1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_marks.c -- polygon projection on the world polygons
#include "tr_local.h"
//#include "assert.h"
#define MAX_VERTS_ON_POLY 64
#define MARKER_OFFSET 0 // 1
/*
=============
R_ChopPolyBehindPlane
Out must have space for two more vertexes than in
=============
*/
#define SIDE_FRONT 0
#define SIDE_BACK 1
#define SIDE_ON 2
static void R_ChopPolyBehindPlane( int numInPoints, vec3_t inPoints[MAX_VERTS_ON_POLY],
int *numOutPoints, vec3_t outPoints[MAX_VERTS_ON_POLY],
vec3_t normal, vec_t dist, vec_t epsilon) {
float dists[MAX_VERTS_ON_POLY+4] = { 0 };
int sides[MAX_VERTS_ON_POLY+4] = { 0 };
int counts[3];
float dot;
int i, j;
float *p1, *p2, *clip;
float d;
// don't clip if it might overflow
if ( numInPoints >= MAX_VERTS_ON_POLY - 2 ) {
*numOutPoints = 0;
return;
}
counts[0] = counts[1] = counts[2] = 0;
// determine sides for each point
for ( i = 0 ; i < numInPoints ; i++ ) {
dot = DotProduct( inPoints[i], normal );
dot -= dist;
dists[i] = dot;
if ( dot > epsilon ) {
sides[i] = SIDE_FRONT;
} else if ( dot < -epsilon ) {
sides[i] = SIDE_BACK;
} else {
sides[i] = SIDE_ON;
}
counts[sides[i]]++;
}
sides[i] = sides[0];
dists[i] = dists[0];
*numOutPoints = 0;
if ( !counts[0] ) {
return;
}
if ( !counts[1] ) {
*numOutPoints = numInPoints;
Com_Memcpy( outPoints, inPoints, numInPoints * sizeof(vec3_t) );
return;
}
for ( i = 0 ; i < numInPoints ; i++ ) {
p1 = inPoints[i];
clip = outPoints[ *numOutPoints ];
if ( sides[i] == SIDE_ON ) {
VectorCopy( p1, clip );
(*numOutPoints)++;
continue;
}
if ( sides[i] == SIDE_FRONT ) {
VectorCopy( p1, clip );
(*numOutPoints)++;
clip = outPoints[ *numOutPoints ];
}
if ( sides[i+1] == SIDE_ON || sides[i+1] == sides[i] ) {
continue;
}
// generate a split point
p2 = inPoints[ (i+1) % numInPoints ];
d = dists[i] - dists[i+1];
if ( d == 0 ) {
dot = 0;
} else {
dot = dists[i] / d;
}
// clip xyz
for (j=0 ; j<3 ; j++) {
clip[j] = p1[j] + dot * ( p2[j] - p1[j] );
}
(*numOutPoints)++;
}
}
/*
=================
R_BoxSurfaces_r
=================
*/
void R_BoxSurfaces_r(mnode_t *node, vec3_t mins, vec3_t maxs, surfaceType_t **list, int listsize, int *listlength, vec3_t dir) {
int s, c;
msurface_t *surf;
int *mark;
// do the tail recursion in a loop
while ( node->contents == -1 ) {
s = BoxOnPlaneSide( mins, maxs, node->plane );
if (s == 1) {
node = node->children[0];
} else if (s == 2) {
node = node->children[1];
} else {
R_BoxSurfaces_r(node->children[0], mins, maxs, list, listsize, listlength, dir);
node = node->children[1];
}
}
// add the individual surfaces
mark = tr.world->marksurfaces + node->firstmarksurface;
c = node->nummarksurfaces;
while (c--) {
int *surfViewCount;
//
if (*listlength >= listsize) break;
//
surfViewCount = &tr.world->surfacesViewCount[*mark];
surf = tr.world->surfaces + *mark;
// check if the surface has NOIMPACT or NOMARKS set
if ( ( surf->shader->surfaceFlags & ( SURF_NOIMPACT | SURF_NOMARKS ) )
|| ( surf->shader->contentFlags & CONTENTS_FOG ) ) {
*surfViewCount = tr.viewCount;
}
// extra check for surfaces to avoid list overflows
else if (*(surf->data) == SF_FACE) {
// the face plane should go through the box
