM 16 HE1 HIS 1A 3.233 2.020 0.360 1.00 0.00 H
ATOM 17 ND1 HIS 1A 1.323 0.973 0.314 1.00 0.00 N
ATOM 18 C HIS 1A -1.465 1.282 -0.497 1.00 0.00 C
ATOM 19 OT1 HIS 1A -2.108 2.309 -0.180 1.00 0.00 O
ATOM 20 OT2 HIS 1A -0.864 1.172 -1.737 1.00 0.00 O
END"""))
# If the check is not done correctly, this will throw an exception.
ff.createSystem(pdb.topology)
@unittest.skipIf(True, 'Skipping test failing due to missing platforms')
def test_CharmmPolar(self):
"""Test the CHARMM polarizable force field."""
pdb = PDBFile('systems/ala_ala_ala_drude.pdb')
pdb.topology.setUnitCellDimensions(Vec3(3, 3, 3))
ff = ForceField('charmm_polar_2019.xml')
system = ff.createSystem(pdb.topology, nonbondedMethod=PME, nonbondedCutoff=1.2*nanometers)
for i,f in enumerate(system.getForces()):
f.setForceGroup(i)
if isinstance(f, NonbondedForce):
f.setPMEParameters(3.4, 64, 64, 64)
integrator = DrudeLangevinIntegrator(300, 1.0, 1.0, 10.0, 0.001)
context = Context(system, integrator, Platform.getPlatformByName('Reference'))
context.setPositions(pdb.positions)
# Compare the energy to values computed by CHARMM. Here is what it outputs:
# ENER ENR: Eval# ENERgy Delta-E GRMS
# ENER INTERN: BONDs ANGLes UREY-b DIHEdrals IMPRopers
# ENER CROSS: CMAPs PMF1D PMF2D PRIMO
# ENER EXTERN: VDWaals ELEC HBONds ASP USER
# ENER EWALD: EWKSum EWSElf EWEXcl EWQCor EWUTil
# ---------- --------- --------- --------- --------- ---------
# ENER> 0 102.83992 0.00000 13.06415
# ENER INTERN> 54.72574 40.21459 11.61009 26.10373 0.14113
# ENER CROSS> -3.37113 0.00000 0.00000 0.00000
# ENER EXTERN> 22.74761 -24.21667 0.00000 0.00000 0.00000
# ENER EWALD> 56.14258 -7279.07968 7197.82192 0.00000 0.00000
# ---------- --------- --------- --------- --------- ---------
# First check the total energy.
energy = context.getState(getEnergy=True).getPotentialEnergy().value_in_unit(kilocalories_per_mole)
self.assertAlmostEqual(102.83992, energy, delta=energy*1e-3)
# Now check individual components. CHARMM and OpenMM split them up a little differently. I've tried to
# match things up, but I think there's still some inconsistency in where forces related to Drude particles
# are categorized. That's why the Coulomb and bonds terms match less accurately than the other terms
# (and less accurately than the total energy, which agrees well).
coulomb = 0
vdw = 0
bonds = 0
angles = 0
propers = 0
impropers = 0
cmap = 0
for i,f in enumerate(system.getForces()):
energy = context.getState(getEnergy=True, groups={i}).getPotentialEnergy().value_in_unit(kilocalories_per_mole)
if isinstance(f, NonbondedForce):
coulomb += energy
elif isinstance(f, CustomNonbondedForce) or isinstance(f, CustomBondForce):
vdw += energy
elif isinstance(f, HarmonicBondForce) or isinstance(f, DrudeForce):
bonds += energy
elif isinstance(f, HarmonicAngleForce):
angles += energy
elif isinstance(f, PeriodicTorsionForce):
propers += energy
elif isinstance(f, CustomTorsionForce):
impropers += energy
elif isinstance(f, CMAPTorsionForce):
cmap += energy
self.assertAlmostEqual(-24.21667+56.14258-7279.07968+7197.82192, coulomb, delta=abs(coulomb)*5e-2) # ELEC+EWKSum+EWSElf+EWEXcl
self.assertAlmostEqual(22.74761, vdw, delta=vdw*1e-3) # VDWaals
self.assertAlmostEqual(54.72574+11.61009, bonds, delta=bonds*2e-2) # BONDs+UREY-b
self.assertAlmostEqual(40.21459, angles, delta=angles*1e-3) # ANGLes
self.assertAlmostEqual(26.10373, propers, delta=propers*1e-3) # DIHEdrals
self.assertAlmostEqual(0.14113, impropers, delta=impropers*1e-3) # IMPRopers
def test_InitializationScript(self):
"""Test that <InitializationScript> tags get executed."""
