File: gsLargeInt.c

package info (click to toggle)
openmohaa 0.82.1%2Bdfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 34,192 kB
  • sloc: cpp: 315,720; ansic: 275,789; sh: 312; xml: 246; asm: 141; makefile: 7
file content (1904 lines) | stat: -rw-r--r-- 59,134 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#include "gsLargeInt.h"


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Many parameters are gsi_u32* instead of gsLargeInt_t*.  
//    This was done to allow easy conversion of databuffer to gsLargeInt_t
//    Raw buffer destinations must have enough space to store the result
static gsi_bool gsiLargeIntPrint(FILE* logFile, const l_word *data, l_word length);
static gsi_bool gsiLargeIntResize(gsLargeInt_t *lint, l_word length);
static gsi_bool gsiLargeIntStripLeadingZeroes(gsLargeInt_t* lint);
static gsi_bool gsiLargeIntSizePower2(const gsLargeInt_t *src1, const gsLargeInt_t *src2, l_word *lenout);
static gsi_i32  gsiLargeIntCompare(const l_word *data1, l_word len1, const l_word *data2, l_word len2);

static gsi_bool gsiLargeIntKMult(const l_word *data1, const l_word *data2, l_word length, l_word *dest, l_word *lenout, l_word maxlen);
static gsi_bool gsiLargeIntMult (const l_word *data1, l_word length1, const l_word *data2, l_word length2, l_word *dest, l_word *lenout, l_word maxlen);
static gsi_bool gsiLargeIntDiv  (const l_word *src1, l_word length1, const gsLargeInt_t *divisor, gsLargeInt_t *dest, gsLargeInt_t *remainder);

// Dest may be data1 or data2 to support in-place arithmetic
static gsi_bool gsiLargeIntAdd  (const l_word *data1, l_word length1, const l_word *data2, l_word length2, l_word *dest, l_word *lenout, l_word maxlen);
static gsi_bool gsiLargeIntSub  (const l_word *amount, l_word length1, const l_word *from, l_word length2, l_word *dest, l_word *lenout);

// Special division, removes divisor directly from src1, leaving remainder
static gsi_bool gsiLargeIntSubDivide(l_word *src1, l_word length, const l_word *divisor, l_word dlen, gsi_u32 highbit, l_word *quotient);

// Montgomery utilities
//gsi_bool gsiLargeIntSquareM(const gsLargeInt_t *src, const gsLargeInt_t *mod, gsi_u32 modPrime, gsi_u32 R, gsLargeInt_t *dest);
//gsi_bool gsiLargeIntMultM(gsLargeInt_t *src1, gsLargeInt_t *src2, const gsLargeInt_t *mod, gsi_u32 modPrime, gsLargeInt_t *dest);
gsi_bool gsiLargeIntMultM(gsLargeInt_t *src1, gsLargeInt_t *src2, const gsLargeInt_t *mod, gsi_u32 modPrime, gsLargeInt_t *dest);
gsi_bool gsiLargeIntInverseMod(const gsLargeInt_t *mod, l_word *modPrimeOut);


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
 // execution timing/profiling
#define GS_LINT_TIMING
#ifdef GS_LINT_TIMING

typedef enum 
{
	GSLintTimerMult,  // "regular" multiplication
	GSLintTimerMultM, // montgomery
	GSLintTimerKMult, // karatsuba
	GSLintTimerAdd,
	GSLintTimerSub,   // subtract
	GSLintTimerDiv,
	GSLintTimerSubDivide, // atomic divide
	GSLintTimerSquareMod,
	GSLintTimerPowerMod, // modular exponentiation

	GSLintTimerCount
} GSLintTimerID;

typedef struct GSLintTimer
{
	gsi_time started;
	gsi_time total;
	gsi_u32  entries;
	gsi_u32  running; // already entered?
} GSLintTimer;
static struct GSLintTimer gTimers[GSLintTimerCount];

static void gsiLargeIntTimerEnter(GSLintTimerID id)
{
	if (gTimers[id].running==0)
	{
		gTimers[id].entries++;
		gTimers[id].started = current_time_hires();
		gTimers[id].running = 1;
	}
}
static void gsiLargeIntTimerExit(GSLintTimerID id)
{
	if (gTimers[id].running==1)
	{
		gTimers[id].total += current_time_hires()-gTimers[id].started;
		gTimers[id].running = 0;
	}
}

#define GSLINT_ENTERTIMER(id) gsiLargeIntTimerEnter(id)
#define GSLINT_EXITTIMER(id) gsiLargeIntTimerExit(id)

#else
#define GSLINT_ENTERTIMER(id)
#define GSLINT_EXITTIMER(id)
#endif
 



///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
gsi_bool gsLargeIntSetValue(gsLargeInt_t *lint, l_word value)
{
	lint->mLength = 1;
	lint->mData[0] = value;
	return gsi_true;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Resize by:
//    Padding a GSLINT with leading zeroes.
//    or stripping lead zeroes.
// This function will not strip digits other than zero.
gsi_bool gsiLargeIntResize(gsLargeInt_t *lint, l_word length)
{
	if (length > GS_LARGEINT_MAX_DIGITS)
		return gsi_false;

