File: gvPSPAudio.c

package info (click to toggle)
openmohaa 0.82.1%2Bdfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 34,192 kB
  • sloc: cpp: 315,720; ansic: 275,789; sh: 312; xml: 246; asm: 141; makefile: 7
file content (503 lines) | stat: -rw-r--r-- 12,659 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#include "gvDevice.h"
#include "gvCodec.h"
#include "gvSource.h"
#include "gvUtil.h"
#include <audioinput.h>

#if !defined(_PSP)
#error This file should only be used with the PSP
#endif

/************
** DEFINES **
************/
// the number of samples to capture at a time
// is a multiple of 64 and 160
// at 11025hz, corresponds to about 30ms
#define GVI_INPUT_LEN 320

#define GVI_CAPTURE_THREAD_STACK_SIZE (1024 * 4)

// ADC settings
#define GVI_ADC_ALC    -6 //  -6 dB
#define GVI_ADC_GAIN  +30 // +30 dB
#define GVI_ADC_NOIZ  -60 // -60 dB
#define GVI_ADC_HOLD    0 // 0 ms
#define GVI_ADC_DECAY   3 // 192 ms
#define GVI_ADC_ATTACK  2 // 24 ms

/**********
** TYPES **
**********/
typedef struct
{
	GVBool m_capturing;
	GVScalar m_captureVolume;
	GVFrameStamp m_captureClock;
	GVScalar m_captureThreshold;
	GVFrameStamp m_captureLastCrossedThresholdTime;
	GVSample * m_captureBuffer;
	size_t m_captureBufferLen;  // len in samples (not bytes)
	size_t m_captureBufferWritePos;
	size_t m_captureBufferReadPos;
	SceUID m_captureBufferSemaphore;
	SceUID m_captureThreadID;
	GVBool m_captureThreadStop;
} GVIHardwareData;

/************
** GLOBALS **
************/
static GVIDevice * GVIPSPDevice = NULL;

/**************
** FUNCTIONS **
**************/
static void gviHardwareFreeDevice(GVIDevice * device);

static GVBool gviWaitSemaphore(GVIHardwareData * data)
{
	int rcode = sceKernelWaitSema(data->m_captureBufferSemaphore, 1, NULL);
	if(rcode == 0)
		return GVTrue;
	return GVFalse;
}

static GVBool gviSignalSemaphore(GVIHardwareData * data)
{
	int rcode = sceKernelSignalSema(data->m_captureBufferSemaphore, 1);
	if(rcode == 0)
		return GVTrue;
	return GVFalse;
}

GVBool gviHardwareStartup(void)
{
	SceAudioInputParam param;
	int rcode;

	// init mic capture
	param.alc = GVI_ADC_ALC;
	param.gain = GVI_ADC_GAIN;
	param.noiz = GVI_ADC_NOIZ;
	param.hold = GVI_ADC_HOLD;
	param.decay = GVI_ADC_DECAY;
	param.attack = GVI_ADC_ATTACK;
	rcode = sceAudioInputInitEx(&param);
	if(rcode < 0)
		return GVFalse;

	return GVTrue;
}

void gviHardwareCleanup(void)
{
	if(GVIPSPDevice)
	{
		gviHardwareFreeDevice(GVIPSPDevice);
		GVIPSPDevice = NULL;
	}
}

void gviHardwareThink(void)
{
	// no thinking needed
}

int gviHardwareListDevices(GVDeviceInfo devices[], int maxDevices, GVDeviceType types)
{
	if(maxDevices < 1)
		return 0;

	if(!(types & GV_CAPTURE))
		return 0;

	memset(&devices[0], 0, sizeof(GVDeviceInfo));
	devices[0].m_id = 0;
	strcpy(devices[0].m_name, _T("Headset Mic"));
	devices[0].m_deviceType = GV_CAPTURE;
	devices[0].m_defaultDevice = GV_CAPTURE;
	devices[0].m_hardwareType = GVHardwarePSPHeadset;

	return 1;
}

static void gviHardwareFreeDevice(GVIDevice * device)
{
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;