s = BoxOnPlaneSide( mins, maxs, &surf->cullinfo.plane );
if (s == 1 || s == 2) {
*surfViewCount = tr.viewCount;
} else if (DotProduct(surf->cullinfo.plane.normal, dir) > -0.5) {
// don't add faces that make sharp angles with the projection direction
*surfViewCount = tr.viewCount;
}
}
else if (*(surf->data) != SF_GRID &&
*(surf->data) != SF_TRIANGLES)
*surfViewCount = tr.viewCount;
// check the viewCount because the surface may have
// already been added if it spans multiple leafs
if (*surfViewCount != tr.viewCount) {
*surfViewCount = tr.viewCount;
list[*listlength] = surf->data;
(*listlength)++;
}
mark++;
}
}
/*
=================
R_AddMarkFragments
=================
*/
void R_AddMarkFragments(int numClipPoints, vec3_t clipPoints[2][MAX_VERTS_ON_POLY],
int numPlanes, vec3_t *normals, float *dists,
int maxPoints, vec3_t pointBuffer,
int maxFragments, markFragment_t *fragmentBuffer,
int *returnedPoints, int *returnedFragments,
vec3_t mins, vec3_t maxs) {
int pingPong, i;
markFragment_t *mf;
// chop the surface by all the bounding planes of the to be projected polygon
pingPong = 0;
for ( i = 0 ; i < numPlanes ; i++ ) {
R_ChopPolyBehindPlane( numClipPoints, clipPoints[pingPong],
&numClipPoints, clipPoints[!pingPong],
normals[i], dists[i], 0.5 );
pingPong ^= 1;
if ( numClipPoints == 0 ) {
break;
}
}
// completely clipped away?
if ( numClipPoints == 0 ) {
return;
}
// add this fragment to the returned list
if ( numClipPoints + (*returnedPoints) > maxPoints ) {
return; // not enough space for this polygon
}
/*
// all the clip points should be within the bounding box
for ( i = 0 ; i < numClipPoints ; i++ ) {
int j;
for ( j = 0 ; j < 3 ; j++ ) {
if (clipPoints[pingPong][i][j] < mins[j] - 0.5) break;
if (clipPoints[pingPong][i][j] > maxs[j] + 0.5) break;
}
if (j < 3) break;
}
if (i < numClipPoints) return;
*/
mf = fragmentBuffer + (*returnedFragments);
mf->firstPoint = (*returnedPoints);
mf->numPoints = numClipPoints;
mf->iIndex = 0; // OPENMOHAA-specific stuff
Com_Memcpy( pointBuffer + (*returnedPoints) * 3, clipPoints[pingPong], numClipPoints * sizeof(vec3_t) );
(*returnedPoints) += numClipPoints;
(*returnedFragments)++;
}
/*
=================
R_MarkFragments
=================
*/
int R_MarkFragments( int numPoints, const vec3_t *points, const vec3_t projection,
int maxPoints, vec3_t pointBuffer, int maxFragments, markFragment_t *fragmentBuffer ) {
int numsurfaces, numPlanes;
int i, j, k, m, n;
surfaceType_t *surfaces[64];
vec3_t mins, maxs;
int returnedFragments;
int returnedPoints;
vec3_t normals[MAX_VERTS_ON_POLY+2];
float dists[MAX_VERTS_ON_POLY+2];
vec3_t clipPoints[2][MAX_VERTS_ON_POLY];
int numClipPoints;
float *v;
srfBspSurface_t *cv;
glIndex_t *tri;
srfVert_t *dv;
vec3_t normal;
vec3_t projectionDir;
vec3_t v1, v2;
if (numPoints <= 0) {
return 0;
}
//increment view count for double check prevention
tr.viewCount++;
//
VectorNormalize2( projection, projectionDir );
// find all the brushes that are to be considered
ClearBounds( mins, maxs );
for ( i = 0 ; i < numPoints ; i++ ) {
vec3_t temp;
AddPointToBounds( points[i], mins, maxs );
VectorAdd( points[i], projection, temp );
AddPointToBounds( temp, mins, maxs );