xml = """
<ForceField>
<InitializationScript>
self.scriptExecuted = True
</InitializationScript>
</ForceField>
"""
ff = ForceField(StringIO(xml))
self.assertTrue(ff.scriptExecuted)
def test_Glycam(self):
"""Test computing energy with GLYCAM."""
ff = ForceField('amber14/protein.ff14SB.xml', 'amber14/GLYCAM_06j-1.xml')
pdb = PDBFile('systems/glycopeptide.pdb')
system = ff.createSystem(pdb.topology)
for i, f in enumerate(system.getForces()):
f.setForceGroup(i)
integrator = VerletIntegrator(0.001)
context = Context(system, integrator, Platform.getPlatformByName('Reference'))
context.setPositions(pdb.positions)
energies = {}
for i, f in enumerate(system.getForces()):
energy = context.getState(getEnergy=True, groups={i}).getPotentialEnergy().value_in_unit(kilojoules_per_mole)
energies[f.getName()] = energy
# Compare to values computed with ParmEd.
self.assertAlmostEqual(32.14082401103625, energies['HarmonicBondForce'], 4)
self.assertAlmostEqual(48.92017455984504, energies['HarmonicAngleForce'], 3)
self.assertAlmostEqual(291.61241586209286, energies['PeriodicTorsionForce'], 4)
self.assertAlmostEqual(1547.011267801862, energies['NonbondedForce'], 4)
self.assertAlmostEqual(1919.6846822348361, sum(list(energies.values())), 3)
def test_CustomNonbondedGenerator(self):
""" Test the CustomNonbondedForce generator"""
pdb = PDBFile('systems/ions.pdb')
xml = """
<ForceField>
<AtomTypes>
<Type name="SOD" class="SOD" element="Na" mass="22.98977"/>
<Type name="CLA" class="CLA" element="Cl" mass="35.45"/>
</AtomTypes>
<Residues>
<Residue name="CLA">
<Atom name="CLA" type="CLA"/>
</Residue>
<Residue name="SOD">
<Atom name="SOD" type="SOD"/>
</Residue>
</Residues>
<CustomNonbondedForce energy="scale*epsilon*((sigma/r)^12-(sigma/r)^6); sigma=halfSig1+halfSig2; epsilon=rootEps1*rootEps2" bondCutoff="3">
<GlobalParameter name="scale" defaultValue="4"/>
<PerParticleParameter name="sigma"/>
<PerParticleParameter name="epsilon"/>
<ComputedValue name="halfSig" expression="0.5*sigma"/>
<ComputedValue name="rootEps" expression="sqrt(epsilon)"/>
<Atom type="CLA" sigma="0.404468018036" epsilon="0.6276"/>
<Atom type="SOD" sigma="0.251367073323" epsilon="0.1962296"/>
</CustomNonbondedForce>
</ForceField> """
ff = ForceField(StringIO(xml))
system = ff.createSystem(pdb.topology)
context = Context(system, VerletIntegrator(2*femtoseconds), Platform.getPlatformByName('Reference'))
context.setPositions(pdb.positions)
energy1 = context.getState(getEnergy=True).getPotentialEnergy().value_in_unit(kilojoules_per_mole)
# See if it matches an equivalent NonbondedForce.
system = System()
system.addParticle(1.0)
system.addParticle(1.0)
f = NonbondedForce()
f.addParticle(0, 0.404468018036, 0.6276)
f.addParticle(0, 0.251367073323, 0.1962296)
system.addForce(f)
context = Context(system, VerletIntegrator(2*femtoseconds), Platform.getPlatformByName('Reference'))
context.setPositions(pdb.positions)
energy2 = context.getState(getEnergy=True).getPotentialEnergy().value_in_unit(kilojoules_per_mole)
self.assertAlmostEqual(energy1, energy2)
def test_OpcEnergy(self):
pdb = PDBFile('systems/opcbox.pdb')
topology, positions = pdb.topology, pdb.positions
self.assertEqual(len(positions), 864)
forcefield = ForceField('opc.xml')
system = forcefield.createSystem(
topology,
nonbondedMethod=PME,
nonbondedCutoff=0.7*nanometer,
constraints=HBonds,
rigidWater=True,
)
integrator = LangevinIntegrator(300*kelvin, 2.0/picoseconds, 2.0*femtoseconds)
simulation = Simulation(topology, system, integrator)
context = simulation.context
context.setPositions(positions)
