1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
|
#include "gvPS2Spu2.h"
#if !defined(GV_NO_PS2_SPU2)
#include "gvDevice.h"
#include "gvCodec.h"
#include "gvSource.h"
#include "gvUtil.h"
#include <libsdr.h>
#include <sif.h>
#if !defined(_PS2)
#error This file should only be used with the PlayStation2
#endif
// Thanks to Martin Jajam at Coresoft for original SPU2 code
////////////////////////////////////////////////////////////
/*
The input block we are writing to takes data in the form
---1st half of buffer-----
256 sample Left channel = 512 bytes ( 1 block )
256 sample Right channel = 512 bytes
---2nd half of buffer-----
256 sample Left channel = 512 bytes
256 sample Right channel = 512 bytes
*/
/************
** DEFINES **
************/
#define bss_align(val) \
__attribute__ ((aligned(val))) __attribute__ ((section (".bss")))
#define LIMIT(x, minx, maxx) ((x) < (minx) ? (minx) : ((x) > (maxx) ? (maxx) : (x)))
#define AUTODMA_CH 1
#define SPU_BLOCK_SIZE 512 // in samples
#define IOP_BUFF_SIZE 12288 // 24 blocks
#define SPU_BUFF_SIZE 2048 // 4 blocks
#define CORE0_INPUT_L (0x2000)// * 2)
#define CORE0_INPUT_R (0x2200)// * 2)
#define CORE1_INPUT_L (0x2400)// * 2)
#define CORE1_INPUT_R (0x2600)// * 2)
#if (AUTODMA_CH == 0)
#define CORE_INPUT_L CORE0_INPUT_L
#define CORE_INPUT_R CORE0_INPUT_R
#else
#define CORE_INPUT_L CORE1_INPUT_L
#define CORE_INPUT_R CORE1_INPUT_R
#endif
// each DMA is 4 blocks = 256 samples * 2 bytes * 4 blocks = 2048 bytes
#define EEBUFFER_SAMPLE_COUNT (IOP_BUFF_SIZE/4) // 2 bytes sample
/**********
** TYPES **
**********/
typedef struct
{
GVBool m_playing;
GVScalar m_playbackVolume;
GVFrameStamp m_playbackClock;
GVISourceList m_playbackSources;
GVSample * m_playbackBuffer;
int m_playbackBufferPos;
} GVIPS2Spu2Data;
/************
** GLOBALS **
************/
const GVDeviceID GVPS2Spu2DeviceID = -1;
static GVIDevice * GVIPS2Spu2Device;
static gsi_u16 EEBuffer[IOP_BUFF_SIZE] bss_align(64);
static int IOPBuffer = 0;
static int gEEStreanIntr = 0; // flag for when an endpoint is reached by the audio play head.
static int gEEDataSampleCount = 0; // how many samples do we have buffered up? ( 0 - 256 )
/**************
** FUNCTIONS **
**************/
static int DMA_EE_To_IOP(int dst, u_char *src, int size)
{
sceSifDmaData transData;
int did;
assert((((gsi_u32)src) & 0x3f) == 0); // assert 64 byte aligned
if (size <= 0) {
return 0;
}
transData.data = (u_int)src;
transData.addr = (u_int)dst;
transData.size = (unsigned int)size;
transData.mode = 0; // caution
FlushCache(0);
did = (int)sceSifSetDma( &transData, 1 );
while (sceSifDmaStat((unsigned int)did) >= 0)
;
return size;
}
static int cbEEStreamTransfer( void* common )
{
gEEStreanIntr = 1;
GSI_UNUSED(common);
return 0;
}
static void EEStreamClearSPUBuffer()
{
memset (EEBuffer, 0, IOP_BUFF_SIZE);
FlushCache(0);
DMA_EE_To_IOP( IOPBuffer, // IOP side destination address