// make sure we get all the leafs (also the one(s) in front of the hit surface)
VectorMA( points[i], -20, projectionDir, temp );
AddPointToBounds( temp, mins, maxs );
}
if (numPoints > MAX_VERTS_ON_POLY) numPoints = MAX_VERTS_ON_POLY;
// create the bounding planes for the to be projected polygon
for ( i = 0 ; i < numPoints ; i++ ) {
VectorSubtract(points[(i+1)%numPoints], points[i], v1);
VectorAdd(points[i], projection, v2);
VectorSubtract(points[i], v2, v2);
CrossProduct(v1, v2, normals[i]);
VectorNormalizeFast(normals[i]);
dists[i] = DotProduct(normals[i], points[i]);
}
// add near and far clipping planes for projection
VectorCopy(projectionDir, normals[numPoints]);
dists[numPoints] = DotProduct(normals[numPoints], points[0]) - 32;
VectorCopy(projectionDir, normals[numPoints+1]);
VectorInverse(normals[numPoints+1]);
dists[numPoints+1] = DotProduct(normals[numPoints+1], points[0]) - 20;
numPlanes = numPoints + 2;
numsurfaces = 0;
R_BoxSurfaces_r(tr.world->nodes, mins, maxs, surfaces, 64, &numsurfaces, projectionDir);
//assert(numsurfaces <= 64);
//assert(numsurfaces != 64);
returnedPoints = 0;
returnedFragments = 0;
for ( i = 0 ; i < numsurfaces ; i++ ) {
if (*surfaces[i] == SF_GRID) {
cv = (srfBspSurface_t *) surfaces[i];
for ( m = 0 ; m < cv->height - 1 ; m++ ) {
for ( n = 0 ; n < cv->width - 1 ; n++ ) {
// We triangulate the grid and chop all triangles within
// the bounding planes of the to be projected polygon.
// LOD is not taken into account, not such a big deal though.
//
// It's probably much nicer to chop the grid itself and deal
// with this grid as a normal SF_GRID surface so LOD will
// be applied. However the LOD of that chopped grid must
// be synced with the LOD of the original curve.
// One way to do this; the chopped grid shares vertices with
// the original curve. When LOD is applied to the original
// curve the unused vertices are flagged. Now the chopped curve
// should skip the flagged vertices. This still leaves the
// problems with the vertices at the chopped grid edges.
//
// To avoid issues when LOD applied to "hollow curves" (like
// the ones around many jump pads) we now just add a 2 unit
// offset to the triangle vertices.
// The offset is added in the vertex normal vector direction
// so all triangles will still fit together.
// The 2 unit offset should avoid pretty much all LOD problems.
vec3_t fNormal;
numClipPoints = 3;
dv = cv->verts + m * cv->width + n;
VectorCopy(dv[0].xyz, clipPoints[0][0]);
R_VaoUnpackNormal(fNormal, dv[0].normal);
VectorMA(clipPoints[0][0], MARKER_OFFSET, fNormal, clipPoints[0][0]);
VectorCopy(dv[cv->width].xyz, clipPoints[0][1]);
R_VaoUnpackNormal(fNormal, dv[cv->width].normal);
VectorMA(clipPoints[0][1], MARKER_OFFSET, fNormal, clipPoints[0][1]);
VectorCopy(dv[1].xyz, clipPoints[0][2]);
R_VaoUnpackNormal(fNormal, dv[1].normal);
VectorMA(clipPoints[0][2], MARKER_OFFSET, fNormal, clipPoints[0][2]);
// check the normal of this triangle
VectorSubtract(clipPoints[0][0], clipPoints[0][1], v1);
VectorSubtract(clipPoints[0][2], clipPoints[0][1], v2);
CrossProduct(v1, v2, normal);
VectorNormalizeFast(normal);
if (DotProduct(normal, projectionDir) < -0.1) {
