1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
import sys
import math
import simtk.openmm.app.element as element
import simtk.unit as unit
elements = {}
for elem in element.Element._elements_by_symbol.values():
num = elem.atomic_number
if num not in elements or elem.mass < elements[num].mass:
elements[num] = elem
OTHER = 0
ATOMS = 1
CONNECT = 2
CONNECTIVITY = 3
RESIDUECONNECT = 4
section = OTHER
residueAtoms = {}
residueBonds = {}
residueConnections = {}
types = []
masses = {}
resAtomTypes = {}
vdwEquivalents = {}
vdw = {}
charge = {}
bonds = []
angles = []
torsions = []
impropers = []
charge14scale = 1.0/1.2
epsilon14scale = 0.5
skipResidues = ['CIO', 'IB'] # "Generic" ions defined by Amber, which are identical to other real ions
skipClasses = ['OW', 'HW'] # Skip water atoms, since we define these in separate files
def addAtom(residue, atomName, atomClass, element, charge):
if residue is None:
return
residueAtoms[residue].append([atomName, len(types)])
types.append((atomClass, element, charge))
def addBond(residue, atom1, atom2):
if residue is None:
return
residueBonds[residue].append((atom1, atom2))
def addExternalBond(residue, atom):
if residue is None:
return
if atom != -1:
residueConnections[residue] += [atom]
# Load input files.
for inputfile in sys.argv[1:]:
if inputfile.endswith('.lib') or inputfile.endswith('.off'):
# Read a library file
for line in open(inputfile):
if line.startswith('!entry'):
fields = line.split('.')
residue = fields[1]
if residue in skipResidues:
residue = None
continue
key = fields[3].split()[0]
if key == 'atoms':
section = ATOMS
residueAtoms[residue] = []
residueBonds[residue] = []
residueConnections[residue] = []
elif key == 'connect':
section = CONNECT
elif key == 'connectivity':
section = CONNECTIVITY
elif key == 'residueconnect':
section = RESIDUECONNECT
else:
section = OTHER
elif section == ATOMS:
fields = line.split()
atomName = fields[0][1:-1]
atomClass = fields[1][1:-1]
if fields[6] == '-1':
# Workaround for bug in some Amber files.
if atomClass[0] == 'C':
elem = elements[6]
elif atomClass[0] == 'H':
elem = elements[1]
else:
raise ValueError('Illegal atomic number: '+line)
else:
elem = elements[int(fields[6])]
charge = float(fields[7])
addAtom(residue, atomName, atomClass, elem, charge)
elif section == CONNECT:
addExternalBond(residue, int(line)-1)
elif section == CONNECTIVITY:
fields = line.split()
addBond(residue, int(fields[0])-1, int(fields[1])-1)
elif section == RESIDUECONNECT:
# Some Amber files have errors in them, incorrectly listing atoms that should not be
# connected in the first two positions. We therefore rely on the "connect" section for
# those, using this block only for other external connections.
for atom in [int(x)-1 for x in line.split()[2:]]:
addExternalBond(residue, atom)
elif inputfile.endswith('.in'):
lines = open(inputfile).read().split('\n')
i = 2
while True:
if lines[i].strip() == 'STOP':
break
i += 1
residue = lines[i].strip()
# Hack to get unique residue names, since different files use the same names.
if inputfile.endswith('nt.in'):
residue = 'N'+residue
if inputfile.endswith('ct.in'):
residue = 'C'+residue
residueAtoms[residue] = []
residueBonds[residue] = []
residueConnections[residue] = []
atoms = []
mainchain = []
i += 7
while len(lines[i].rstrip()) > 0:
fields = lines[i].split()
atoms.append((fields[1], fields[2], float(fields[10]))) # (name, type, charge)
if fields[3] == 'M':
mainchain.append(len(atoms)-1)
bondedTo = int(fields[4])-4
if bondedTo >= 0:
addBond(residue, len(atoms)-1, bondedTo)
i += 1
while True:
if lines[i].strip() == 'LOOP':
i += 1
while len(lines[i].rstrip()) > 0:
fields = lines[i].strip().split()
bondFrom = [j for j in range(len(atoms)) if fields[0] == atoms[j][0]][0]
bondTo = [j for j in range(len(atoms)) if fields[1] == atoms[j][0]][0]
addBond(residue, bondFrom, bondTo)
i += 1
if lines[i].strip() != 'DONE':
i += 1
continue
for atom in atoms:
try:
el = element.Element.getBySymbol(atom[1][0])
except:
el = None
addAtom(residue, atom[0], atom[1], el, atom[2])
