1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/*
===========================================================================
Copyright (C) 2025 the OpenMoHAA team
This file is part of OpenMoHAA source code.
OpenMoHAA source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
OpenMoHAA source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenMoHAA source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
/**
* @file navigation_bsp_utils.cpp
* @brief Utility functions to create windings from brushes.
*
*/
#include "g_local.h"
#include "navigation_bsp.h"
#include "../qcommon/qfiles.h"
#include "../qcommon/container.h"
#include "../qcommon/vector.h"
#include "../qcommon/cm_polylib.h"
#include "../script/scriptexception.h"
/*
=============
AllocWinding
=============
*/
winding_t *AllocWinding(int points)
{
winding_t *w;
int s;
s = sizeof(vec_t) * 3 * points + sizeof(int);
w = (winding_t *)gi.Malloc(s);
Com_Memset(w, 0, s);
return w;
}
void FreeWinding(winding_t *w)
{
if (*(unsigned *)w == 0xdeaddead) {
Com_Error(ERR_FATAL, "FreeWinding: freed a freed winding");
}
*(unsigned *)w = 0xdeaddead;
gi.Free(w);
}
/*
=================
BaseWindingForPlane
=================
*/
winding_t *BaseWindingForPlane(vec3_t normal, vec_t dist)
{
int i, x;
vec_t max, v;
vec3_t org, vright, vup;
winding_t *w;
// find the major axis
max = -MAP_SIZE;
x = -1;
for (i = 0; i < 3; i++) {
v = fabs(normal[i]);
if (v > max) {
x = i;
max = v;
}
}
if (x == -1) {
Com_Error(ERR_DROP, "BaseWindingForPlane: no axis found");
}
VectorCopy(vec3_origin, vup);
switch (x) {
case 0:
case 1:
vup[2] = 1;
break;
case 2:
vup[0] = 1;
break;
}
v = DotProduct(vup, normal);
VectorMA(vup, -v, normal, vup);
VectorNormalize(vup);
VectorScale(normal, dist, org);
CrossProduct(vup, normal, vright);
VectorScale(vup, MAP_SIZE, vup);
VectorScale(vright, MAP_SIZE, vright);
// project a really big axis aligned box onto the plane
w = AllocWinding(4);
VectorSubtract(org, vright, w->p[0]);
VectorAdd(w->p[0], vup, w->p[0]);
VectorAdd(org, vright, w->p[1]);
VectorAdd(w->p[1], vup, w->p[1]);
VectorAdd(org, vright, w->p[2]);
VectorSubtract(w->p[2], vup, w->p[2]);
VectorSubtract(org, vright, w->p[3]);
VectorSubtract(w->p[3], vup, w->p[3]);
w->numpoints = 4;
return w;
}
/*
=============
ChopWindingInPlace
=============
*/
void ChopWindingInPlace(winding_t **inout, vec3_t normal, vec_t dist, vec_t epsilon)
{
winding_t *in;
vec_t dists[MAX_POINTS_ON_WINDING + 4];
int sides[MAX_POINTS_ON_WINDING + 4];
int counts[3];
static vec_t dot; // VC 4.2 optimizer bug if not static
int i, j;
vec_t *p1, *p2;
vec3_t mid;
winding_t *f;
int maxpts;
in = *inout;
counts[0] = counts[1] = counts[2] = 0;
// determine sides for each point
for (i = 0; i < in->numpoints; i++) {
dot = DotProduct(in->p[i], normal);
dot -= dist;
dists[i] = dot;
if (dot > epsilon) {
sides[i] = SIDE_FRONT;
} else if (dot < -epsilon) {
sides[i] = SIDE_BACK;
} else {
sides[i] = SIDE_ON;
}
counts[sides[i]]++;
}
sides[i] = sides[0];
dists[i] = dists[0];
if (!counts[0]) {