(u_char *)EEBuffer, // EE side source address
IOP_BUFF_SIZE);
DMA_EE_To_IOP( IOPBuffer + IOP_BUFF_SIZE, // IOP side destination address
(u_char *)EEBuffer, // EE side source address
IOP_BUFF_SIZE);
// Clear out SPU2 input area
sceSdRemote(1, rSdVoiceTrans, AUTODMA_CH, SD_TRANS_MODE_WRITE | SD_TRANS_BY_DMA,
IOPBuffer, CORE_INPUT_L, 0x800 );
sceSdRemote(1, rSdVoiceTrans, AUTODMA_CH, SD_TRANS_MODE_WRITE | SD_TRANS_BY_DMA,
IOPBuffer + IOP_BUFF_SIZE, CORE_INPUT_R, 0x800 );
sceSdRemote (1, rSdVoiceTransStatus, AUTODMA_CH, SD_TRANS_STATUS_WAIT);
}
GVBool gviPS2Spu2Startup(void)
{
// clear the device pointer
GVIPS2Spu2Device = NULL;
// do general initialization
if(sceSdRemoteInit() != 0)
return GVFalse;
if(sceSdRemote(1, rSdInit, SD_INIT_COLD) != 0)
return GVFalse;
if(sceSifInitIopHeap() != 0)
return GVFalse;
return GVTrue;
}
void gviPS2Spu2Cleanup(void)
{
// free the device array
if(GVIPS2Spu2Device)
gviFreeDevice(GVIPS2Spu2Device);
}
static void AudioUpSample(gsi_i16* Dest48Khz, const gsi_i16* Src8Khz, int num8Khzsamples)
// 16 bit audio upsample from 8khz to 48khz
// numsamples = Src samples (8khz )
{
#if(0)
// Point sample
while (num8Khzsamples)
{
int a = Src8Khz[0];
// bad alias upsampling code here....
Dest48Khz[0] = a;
Dest48Khz[1] = a;
Dest48Khz[2] = a;
Dest48Khz[3] = a;
Dest48Khz[4] = a;
Dest48Khz[5] = a;
Dest48Khz +=6;
Src8Khz ++;
num8Khzsamples--;
}
#elif (1)
// linear interpolate
int a=0,b=0;
while (num8Khzsamples - 1)
{
a = Src8Khz[0];
b = Src8Khz[1];
// bad alias upsampling code here....
Dest48Khz[0] = (gsi_i16)a;
Dest48Khz[1] = (gsi_i16)((5*a)/6 +(1*b)/6);
Dest48Khz[2] = (gsi_i16)((4*a)/6 +(2*b)/6);
Dest48Khz[3] = (gsi_i16)((3*a)/6 +(3*b)/6);
Dest48Khz[4] = (gsi_i16)((2*a)/6 +(4*b)/6);
Dest48Khz[5] = (gsi_i16)((1*a)/6 +(5*b)/6);
Dest48Khz +=6;
Src8Khz ++;
num8Khzsamples--;
}
Dest48Khz[0] = (gsi_i16)b;
Dest48Khz[1] = (gsi_i16)b;
Dest48Khz[2] = (gsi_i16)b;
Dest48Khz[3] = (gsi_i16)b;
Dest48Khz[4] = (gsi_i16)b;
Dest48Khz[5] = (gsi_i16)b;
#else
// use catmull-rom spline to interpolate
// multiply tr vector by abcd matrix to get point
float a = (float)Src8Khz[ 0];
float b = (float)Src8Khz[ 0];
float c = (float)Src8Khz[ 1];
float d = (float)Src8Khz[ 2];
float v;
// bad alias upsampling code here....
Dest48Khz[0] =Src8Khz[ 0]; // t= 0;
Dest48Khz[1] =(gsi_u16)(a * -0.058f + b * 0.938f + c * 0.132f + d * -0.012f ); // t= 1/6;
Dest48Khz[2] =(gsi_u16)(a * -0.074f + b * 0.778f + c * 0.333f + d * -0.037f ); // t= 2/6;
Dest48Khz[3] =(gsi_u16)(a * -0.063f + b * 0.563f + c * 0.563f + d * -0.063f ); // t= 3/6;
Dest48Khz[4] =(gsi_u16)(a * -0.037f + b * 0.333f + c * 0.778f + d * -0.074f ); // t= 4/6;
Dest48Khz[5] =(gsi_u16)(a * -0.012f + b * 0.132f + c * 0.938f + d * -0.058f ); // t= 5/6;
Dest48Khz +=6;
Src8Khz ++;
num8Khzsamples-=3;
while (num8Khzsamples)
{
a = (float)Src8Khz[-1];
b = (float)Src8Khz[ 0];
c = (float)Src8Khz[ 1];
d = (float)Src8Khz[ 2];
// bad alias upsampling code here....