	// don't track this device anymore
	GVIPSPDevice = NULL;

 	// tell the thread to stop
	// the thread will free the device after it stops
	data->m_captureThreadStop = GVTrue;
}

static GVBool gviHardwareStartDevice(GVIDevice * device, GVDeviceType type)
{
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;

	if(type != GV_CAPTURE)
		return GVFalse;

	// already capturing?
	if(data->m_capturing == GVTrue)
		return GVTrue;

	// set vars
	data->m_captureBufferWritePos = 0;
	data->m_captureBufferReadPos = 0;

	// start capturing
	data->m_capturing = GVTrue;

	return GVTrue;
}

static void gviHardwareStopDevice(GVIDevice * device, GVDeviceType type)
{
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;

	if(type != GV_CAPTURE)
		return;

	// stop capturing
	data->m_capturing = GVFalse;

	// increment the clock so new audio isn't contiguous
	data->m_captureClock++;
}

static GVBool gviHardwareIsDeviceStarted(GVIDevice * device, GVDeviceType type)
{
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;
	if(type != GV_CAPTURE)
		return GVFalse;
	return data->m_capturing;
}

static void gviHardwareSetDeviceVolume(GVIDevice * device, GVDeviceType type, GVScalar volume)
{
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;
	if(type != GV_CAPTURE)
		return;
	data->m_captureVolume = volume;
}

static GVScalar gviHardwareGetDeviceVolume(GVIDevice * device, GVDeviceType type)
{
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;
	if(type != GV_CAPTURE)
		return (GVScalar)0;
	return data->m_captureVolume;
}

static void gviHardwareSetCaptureThreshold(GVIDevice * device, GVScalar threshold)
{
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;
	data->m_captureThreshold = threshold;
}

static GVScalar gviHardwareGetCaptureThreshold(GVIDevice * device)
{
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;
	return data->m_captureThreshold;
}

static int gviHardwareGetAvailableCaptureBytes(GVDevice device)
{
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;
	int numSamples;

	if(!data->m_capturing)
		return GVFalse;

	// figure out how many samples are available
	gviWaitSemaphore(data);
		if(data->m_captureBufferWritePos < data->m_captureBufferReadPos)
			numSamples = (data->m_captureBufferLen - data->m_captureBufferReadPos);
		else
			numSamples = (data->m_captureBufferWritePos - data->m_captureBufferReadPos);
	gviSignalSemaphore(data);

	return numSamples;
}

static GVBool gviHardwareCapturePacket(GVDevice device, GVByte * packet, int * len, GVFrameStamp * frameStamp, GVScalar * volume)
{
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;
	int numBytes;
	int numSamples;
	int numFrames;
	GVBool overThreshold = GVFalse;
	int lenAvailable;
	int framesAvailable;
	int i, j;
	GVSample * readPtr;

	if(!data->m_capturing)
		return GVFalse;

	// figure out how many encoded bytes they can handle
	lenAvailable = *len;

	// clear the len and volume
	*len = 0;
	if(volume)
		*volume = 0;

	// figure out how many bytes can be captured
	numSamples = gviHardwareGetAvailableCaptureBytes(device);
	numBytes = (numSamples * GV_BYTES_PER_SAMPLE);

	// figure out how many frames that is
	numFrames = (numBytes / GVIBytesPerFrame);

	if(numFrames == 0)
		return GVFalse;

	// figure out how many frames they can handle
	framesAvailable = (lenAvailable / GVIEncodedFrameSize);

	// don't give them more frames than they can handle
	numFrames = min(numFrames, framesAvailable);
	if(!numFrames)
		return GVFalse;

	// figure out how many bytes to capture
	numBytes = (numFrames * GVIBytesPerFrame);
	numSamples = (numBytes / GV_BYTES_PER_SAMPLE);