# Compare to values computed with Amber (sander).
energy_amber = -2647.6233 # kcal/mol
energy_tolerance = 1.0
state = context.getState(getEnergy=True)
energy1 = state.getPotentialEnergy().value_in_unit(kilocalorie_per_mole)
# -2647.2222697324237
self.assertTrue(abs(energy1 - energy_amber) < energy_tolerance)
context.applyConstraints(1e-12)
state = context.getState(getEnergy=True)
energy2 = state.getPotentialEnergy().value_in_unit(kilocalorie_per_mole)
# -2647.441600693312
self.assertTrue(abs(energy1 - energy_amber) < energy_tolerance)
self.assertTrue(abs(energy1 - energy2) < energy_tolerance)
def test_Opc3Energy(self):
pdb = PDBFile('systems/opc3box.pdb')
topology, positions = pdb.topology, pdb.positions
self.assertEqual(len(positions), 648)
forcefield = ForceField('opc3.xml')
system = forcefield.createSystem(
topology,
nonbondedMethod=PME,
nonbondedCutoff=0.7*nanometer,
constraints=HBonds,
rigidWater=True,
)
integrator = LangevinIntegrator(300*kelvin, 2.0/picoseconds, 2.0*femtoseconds)
simulation = Simulation(topology, system, integrator)
context = simulation.context
context.setPositions(positions)
# Compare to values computed with Amber (sander).
energy_amber = -2532.1414 # kcal/mol
energy_tolerance = 1.0
state = context.getState(getEnergy=True)
energy1 = state.getPotentialEnergy().value_in_unit(kilocalorie_per_mole)
# -2532.4862082354407
self.assertTrue(abs(energy1 - energy_amber) < energy_tolerance)
context.applyConstraints(1e-12)
state = context.getState(getEnergy=True)
energy2 = state.getPotentialEnergy().value_in_unit(kilocalorie_per_mole)
self.assertTrue(abs(energy1 - energy_amber) < energy_tolerance)
self.assertTrue(abs(energy1 - energy2) < energy_tolerance)
class AmoebaTestForceField(unittest.TestCase):
"""Test the ForceField.createSystem() method with the AMOEBA forcefield."""
def setUp(self):
"""Set up the tests by loading the input pdb files and force field
xml files.
"""
self.pdb1 = PDBFile('systems/amoeba-ion-in-water.pdb')
self.forcefield1 = ForceField('amoeba2013.xml')
self.topology1 = self.pdb1.topology
def test_NonbondedMethod(self):
"""Test both options for the nonbondedMethod parameter."""
methodMap = {NoCutoff:AmoebaMultipoleForce.NoCutoff,
PME:AmoebaMultipoleForce.PME}
for method in methodMap:
system = self.forcefield1.createSystem(self.pdb1.topology,
nonbondedMethod=method)
forces = system.getForces()
self.assertTrue(any(isinstance(f, AmoebaMultipoleForce) and
f.getNonbondedMethod()==methodMap[method]
for f in forces))
def test_Cutoff(self):
"""Test to make sure the nonbondedCutoff parameter is passed correctly."""
cutoff_distance = 0.7*nanometer
for method in [NoCutoff, PME]:
system = self.forcefield1.createSystem(self.pdb1.topology,
nonbondedMethod=method,
nonbondedCutoff=cutoff_distance,
constraints=None)
for force in system.getForces():
if isinstance(force, AmoebaVdwForce):
self.assertEqual(force.getCutoff(), cutoff_distance)
if isinstance(force, AmoebaMultipoleForce):
self.assertEqual(force.getCutoffDistance(), cutoff_distance)
def test_DispersionCorrection(self):
"""Test to make sure the nonbondedCutoff parameter is passed correctly."""
for useDispersionCorrection in [True, False]:
system = self.forcefield1.createSystem(self.pdb1.topology,
nonbondedMethod=PME,
useDispersionCorrection=useDispersionCorrection)
for force in system.getForces():
if isinstance(force, AmoebaVdwForce):
self.assertEqual(useDispersionCorrection, force.getUseDispersionCorrection())
def test_RigidWater(self):
"""Test that AMOEBA creates rigid water with the correct geometry."""
system = self.forcefield1.createSystem(self.pdb1.topology, rigidWater=True)
constraints = dict()
for i in range(system.getNumConstraints()):
p1,p2,dist = system.getConstraintParameters(i)
if p1 < 3:
constraints[(min(p1,p2), max(p1,p2))] = dist.value_in_unit(nanometers)
hoDist = 0.09572
hohAngle = 108.50*math.pi/180.0
hohDist = math.sqrt(2*hoDist**2 - 2*hoDist**2*math.cos(hohAngle))
self.assertAlmostEqual(constraints[(0,1)], hoDist)
self.assertAlmostEqual(constraints[(0,2)], hoDist)
self.assertAlmostEqual(constraints[(1,2)], hohDist)
# Check that all values of rigidWater are interpreted correctly.
numWaters = 215
self.assertEqual(3*numWaters, system.getNumConstraints())
system = self.forcefield1.createSystem(self.pdb1.topology, rigidWater=False)
self.assertEqual(0, system.getNumConstraints())
system = self.forcefield1.createSystem(self.pdb1.topology, rigidWater=None)
self.assertEqual(0, system.getNumConstraints())
@unittest.skipIf(True, 'Skipping test failing due to missing platforms')
def test_Forces(self):
"""Compute forces and compare them to ones generated with a previous version of OpenMM to ensure they haven't changed."""