Dest48Khz[0] =Src8Khz[ 0]; // t= 0;
v = (a * -0.058f + b * 0.938f + c * 0.132f + d * -0.012f );
Dest48Khz[1] =(gsi_u16) LIMIT(v,0.0f,65535.0f); // t= 1/6;
v = (a * -0.074f + b * 0.778f + c * 0.333f + d * -0.037f );
Dest48Khz[2] =(gsi_u16) LIMIT(v,0.0f,65535.0f); // t= 2/6;
v = (a * -0.063f + b * 0.563f + c * 0.563f + d * -0.063f );
Dest48Khz[3] =(gsi_u16) LIMIT(v,0.0f,65535.0f); // t= 3/6;
v= (a * -0.037f + b * 0.333f + c * 0.778f + d * -0.074f );
Dest48Khz[4] =(gsi_u16) LIMIT(v,0.0f,65535.0f); // t= 4/6;
v=(a * -0.012f + b * 0.132f + c * 0.938f + d * -0.058f );
Dest48Khz[5] =(gsi_u16) LIMIT(v,0.0f,65535.0f); // t= 5/6;
Dest48Khz +=6;
Src8Khz ++;
num8Khzsamples--;
}
a = (float)Src8Khz[ 0];
b = (float)Src8Khz[ 0];
c = (float)Src8Khz[ 1];
d = (float)Src8Khz[ 1];
// bad alias upsampling code here....
Dest48Khz[0] =Src8Khz[ 0]; // t= 0;
Dest48Khz[1] =(gsi_u16)(a * -0.058f + b * 0.938f + c * 0.132f + d * -0.012f ); // t= 1/6;
Dest48Khz[2] =(gsi_u16)(a * -0.074f + b * 0.778f + c * 0.333f + d * -0.037f ); // t= 2/6;
Dest48Khz[3] =(gsi_u16)(a * -0.063f + b * 0.563f + c * 0.563f + d * -0.063f ); // t= 3/6;
Dest48Khz[4] =(gsi_u16)(a * -0.037f + b * 0.333f + c * 0.778f + d * -0.074f ); // t= 4/6;
Dest48Khz[5] =(gsi_u16)(a * -0.012f + b * 0.132f + c * 0.938f + d * -0.058f ); // t= 5/6;
Dest48Khz +=6;
Src8Khz ++;
a = (float)Src8Khz[ 0];
b = (float)Src8Khz[ 0];
c = (float)Src8Khz[ 0];
d = (float)Src8Khz[ 0];
// bad alias upsampling code here....