	// get the read pointer
	readPtr = (data->m_captureBuffer + data->m_captureBufferReadPos);

	// get the volume if they're interested
	if(volume)
		*volume = gviGetSamplesVolume(readPtr, numSamples);

	// check against the threshold
	if(volume)
	{
		// we already got the volume, so use that to check
		overThreshold = (*volume >= data->m_captureThreshold);
	}
	else
	{
		// we didn't get a volume, so check the samples directly
		overThreshold = gviIsOverThreshold(readPtr, numSamples, data->m_captureThreshold);
	}

	// did the audio cross the threshold?
	if(overThreshold)
	{
		// update the time at which we crossed
		data->m_captureLastCrossedThresholdTime = data->m_captureClock;
	}
	else
	{
		// check if we are still within the hold time
		overThreshold = ((GVFrameStamp)(data->m_captureClock - data->m_captureLastCrossedThresholdTime) < GVI_HOLD_THRESHOLD_FRAMES);
	}

	if(overThreshold)
	{
		// store the framestamp
		*frameStamp = data->m_captureClock;

		// handle the data one frame at a time
		for(i = 0 ; i < numFrames ; i++)
		{
			// scale the data
			if(data->m_captureVolume < 1.0)
			{
				for(j = 0 ; j < GVISamplesPerFrame ; j++)
					readPtr[j] = (GVSample)(readPtr[j] * data->m_captureVolume);
			}

			// filter
			if(device->m_captureFilterCallback)
				device->m_captureFilterCallback(device, readPtr, (GVFrameStamp)(data->m_captureClock + i));

			// encode the buffer into the packet
			gviEncode(packet + (GVIEncodedFrameSize * i), readPtr);

			// update the loop info as needed
			readPtr += GVISamplesPerFrame;
		}
	}

	// advance the read position and clock
	data->m_captureBufferReadPos += numSamples;
	data->m_captureBufferReadPos %= data->m_captureBufferLen;
	data->m_captureClock += numFrames;

	// set the len
	*len = (numFrames * GVIEncodedFrameSize);

	// return false if we didn't get a packet
	if(!overThreshold)
		return GVFalse;

	return GVTrue;
}

static int gviPSPCaptureThread(SceSize args, void * argp)
{
	GVIDevice * device = *(GVIDevice **)argp;
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;
	int rcode;

	assert(device);
	assert(args == sizeof(GVIDevice*));

	// loop until we're told to stop
	while(!data->m_captureThreadStop)
	{
		// are we capturing?
		if(data->m_capturing)
		{
			// get some input
			rcode = sceAudioInputBlocking(GVI_INPUT_LEN, GV_SAMPLES_PER_SECOND,
				data->m_captureBuffer + data->m_captureBufferWritePos);
			if(rcode < 0)
			{
				gviDeviceUnplugged(device);
			}
			else
			{
				gviWaitSemaphore(data);
					data->m_captureBufferWritePos += GVI_INPUT_LEN;
					data->m_captureBufferWritePos %= data->m_captureBufferLen;
				gviSignalSemaphore(data);
			}
		}
		else
		{
			// sleep
			msleep(10);
		}
	}

	// end sampling
	// if another device has already been created, don't do this
	if(GVIPSPDevice != NULL)
		sceAudioInputBlocking(GVI_INPUT_LEN, GV_SAMPLES_PER_SECOND, NULL);

	// free the device and its memory
	gsifree(data->m_captureBuffer);
	sceKernelDeleteSema(data->m_captureBufferSemaphore);
	gviFreeDevice(device);

	sceKernelExitThread(0);

	return 0;
}

static GVBool gviPSPAudioInitDevice(GVIDevice *device)
{
	GVIHardwareData * data = (GVIHardwareData *)device->m_data;
	size_t size;
	size_t oldSize;
	int rcode;