pdb = PDBFile('systems/alanine-dipeptide-implicit.pdb')
forcefield = ForceField('amoeba2013.xml', 'amoeba2013_gk.xml')
system = forcefield.createSystem(pdb.topology, polarization='direct')
integrator = VerletIntegrator(0.001)
context = Context(system, integrator, Platform.getPlatformByName('Reference'))
context.setPositions(pdb.positions)
state1 = context.getState(getForces=True)
with open('systems/alanine-dipeptide-amoeba-forces.xml') as input:
state2 = XmlSerializer.deserialize(input.read())
for f1, f2, in zip(state1.getForces().value_in_unit(kilojoules_per_mole/nanometer), state2.getForces().value_in_unit(kilojoules_per_mole/nanometer)):
diff = norm(f1-f2)
self.assertTrue(diff < 0.1 or diff/norm(f1) < 1e-3)
def computeAmoeba18Energies(self, filename):
pdb = PDBFile(filename)
forcefield = ForceField('amoeba2018.xml')
system = forcefield.createSystem(pdb.topology, polarization='mutual', mutualInducedTargetEpsilon=1e-5)
for i, f in enumerate(system.getForces()):
f.setForceGroup(i)
integrator = VerletIntegrator(0.001)
context = Context(system, integrator, Platform.getPlatformByName('Reference'))
context.setPositions(pdb.positions)
energies = {}
for i, f in enumerate(system.getForces()):
state = context.getState(getEnergy=True, groups={i})
energies[f.getName()] = state.getPotentialEnergy().value_in_unit(kilocalories_per_mole)
return energies
@unittest.skipIf(True, 'Skipping test failing due to missing platforms')
def test_Amoeba18BPTI(self):
"""Test that AMOEBA18 computes energies correctly for BPTI."""
energies = self.computeAmoeba18Energies('systems/bpti.pdb')
# Compare to values computed with Tinker.
self.assertAlmostEqual(290.2445, energies['AmoebaBond'], 4)
self.assertAlmostEqual(496.4300, energies['AmoebaAngle']+energies['AmoebaInPlaneAngle'], 4)
self.assertAlmostEqual(51.2913, energies['AmoebaOutOfPlaneBend'], 4)
self.assertAlmostEqual(5.7695, energies['AmoebaStretchBend'], 4)
self.assertAlmostEqual(75.6890, energies['PeriodicTorsionForce'], 4)
self.assertAlmostEqual(19.3364, energies['AmoebaPiTorsion'], 4)
self.assertAlmostEqual(-32.6689, energies['AmoebaTorsionTorsionForce'], 4)
self.assertAlmostEqual(383.8705, energies['AmoebaVdwForce'], 4)
self.assertAlmostEqual(-1323.5640-225.3660, energies['AmoebaMultipoleForce'], 2)
self.assertAlmostEqual(-258.9676, sum(list(energies.values())), 2)
@unittest.skipIf(True, 'Skipping test failing due to missing platforms')
def test_Amoeba18Nucleic(self):
"""Test that AMOEBA18 computes energies correctly for DNA and RNA."""
energies = self.computeAmoeba18Energies('systems/nucleic.pdb')
# Compare to values computed with Tinker.
self.assertAlmostEqual(749.6953, energies['AmoebaBond'], 4)
self.assertAlmostEqual(579.9971, energies['AmoebaAngle']+energies['AmoebaInPlaneAngle'], 4)
self.assertAlmostEqual(10.6630, energies['AmoebaOutOfPlaneBend'], 4)
self.assertAlmostEqual(5.2225, energies['AmoebaStretchBend'], 4)
self.assertAlmostEqual(166.7233, energies['PeriodicTorsionForce'], 4)
self.assertAlmostEqual(57.2066, energies['AmoebaPiTorsion'], 4)
self.assertAlmostEqual(-4.2538, energies['AmoebaStretchTorsion'], 4)
self.assertAlmostEqual(-5.0402, energies['AmoebaAngleTorsion'], 4)
self.assertAlmostEqual(187.1103, energies['AmoebaVdwForce'], 4)
self.assertAlmostEqual(1635.1289-236.1484, energies['AmoebaMultipoleForce'], 3)
self.assertAlmostEqual(3146.3046, sum(list(energies.values())), 3)
if __name__ == '__main__':
unittest.main()
|