Dest48Khz[0] =Src8Khz[ 0]; // t= 0;
Dest48Khz[1] =(gsi_u16)(a * -0.058f + b * 0.938f + c * 0.132f + d * -0.012f ); // t= 1/6;
Dest48Khz[2] =(gsi_u16)(a * -0.074f + b * 0.778f + c * 0.333f + d * -0.037f ); // t= 2/6;
Dest48Khz[3] =(gsi_u16)(a * -0.063f + b * 0.563f + c * 0.563f + d * -0.063f ); // t= 3/6;
Dest48Khz[4] =(gsi_u16)(a * -0.037f + b * 0.333f + c * 0.778f + d * -0.074f ); // t= 4/6;
Dest48Khz[5] =(gsi_u16)(a * -0.012f + b * 0.132f + c * 0.938f + d * -0.058f ); // t= 5/6;
Dest48Khz +=6;
Src8Khz ++;
#endif
}
static int EEStreamDataPush(const gsi_u16* data, int num8Khzsamples)
// numsamples is in 8khz format
// copies and converts. returns numsamples read
{
int remain48Khz = EEBUFFER_SAMPLE_COUNT - gEEDataSampleCount;
if (num8Khzsamples *6 > remain48Khz)
{
num8Khzsamples = remain48Khz/6;
}
assert(EEBUFFER_SAMPLE_COUNT >= num8Khzsamples*6);
AudioUpSample((gsi_i16*)&EEBuffer[gEEDataSampleCount],(const gsi_i16*)data,num8Khzsamples);
gEEDataSampleCount+=num8Khzsamples*6;
return num8Khzsamples;
}
static void EEStreamConvertAndTransfer(GVIDevice * device, int which)
{
GVIPS2Spu2Data * data = (GVIPS2Spu2Data *)device->m_data;
GVBool wroteToBuffer;
int samplesPushed;
static int BlockSize= 256; // in samples
static int EEMul = 2;
static int IOPMul = 4;
int iopmem;
u_char *eemem;
int i;
// push any pending data
if(data->m_playbackBufferPos)
{
EEStreamDataPush(data->m_playbackBuffer + data->m_playbackBufferPos, GVISamplesPerFrame - data->m_playbackBufferPos);
data->m_playbackBufferPos = 0;
}
do
{
// write a frame of sources to our buffer
wroteToBuffer = gviWriteSourcesToBuffer(data->m_playbackSources, data->m_playbackClock, data->m_playbackBuffer, 1);
// clear it if nothing was written
if(!wroteToBuffer)
memset(data->m_playbackBuffer, 0, (unsigned int)GVIBytesPerFrame);
// filter
if(device->m_playbackFilterCallback)
device->m_playbackFilterCallback(device, data->m_playbackBuffer, data->m_playbackClock);
// push it
samplesPushed = EEStreamDataPush(data->m_playbackBuffer, GVISamplesPerFrame);
// update the clock
data->m_playbackClock++;
}
while(gEEDataSampleCount < EEBUFFER_SAMPLE_COUNT);
// store the position at which the push stopped
if(samplesPushed < GVISamplesPerFrame)
data->m_playbackBufferPos = samplesPushed;
else
data->m_playbackBufferPos = 0;
gEEDataSampleCount = 0; // reset
// Do a memcpy from EE to IOP memory using DMA, respecting 256 sample interleave
iopmem = IOPBuffer + which * IOP_BUFF_SIZE;
eemem = (u_char *)(&EEBuffer[0]);
for (i=0; i< EEBUFFER_SAMPLE_COUNT;i+= BlockSize)
{
//left
DMA_EE_To_IOP( iopmem, // IOP side destination address
eemem, // EE side source address
BlockSize*2);
//right
DMA_EE_To_IOP( iopmem+BlockSize*2, // IOP side destination address
eemem, // EE side source address
BlockSize*2);
iopmem += BlockSize * IOPMul; // 4 ,2,
eemem += BlockSize * EEMul; // 2 ,2,
}
}
void gviPS2Spu2Think(void)
{
GVIPS2Spu2Data * data;
int v;
int which;
if(!GVIPS2Spu2Device)
return;
// get the data
data = (GVIPS2Spu2Data *)GVIPS2Spu2Device->m_data;
// don't do anything if we're not playing
if(!data->m_playing)
return;
// Check if an interrupt has occured. IF this were a separate thread, it could sleep until this happens.