# Hack for figuring out external bonds. We'll have to fix up disulfide bonds and capping groups manually.
if len(mainchain) > 0 and not inputfile.endswith('nt.in'):
addExternalBond(residue, mainchain[0])
if len(mainchain) > 1 and not inputfile.endswith('ct.in'):
addExternalBond(residue, mainchain[-1])
i += 1
break
elif inputfile.endswith('.dat'):
# Read a force field file.
block = 0
continueTorsion = False
for line in open(inputfile):
line = line.strip()
if block == 0: # Title
block += 1
elif block == 1: # Mass
fields = line.split()
if len(fields) == 0:
block += 1
else:
masses[fields[0]] = float(fields[1])
elif block == 2: # Hydrophilic atoms
block += 1
elif block == 3: # Bonds
if len(line) == 0:
block += 1
elif '-' in line:
fields = line[5:].split()
bonds.append((line[:2].strip(), line[3:5].strip(), fields[0], fields[1]))
elif block == 4: # Angles
if len(line) == 0:
block += 1
else:
fields = line[8:].split()
angles.append((line[:2].strip(), line[3:5].strip(), line[6:8].strip(), fields[0], fields[1]))
elif block == 5: # Torsions
if len(line) == 0:
block += 1
else:
fields = line[11:].split()
periodicity = int(float(fields[3]))
if continueTorsion:
torsions[-1] += [float(fields[1])/float(fields[0]), fields[2], abs(periodicity)]
else:
torsions.append([line[:2].strip(), line[3:5].strip(), line[6:8].strip(), line[9:11].strip(), float(fields[1])/float(fields[0]), fields[2], abs(periodicity)])
continueTorsion = (periodicity < 0)
elif block == 6: # Improper torsions
if len(line) == 0:
block += 1
else:
fields = line[11:].split()
impropers.append((line[:2].strip(), line[3:5].strip(), line[6:8].strip(), line[9:11].strip(), fields[0], fields[1], fields[2]))
elif block == 7: # 10-12 hbond potential
if len(line) == 0:
block += 1
elif block == 8: # VDW equivalents
if len(line) == 0:
block += 1
else:
fields = line.split()
for atom in fields[1:]:
vdwEquivalents[atom] = fields[0]
elif block == 9: # VDW type
block += 1
vdwType = line.split()[1]
if vdwType not in ['RE', 'AC']:
raise ValueError('Nonbonded type (KINDNB) must be RE or AC')
elif block == 10: # VDW parameters
if len(line) == 0:
block += 1
else:
fields = line.split()
vdw[fields[0]] = (fields[1], fields[2])
else:
# Assume it's a frcmod file.
block = ''
continueTorsion = False
first = True
for line in open(inputfile):
line = line.strip()
if len(line) == 0 or first:
block = None
first = False
elif block is None:
block = line
elif block.startswith('MASS'):
fields = line.split()
masses[fields[0]] = float(fields[1])
elif block.startswith('BOND'):
fields = line[5:].split()
bonds.append((line[:2].strip(), line[3:5].strip(), fields[0], fields[1]))
elif block.startswith('ANGL'):
fields = line[8:].split()
angles.append((line[:2].strip(), line[3:5].strip(), line[6:8].strip(), fields[0], fields[1]))
elif block.startswith('DIHE'):
fields = line[11:].split()
periodicity = int(float(fields[3]))
if continueTorsion:
torsions[-1] += [float(fields[1])/float(fields[0]), fields[2], abs(periodicity)]
else:
torsions.append([line[:2].strip(), line[3:5].strip(), line[6:8].strip(), line[9:11].strip(), float(fields[1])/float(fields[0]), fields[2], abs(periodicity)])
continueTorsion = (periodicity < 0)
elif block.startswith('IMPR'):
fields = line[11:].split()
impropers.append((line[:2].strip(), line[3:5].strip(), line[6:8].strip(), line[9:11].strip(), fields[0], fields[1], fields[2]))
elif block.startswith('NONB'):
fields = line.split()
vdw[fields[0]] = (fields[1], fields[2])
# Reduce the list of atom types. If multiple hydrogens are bound to the same heavy atom,
# they should all use the same type.
removeType = [False]*len(types)
for res in residueAtoms:
if res not in residueBonds:
continue
atomBonds = [[] for _ in residueAtoms[res]]
for bond in residueBonds[res]:
atomBonds[bond[0]].append(bond[1])
atomBonds[bond[1]].append(bond[0])
for index, atom in enumerate(residueAtoms[res]):
hydrogens = [x for x in atomBonds[index] if types[residueAtoms[res][x][1]][1] == element.hydrogen]
for h in hydrogens[1:]:
removeType[residueAtoms[res][h][1]] = True
residueAtoms[res][h][1] = residueAtoms[res][hydrogens[0]][1]
newTypes = []
replaceWithType = [0]*len(types)
for i in range(len(types)):
if not removeType[i]:
newTypes.append(types[i])
replaceWithType[i] = len(newTypes)-1
types = newTypes
for res in residueAtoms:
for atom in residueAtoms[res]:
atom[1] = replaceWithType[atom[1]]