// add the fragments of this triangle
R_AddMarkFragments(numClipPoints, clipPoints,
numPlanes, normals, dists,
maxPoints, pointBuffer,
maxFragments, fragmentBuffer,
&returnedPoints, &returnedFragments, mins, maxs);
if ( returnedFragments == maxFragments ) {
return returnedFragments; // not enough space for more fragments
}
}
VectorCopy(dv[1].xyz, clipPoints[0][0]);
R_VaoUnpackNormal(fNormal, dv[1].normal);
VectorMA(clipPoints[0][0], MARKER_OFFSET, fNormal, clipPoints[0][0]);
VectorCopy(dv[cv->width].xyz, clipPoints[0][1]);
R_VaoUnpackNormal(fNormal, dv[cv->width].normal);
VectorMA(clipPoints[0][1], MARKER_OFFSET, fNormal, clipPoints[0][1]);
VectorCopy(dv[cv->width+1].xyz, clipPoints[0][2]);
R_VaoUnpackNormal(fNormal, dv[cv->width + 1].normal);
VectorMA(clipPoints[0][2], MARKER_OFFSET, fNormal, clipPoints[0][2]);
// check the normal of this triangle
VectorSubtract(clipPoints[0][0], clipPoints[0][1], v1);
VectorSubtract(clipPoints[0][2], clipPoints[0][1], v2);
CrossProduct(v1, v2, normal);
VectorNormalizeFast(normal);
if (DotProduct(normal, projectionDir) < -0.05) {
// add the fragments of this triangle
R_AddMarkFragments(numClipPoints, clipPoints,
numPlanes, normals, dists,
maxPoints, pointBuffer,
maxFragments, fragmentBuffer,
&returnedPoints, &returnedFragments, mins, maxs);
if ( returnedFragments == maxFragments ) {
return returnedFragments; // not enough space for more fragments
}
}
}
}
}
else if (*surfaces[i] == SF_FACE) {
srfBspSurface_t *surf = ( srfBspSurface_t * ) surfaces[i];
// check the normal of this face
if (DotProduct(surf->cullPlane.normal, projectionDir) > -0.5) {
continue;
}
for(k = 0, tri = surf->indexes; k < surf->numIndexes; k += 3, tri += 3)
{
for(j = 0; j < 3; j++)
{
v = surf->verts[tri[j]].xyz;
VectorMA(v, MARKER_OFFSET, surf->cullPlane.normal, clipPoints[0][j]);
}
// add the fragments of this face
R_AddMarkFragments( 3 , clipPoints,
numPlanes, normals, dists,
maxPoints, pointBuffer,
maxFragments, fragmentBuffer,
&returnedPoints, &returnedFragments, mins, maxs);
if ( returnedFragments == maxFragments ) {
return returnedFragments; // not enough space for more fragments
}
}
}
else if(*surfaces[i] == SF_TRIANGLES && r_marksOnTriangleMeshes->integer) {
srfBspSurface_t *surf = (srfBspSurface_t *) surfaces[i];
for(k = 0, tri = surf->indexes; k < surf->numIndexes; k += 3, tri += 3)
{
for(j = 0; j < 3; j++)
{
vec3_t fNormal;
v = surf->verts[tri[j]].xyz;
R_VaoUnpackNormal(fNormal, surf->verts[tri[j]].normal);
VectorMA(v, MARKER_OFFSET, fNormal, clipPoints[0][j]);
}
// add the fragments of this face
R_AddMarkFragments(3, clipPoints,
numPlanes, normals, dists,
maxPoints, pointBuffer,
maxFragments, fragmentBuffer, &returnedPoints, &returnedFragments, mins, maxs);
if(returnedFragments == maxFragments)
{
return returnedFragments; // not enough space for more fragments
}
}
}
}
return returnedFragments;
}
int R_MarkFragmentsForInlineModel(clipHandle_t bmodel, const vec3_t vAngles, const vec3_t vOrigin, int numPoints,
const vec3_t* points, const vec3_t projection, int maxPoints, vec3_t pointBuffer,
int maxFragments, markFragment_t* fragmentBuffer, float fRadiusSquared)
{
// FIXME: unimplemented (GL2)
return 0;
}
|