if(!gEEStreanIntr)
return;
// IOP_BUFF_SIZE has been played
// clear flag
gEEStreanIntr = 0;
v = sceSdRemote(1, rSdBlockTransStatus ,AUTODMA_CH,0);
which = 1 - (v >>24);
// done transfer, send some more data
EEStreamConvertAndTransfer(GVIPS2Spu2Device, which);
}
int gviPS2Spu2ListDevices(GVDeviceInfo devices[], int maxDevices, GVDeviceType types)
{
// check for no room
if(maxDevices < 1)
return 0;
// check for no playback devices wanted
if(!(types & GV_PLAYBACK))
return 0;
// store this device's info in the array
devices[0].m_id = GVPS2Spu2DeviceID;
strcpy(devices[0].m_name, "System Sound");
devices[0].m_deviceType = GV_PLAYBACK;
devices[0].m_defaultDevice = (GVDeviceType)0; // ps2 doesn't support default devices
devices[0].m_hardwareType = GVHardwarePS2Spu2;
return 1;
}
static GVBool gviPS2Spu2StartDevice(GVIDevice * device, GVDeviceType type)
{
GVIPS2Spu2Data * data = (GVIPS2Spu2Data *)device->m_data;
if(!(type & GV_PLAYBACK))
return GVFalse;
// clear the clock
data->m_playbackClock = 0;
// started playing
data->m_playing = GVTrue;
return GVTrue;
}
static void gviPS2Spu2StopDevice(GVIDevice * device, GVDeviceType type)
{
GVIPS2Spu2Data * data = (GVIPS2Spu2Data *)device->m_data;
if(!(type & GV_PLAYBACK))
return;
// stopped playing
data->m_playing = GVFalse;
// clear any pending sources & buffers
gviClearSourceList(data->m_playbackSources);
// clear the SPU
EEStreamClearSPUBuffer();
}
static GVBool gviPS2Spu2IsDeviceStarted(GVIDevice * device, GVDeviceType type)
{
GVIPS2Spu2Data * data = (GVIPS2Spu2Data *)device->m_data;
if(type == GV_PLAYBACK)
return data->m_playing;
return GVFalse;
}
static void gviPS2Spu2SetDeviceVolume(GVIDevice * device, GVDeviceType type, GVScalar volume)
{
GVIPS2Spu2Data * data = (GVIPS2Spu2Data *)device->m_data;
gsi_i16 sVol;
if(!(type & GV_PLAYBACK))
return;
// store the volume
data->m_playbackVolume = volume;
// convert it into a signed short
sVol = (gsi_i16)(volume * 0x3FFF);
sceSdRemote(1, rSdSetParam, AUTODMA_CH | SD_P_BVOLL, sVol);
sceSdRemote(1, rSdSetParam, AUTODMA_CH | SD_P_BVOLR, sVol);
}
static GVScalar gviPS2Spu2GetDeviceVolume(GVIDevice * device, GVDeviceType type)
{
GVIPS2Spu2Data * data = (GVIPS2Spu2Data *)device->m_data;
if(!(type & GV_PLAYBACK))
return 0;
return data->m_playbackVolume;
}
static void gviPS2Spu2PlayPacket(GVIDevice * device, const GVByte * packet, int len, GVSource source, GVFrameStamp frameStamp, GVBool mute)
{
GVIPS2Spu2Data * data = (GVIPS2Spu2Data *)device->m_data;
// don't do anything if we're not playing
if(!data->m_playing)
return;
//add it
gviAddPacketToSourceList(data->m_playbackSources, packet, len, source, frameStamp, mute, data->m_playbackClock);
}
static GVBool gviPS2Spu2IsSourceTalking(GVDevice device, GVSource source)
{
GVIPS2Spu2Data * data = (GVIPS2Spu2Data *)device->m_data;
// don't do anything if we're not playing
if(!data->m_playing)
return GVFalse;
return gviIsSourceTalking(data->m_playbackSources, source);
}
static int gviPS2Spu2ListTalkingSources(GVDevice device, GVSource sources[], int maxSources)
{
GVIPS2Spu2Data * data = (GVIPS2Spu2Data *)device->m_data;
// don't do anything if we're not playing
if(!data->m_playing)
return GVFalse;
return gviListTalkingSources(data->m_playbackSources, sources, maxSources);
}
static void gviPS2Spu2FreeDevice(GVIDevice * device)
{
GVIPS2Spu2Data * data = (GVIPS2Spu2Data *)device->m_data;
EEStreamClearSPUBuffer();
// Free resources
sceSifFreeIopHeap((void *)IOPBuffer);
IOPBuffer = (int)NULL;
// Turn off interrupt
sceSdRemoteCallbackQuit();
sceSdRemote(1, rSdSetTransIntrHandler,AUTODMA_CH,NULL, NULL);
// kill volume
//changeInputVolume(0x0000);
if(data->m_playbackSources)
gviFreeSourceList(data->m_playbackSources);
gsifree(data->m_playbackBuffer);
// free the device
gviFreeDevice(device);
GVIPS2Spu2Device = NULL;
}
static GVBool gviPS2Spu2InitDevice(GVIDevice * device, int deviceIndex, GVDeviceType type)
{
GVIPS2Spu2Data * data = (GVIPS2Spu2Data *)device->m_data;
// create the array of sources
data->m_playbackSources = gviNewSourceList();
if(!data->m_playbackSources)
return GVFalse;
// allocate the buffer
data->m_playbackBuffer = (GVSample *)gsimalloc((unsigned int)GVIBytesPerFrame);
if(!data->m_playbackBuffer)
{
gviFreeSourceList(data->m_playbackSources);
return GVFalse;
}
// these are the buffers which the audio (SPU) will stream from on the IOP.