	// create a semaphore
	data->m_captureBufferSemaphore = sceKernelCreateSema("capture buffer", SCE_KERNEL_SA_THFIFO, 1, 1, NULL);
	if(data->m_captureBufferSemaphore <= 0)
		return GVFalse;

	// figure out the buffer size
	size = gviMultiplyByBytesPerMillisecond(GVI_CAPTURE_BUFFER_MILLISECONDS);
	size /= GV_BYTES_PER_SAMPLE; // convert from bytes to samples
	do
	{
		// it needs to be a multiple of both the frame size and the input len
		oldSize = size;
		size = gviRoundUpToNearestMultiple(size, GVISamplesPerFrame);
		size = gviRoundUpToNearestMultiple(size, GVI_INPUT_LEN);
	}
	while(size != oldSize);
	data->m_captureBufferLen = size;

	// allocate the buffer
	data->m_captureBuffer = (GVSample *)gsimalloc(size * GV_BYTES_PER_SAMPLE);
	if(!data->m_captureBuffer)
	{
		sceKernelDeleteSema(data->m_captureBufferSemaphore);
		return GVFalse;
	}

	// create capture thread
	data->m_captureThreadID = sceKernelCreateThread("capture",gviPSPCaptureThread,
		SCE_KERNEL_USER_HIGHEST_PRIORITY, GVI_CAPTURE_THREAD_STACK_SIZE, 0, NULL);
	if(data->m_captureThreadID < 0)
	{
		gsifree(data->m_captureBuffer);
		sceKernelDeleteSema(data->m_captureBufferSemaphore);
		return GVFalse;
	}

	// start capture thread
	rcode = sceKernelStartThread(data->m_captureThreadID, sizeof(GVIDevice*), &device);
	if(rcode < 0)
	{
		sceKernelDeleteThread(data->m_captureThreadID);
		gsifree(data->m_captureBuffer);
		sceKernelDeleteSema(data->m_captureBufferSemaphore);
		return GVFalse;
	}

	return GVTrue;
}

GVDevice gviHardwareNewDevice(GVDeviceID deviceID, GVDeviceType type)
{
	GVIDevice * device;
	GVIHardwareData * data;
	GVBool result;

	// we only do capture
	if(type != GV_CAPTURE)
		return NULL;

	// there can only be one device at a time
	if(GVIPSPDevice != NULL)
		return NULL;

	// create the device
	device = gviNewDevice(deviceID, GVHardwarePSPHeadset, type, sizeof(GVIHardwareData));
	if(!device)
		return NULL;

	// init the device
	result = gviPSPAudioInitDevice(device);
	if(result == GVFalse)
	{
		gviFreeDevice(device);
		return NULL;
	}

	// store the pointers
	device->m_methods.m_freeDevice = gviHardwareFreeDevice;
	device->m_methods.m_startDevice = gviHardwareStartDevice;
	device->m_methods.m_stopDevice = gviHardwareStopDevice;
	device->m_methods.m_isDeviceStarted = gviHardwareIsDeviceStarted;
	device->m_methods.m_setDeviceVolume = gviHardwareSetDeviceVolume;
	device->m_methods.m_getDeviceVolume = gviHardwareGetDeviceVolume;
	device->m_methods.m_setCaptureThreshold = gviHardwareSetCaptureThreshold;
	device->m_methods.m_getCaptureThreshold = gviHardwareGetCaptureThreshold;
	device->m_methods.m_getAvailableCaptureBytes = gviHardwareGetAvailableCaptureBytes;
	device->m_methods.m_capturePacket = gviHardwareCapturePacket;

	// get a pointer to the data
	data = (GVIHardwareData *)device->m_data;

	// init vars
	data->m_captureVolume = (GVScalar)1.0;
	data->m_captureClock = 0;
	data->m_captureLastCrossedThresholdTime = (data->m_captureClock - GVI_HOLD_THRESHOLD_FRAMES - 1);

	GVIPSPDevice = device;

	return device;
}