# Create the XML output.
def fix(atomClass):
if atomClass == 'X':
return ''
return atomClass
print "<ForceField>"
print " <AtomTypes>"
for index, type in enumerate(types):
if type[1] is None:
el = ""
mass = 0
else:
el = type[1].symbol
mass = type[1].mass.value_in_unit(unit.amu)
print """ <Type name="%d" class="%s" element="%s" mass="%s"/>""" % (index, type[0], el, mass)
print " </AtomTypes>"
print " <Residues>"
for res in sorted(residueAtoms):
print """ <Residue name="%s">""" % res
for atom in residueAtoms[res]:
print " <Atom name=\"%s\" type=\"%d\"/>" % tuple(atom)
if res in residueBonds:
for bond in residueBonds[res]:
print """ <Bond from="%d" to="%d"/>""" % bond
if res in residueConnections:
for bond in residueConnections[res]:
print """ <ExternalBond from="%d"/>""" % bond
print " </Residue>"
print " </Residues>"
print " <HarmonicBondForce>"
processed = set()
for bond in bonds:
signature = (bond[0], bond[1])
if signature in processed:
continue
if any([c in skipClasses for c in signature]):
continue
processed.add(signature)
length = float(bond[3])*0.1
k = float(bond[2])*2*100*4.184
print """ <Bond class1="%s" class2="%s" length="%s" k="%s"/>""" % (bond[0], bond[1], str(length), str(k))
print " </HarmonicBondForce>"
print " <HarmonicAngleForce>"
processed = set()
for angle in angles:
signature = (angle[0], angle[1], angle[2])
if signature in processed:
continue
if any([c in skipClasses for c in signature]):
continue
processed.add(signature)
theta = float(angle[4])*math.pi/180.0
k = float(angle[3])*2*4.184
print """ <Angle class1="%s" class2="%s" class3="%s" angle="%s" k="%s"/>""" % (angle[0], angle[1], angle[2], str(theta), str(k))
print " </HarmonicAngleForce>"
print " <PeriodicTorsionForce>"
processed = set()
for tor in reversed(torsions):
signature = (fix(tor[0]), fix(tor[1]), fix(tor[2]), fix(tor[3]))
if signature in processed:
continue
if any([c in skipClasses for c in signature]):
continue
processed.add(signature)
tag = " <Proper class1=\"%s\" class2=\"%s\" class3=\"%s\" class4=\"%s\"" % signature
i = 4
while i < len(tor):
index = i//3
periodicity = int(float(tor[i+2]))
phase = float(tor[i+1])*math.pi/180.0
k = tor[i]*4.184
tag += " periodicity%d=\"%d\" phase%d=\"%s\" k%d=\"%s\"" % (index, periodicity, index, str(phase), index, str(k))
i += 3
tag += "/>"
print tag
processed = set()
for tor in reversed(impropers):
signature = (fix(tor[2]), fix(tor[0]), fix(tor[1]), fix(tor[3]))
if signature in processed:
continue
if any([c in skipClasses for c in signature]):
continue
processed.add(signature)
tag = " <Improper class1=\"%s\" class2=\"%s\" class3=\"%s\" class4=\"%s\"" % signature
i = 4
while i < len(tor):
index = i//3
periodicity = int(float(tor[i+2]))
phase = float(tor[i+1])*math.pi/180.0
k = float(tor[i])*4.184
tag += " periodicity%d=\"%d\" phase%d=\"%s\" k%d=\"%s\"" % (index, periodicity, index, str(phase), index, str(k))
i += 3
tag += "/>"
print tag
print " </PeriodicTorsionForce>"
print """ <NonbondedForce coulomb14scale="%g" lj14scale="%s">""" % (charge14scale, epsilon14scale)
sigmaScale = 0.1*2.0/(2.0**(1.0/6.0))
for index, type in enumerate(types):
atomClass = type[0]
q = type[2]
if atomClass in vdwEquivalents:
atomClass = vdwEquivalents[atomClass]
if atomClass in vdw:
params = [float(x) for x in vdw[atomClass]]
if vdwType == 'RE':
sigma = params[0]*sigmaScale
epsilon = params[1]*4.184
else:
sigma = (params[0]/params[1])**(1.0/6.0)
epsilon = 4.184*params[1]*params[1]/(4*params[0])
else:
sigma = 1
epsilon = 0
if sigma == 0 or epsilon == 0:
sigma, epsilon = 1, 0
if q != 0 or epsilon != 0:
print """ <Atom type="%d" charge="%s" sigma="%s" epsilon="%s"/>""" % (index, q, sigma, epsilon)
print " </NonbondedForce>"
print "</ForceField>"
|