1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// mathlib.c -- math primitives
#include "cmdlib.h"
#include "mathlib.h"
#ifdef _WIN32
//Improve floating-point consistency.
//without this option weird floating point issues occur
#pragma optimize( "p", on )
#endif
vec3_t vec3_origin = {0,0,0};
/*
** NormalToLatLong
**
** We use two byte encoded normals in some space critical applications.
** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
**
*/
void NormalToLatLong( const vec3_t normal, byte bytes[2] ) {
// check for singularities
if ( normal[0] == 0 && normal[1] == 0 ) {
if ( normal[2] > 0 ) {
bytes[0] = 0;
bytes[1] = 0; // lat = 0, long = 0
} else {
bytes[0] = 128;
bytes[1] = 0; // lat = 0, long = 128
}
} else {
int a, b;
a = RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f );
a &= 0xff;
b = RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f );
b &= 0xff;
bytes[0] = b; // longitude
bytes[1] = a; // lattitude
}
}
/*
=====================
PlaneFromPoints
Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
vec3_t d1, d2;
VectorSubtract( b, a, d1 );
VectorSubtract( c, a, d2 );
CrossProduct( d2, d1, plane );
if ( VectorNormalize( plane, plane ) == 0 ) {
return qfalse;
}
plane[3] = DotProduct( a, plane );
return qtrue;
}
/*
================
MakeNormalVectors
Given a normalized forward vector, create two
other perpendicular vectors
================
*/
void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
{
float d;
// this rotate and negate guarantees a vector
// not colinear with the original
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct (right, forward);
VectorMA (right, -d, forward, right);
VectorNormalize (right, right);
CrossProduct (right, forward, up);
}
void Vec10Copy( vec_t *in, vec_t *out ) {
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
out[4] = in[4];
out[5] = in[5];
out[6] = in[6];
out[7] = in[7];
out[8] = in[8];
out[9] = in[9];
}
void VectorRotate3x3( vec3_t v, float r[3][3], vec3_t d )
{
d[0] = v[0] * r[0][0] + v[1] * r[1][0] + v[2] * r[2][0];
d[1] = v[0] * r[0][1] + v[1] * r[1][1] + v[2] * r[2][1];
d[2] = v[0] * r[0][2] + v[1] * r[1][2] + v[2] * r[2][2];
}
double VectorLength( const vec3_t v ) {
int i;
double length;
length = 0;
for (i=0 ; i< 3 ; i++)
length += v[i]*v[i];
length = sqrt (length); // FIXME
return length;
}
qboolean VectorCompare( const vec3_t v1, const vec3_t v2 ) {
int i;
for (i=0 ; i<3 ; i++)
if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
return qfalse;
return qtrue;
}
vec_t Q_rint (vec_t in)
{
return floor (in + 0.5);
}
void VectorMA( const vec3_t va, double scale, const vec3_t vb, vec3_t vc ) {
vc[0] = va[0] + scale*vb[0];
vc[1] = va[1] + scale*vb[1];
vc[2] = va[2] + scale*vb[2];
}
void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
vec_t _DotProduct (vec3_t v1, vec3_t v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
{
out[0] = va[0]-vb[0];
out[1] = va[1]-vb[1];
out[2] = va[2]-vb[2];
}
void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
{
out[0] = va[0]+vb[0];
out[1] = va[1]+vb[1];
out[2] = va[2]+vb[2];
}
void _VectorCopy (vec3_t in, vec3_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
void _VectorScale (vec3_t v, vec_t scale, vec3_t out)
{
out[0] = v[0] * scale;
out[1] = v[1] * scale;
out[2] = v[2] * scale;
}
vec_t VectorNormalize( const vec3_t in, vec3_t out ) {
vec_t length, ilength;
length = sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]);
if (length == 0)
{
VectorClear (out);
return 0;
}
ilength = 1.0/length;
out[0] = in[0]*ilength;
out[1] = in[1]*ilength;
out[2] = in[2]*ilength;
return length;
}
vec_t ColorNormalize( const vec3_t in, vec3_t out ) {
float max, scale;
max = in[0];
if (in[1] > max)
max = in[1];
if (in[2] > max)
max = in[2];
if (max == 0) {
out[0] = out[1] = out[2] = 1.0;
return 0;
}
scale = 1.0 / max;
VectorScale (in, scale, out);
return max;
}
void VectorInverse (vec3_t v)
{
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
void ClearBounds (vec3_t mins, vec3_t maxs)
{
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
int i;
vec_t val;
for (i=0 ; i<3 ; i++)
{
val = v[i];
if (val < mins[i])
mins[i] = val;
if (val > maxs[i])
maxs[i] = val;
}
}
/*
=================
PlaneTypeForNormal
=================
*/
int PlaneTypeForNormal (vec3_t normal) {
if (normal[0] == 1.0 || normal[0] == -1.0)
return PLANE_X;
if (normal[1] == 1.0 || normal[1] == -1.0)
return PLANE_Y;
if (normal[2] == 1.0 || normal[2] == -1.0)
return PLANE_Z;
return PLANE_NON_AXIAL;
}
/*
================
MatrixMultiply
================
*/
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
}
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
float d;
vec3_t n;
float inv_denom;
inv_denom = 1.0F / DotProduct( normal, normal );
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
int pos;
int i;
float minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
*/
for ( pos = 0, i = 0; i < 3; i++ )
{
if ( fabs( src[i] ) < minelem )
{
pos = i;
minelem = fabs( src[i] );
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane( dst, tempvec, src );
/*
** normalize the result
*/
VectorNormalize( dst, dst );
}
/*
===============
RotatePointAroundVector
This is not implemented very well...
===============
*/
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
float degrees ) {
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int i;
vec3_t vr, vup, vf;
float rad;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector( vr, dir );
CrossProduct( vr, vf, vup );
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy( im, m, sizeof( im ) );
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset( zrot, 0, sizeof( zrot ) );
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
rad = DEG2RAD( degrees );
zrot[0][0] = cos( rad );
zrot[0][1] = sin( rad );
zrot[1][0] = -sin( rad );
zrot[1][1] = cos( rad );
MatrixMultiply( m, zrot, tmpmat );
MatrixMultiply( tmpmat, im, rot );
for ( i = 0; i < 3; i++ ) {
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
}
}
|