FreeWinding(in);
*inout = NULL;
return;
}
if (!counts[1]) {
return; // inout stays the same
}
maxpts = in->numpoints + 4; // cant use counts[0]+2 because
// of fp grouping errors
f = AllocWinding(maxpts);
for (i = 0; i < in->numpoints; i++) {
p1 = in->p[i];
if (sides[i] == SIDE_ON) {
VectorCopy(p1, f->p[f->numpoints]);
f->numpoints++;
continue;
}
if (sides[i] == SIDE_FRONT) {
VectorCopy(p1, f->p[f->numpoints]);
f->numpoints++;
}
if (sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i]) {
continue;
}
// generate a split point
p2 = in->p[(i + 1) % in->numpoints];
dot = dists[i] / (dists[i] - dists[i + 1]);
for (j = 0; j < 3; j++) { // avoid round off error when possible
if (normal[j] == 1) {
mid[j] = dist;
} else if (normal[j] == -1) {
mid[j] = -dist;
} else {
mid[j] = p1[j] + dot * (p2[j] - p1[j]);
}
}
VectorCopy(mid, f->p[f->numpoints]);
f->numpoints++;
}
if (f->numpoints > maxpts) {
Com_Error(ERR_DROP, "ClipWinding: points exceeded estimate");
}
if (f->numpoints > MAX_POINTS_ON_WINDING) {
Com_Error(ERR_DROP, "ClipWinding: MAX_POINTS_ON_WINDING");
}
FreeWinding(in);
*inout = f;
}
#define SNAP_EPSILON 0.01
void SnapWeldVector(vec3_t a, vec3_t b, vec3_t out)
{
int i;
vec_t ai, bi, outi;
/* dummy check */
if (a == NULL || b == NULL || out == NULL) {
return;
}
/* do each element */
for (i = 0; i < 3; i++) {
/* round to integer */
ai = Q_rint(a[i]);
bi = Q_rint(a[i]);
/* prefer exact integer */
if (ai == a[i]) {
out[i] = a[i];
} else if (bi == b[i]) {
out[i] = b[i];
}
/* use nearest */
else if (fabs(ai - a[i]) < fabs(bi < b[i])) {
out[i] = a[i];
} else {
out[i] = b[i];
}
/* snap */
outi = Q_rint(out[i]);
if (fabs(outi - out[i]) <= SNAP_EPSILON) {
out[i] = outi;
}
}
}
#define DEGENERATE_EPSILON 0.1
qboolean FixWinding(winding_t *w)
{
qboolean valid = qtrue;
int i, j, k;
vec3_t vec;
float dist;
/* dummy check */
if (!w) {
return qfalse;
}
/* check all verts */
for (i = 0; i < w->numpoints; i++) {
/* don't remove points if winding is a triangle */
if (w->numpoints == 3) {
return valid;
}
/* get second point index */
j = (i + 1) % w->numpoints;
/* degenerate edge? */
VectorSubtract(w->p[i], w->p[j], vec);
dist = VectorLength(vec);
if (dist < DEGENERATE_EPSILON) {
valid = qfalse;
//Sys_FPrintf( SYS_VRB, "WARNING: Degenerate winding edge found, fixing...\n" );
/* create an average point (ydnar 2002-01-26: using nearest-integer weld preference) */
SnapWeldVector(w->p[i], w->p[j], vec);
VectorCopy(vec, w->p[i]);
//VectorAdd( w->p[ i ], w->p[ j ], vec );
//VectorScale( vec, 0.5, w->p[ i ] );
/* move the remaining verts */
for (k = i + 2; k < w->numpoints; k++) {
VectorCopy(w->p[k], w->p[k - 1]);
}
w->numpoints--;
}
}
/* one last check and return */
if (w->numpoints < 3) {
valid = qfalse;
}
return valid;
}
qboolean G_PlaneFromPoints(vec4_t plane, vec3_t a, vec3_t b, vec3_t c)
{
vec3_t d1, d2;
VectorSubtract(b, a, d1);
VectorSubtract(c, a, d2);
CrossProduct(d2, d1, plane);
if (VectorNormalize(plane) == 0) {
return qfalse;
}
plane[3] = DotProduct(a, plane);
return qtrue;
}
|