// they are double buffered, with one half being read while the other is dma'ed into from the EE
IOPBuffer = (int)sceSifAllocIopHeap(IOP_BUFF_SIZE*2);
assert(IOPBuffer );
// Set interrupt to receive mid and end point in buffer
sceSdRemoteCallbackInit(5);
sceSdRemote(1, rSdSetTransIntrHandler,AUTODMA_CH,cbEEStreamTransfer, NULL);
// clear interrupt flag. After this each interrupt, this flag will be set to 1.
gEEStreanIntr = 0;
EEStreamClearSPUBuffer();
// Turn on the auto dma transfer process. From here in the dma continuously
// load data into the sound processor memory, playing it.
// at mid and end points, cbEEStreamTransfer will be called
sceSdRemote(1, rSdBlockTrans, AUTODMA_CH,
(SD_TRANS_MODE_WRITE| SD_BLOCK_LOOP),
IOPBuffer, // start of buffer
IOP_BUFF_SIZE*2, // size of buffer
IOPBuffer // where in buffer to start
);
sceSdRemote(1, rSdSetParam, AUTODMA_CH | SD_P_BVOLL, 0x3FFF);
sceSdRemote(1, rSdSetParam, AUTODMA_CH | SD_P_BVOLR, 0x3FFF);
sceSdRemote(1, rSdSetParam, AUTODMA_CH | SD_P_MVOLL, 0x3FFF);
sceSdRemote(1, rSdSetParam, AUTODMA_CH | SD_P_MVOLR, 0x3FFF);
// set data
data->m_playbackVolume = 1.0;
GSI_UNUSED(deviceIndex);
GSI_UNUSED(type);
return GVTrue;
}
GVDevice gviPS2Spu2NewDevice(GVDeviceID deviceID, GVDeviceType type)
{
GVIDevice * device;
GVBool result;
// check if the device already exists
if(GVIPS2Spu2Device)
return NULL;
// check the ID
if(deviceID != GVPS2Spu2DeviceID)
return NULL;
// check the type
if(type != GV_PLAYBACK)
return NULL;
// create a new device
device = gviNewDevice(deviceID, GVHardwarePS2Spu2, type, sizeof(GVIPS2Spu2Data));
if(!device)
return NULL;
// init the device
result = gviPS2Spu2InitDevice(device, deviceID, type);
if(result == GVFalse)
{
gviFreeDevice(device);
return NULL;
}
// store the pointers
device->m_methods.m_freeDevice = gviPS2Spu2FreeDevice;
device->m_methods.m_startDevice = gviPS2Spu2StartDevice;
device->m_methods.m_stopDevice = gviPS2Spu2StopDevice;
device->m_methods.m_isDeviceStarted = gviPS2Spu2IsDeviceStarted;
device->m_methods.m_setDeviceVolume = gviPS2Spu2SetDeviceVolume;
device->m_methods.m_getDeviceVolume = gviPS2Spu2GetDeviceVolume;
device->m_methods.m_playPacket = gviPS2Spu2PlayPacket;
device->m_methods.m_isSourceTalking = gviPS2Spu2IsSourceTalking;
device->m_methods.m_listTalkingSources = gviPS2Spu2ListTalkingSources;
// store a pointer to the device
GVIPS2Spu2Device = device;
return device;
}
#endif //!defined(GV_NO_PS2_SPU2)
|