	// strip leading zeroes until length is reached
	if (lint->mLength >= length)
	{
		while(lint->mLength > length && lint->mData[lint->mLength-1]==0)
			lint->mLength--; // check each digit to make sure it's zero
		if (lint->mLength == length)
			return gsi_true;
		else
			return gsi_false;
	}

	// otherwise, add zeroes until length is reached
	else
	{
		memset(&lint->mData[lint->mLength], 0, (length-lint->mLength)*sizeof(l_word));
		lint->mLength = length;
		return gsi_true;
	}
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Makes two GSLINT the same size, the size being a power of 2
//  NOTE: Testing next multiple of two, not power of 2
gsi_bool gsiLargeIntSizePower2(const gsLargeInt_t *src1, const gsLargeInt_t *src2, l_word *lenout)
{
	unsigned int i = 0;

	int len1 = (int)src1->mLength;
	int len2 = (int)src2->mLength;

	// strip leading zeroes
	while(len1>0 && src1->mData[len1-1] == 0)
		len1--;
	while(len2>0 && src2->mData[len2-1] == 0)
		len2--;

	// set to longer length
	*lenout = (l_word)max(len1, len2);
	
	// search for power of two >= length
	//   (this length is in digits, not bits)
	i=1;
	while(i < *lenout)
		i = i<<1;
	*lenout = (l_word)i;

	if (*lenout > GS_LARGEINT_MAX_DIGITS)
		return gsi_false;
	return gsi_true;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Compare two integers
//     -1 = data1 < data2
//      0 = data1 = data2
//      1 = data1 > data2
static gsi_i32 gsiLargeIntCompare(const l_word *data1, l_word len1, const l_word *data2, l_word len2)
{
	// skip leading whitespace, if any
	while(data1[len1-1] == 0 && len1>0)
		len1--;
	while(data2[len2-1] == 0 && len2>0)
		len2--;
	if (len1<len2)
		return -1;
	else if (len1>len2)
		return 1;
	else 
	{
		// same size, compare digits
		while(len1 > 0)
		{
			if (data1[len1-1] < data2[len1-1])
				return -1;
			else if (data1[len1-1] > data2[len1-1])
				return 1;
			len1--;
		}
	}
	return 0; // equal!
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
static gsi_bool gsiLargeIntStripLeadingZeroes(gsLargeInt_t* lint)
{
	while(lint->mLength >0 && lint->mData[lint->mLength-1]==0)
		lint->mLength--;
	return gsi_true;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Addition may cause overflow
gsi_bool gsLargeIntAdd(const gsLargeInt_t *src1, const gsLargeInt_t *src2, gsLargeInt_t *dest)
{
	gsi_bool result = gsiLargeIntAdd(src1->mData, src1->mLength, src2->mData, src2->mLength, dest->mData, &dest->mLength, GS_LARGEINT_MAX_DIGITS);
	if (gsi_is_false(result))
		memset(dest, 0, sizeof(gsLargeInt_t)); // overflow
	return result;
}

// len: In value = maxsize
//      Out value = actual size
static gsi_bool gsiLargeIntAdd(const l_word *data1, l_word length1, const l_word *data2, l_word length2, l_word *dest, l_word *lenout, l_word maxlen)
{
	gsi_u32 i=0;
	l_dword carry = 0; // to hold overflow

	gsi_u32 shorterLen = 0;
	gsi_u32 longerLen = 0;
	//const gsi_u32 *shorterSrc = NULL;
	const l_word *longerSrc = NULL;

	GSLINT_ENTERTIMER(GSLintTimerAdd);

	if (maxlen < length1 || maxlen < length2)
		return gsi_false; // dest not large enough, OVERFLOW

	if (length1 < length2)
	{
		shorterLen = length1;
		//shorterSrc = data1;
		longerLen = length2;
		longerSrc = data2;
	}
	else
	{
		shorterLen = length2;
		//shorterSrc = data2;
		longerLen = length1;
		longerSrc = data1;
	}

	// Add digits until the shorterSrc's length is reached
	while(i < shorterLen)
	{
		carry += (l_dword)data1[i] + data2[i];
		dest[i] = (l_word)carry;
		carry = carry >> GS_LARGEINT_DIGIT_SIZE_BITS; //32;
		i++;
	}

	// Continue adding until carry is zero
	while((carry > 0) && (i < longerLen))
	{
		carry += (l_dword)longerSrc[i];
		dest[i] = (l_word)carry;
		carry = carry >> GS_LARGEINT_DIGIT_SIZE_BITS; //32;
		i++;
	}

	// Is there still a carry?
	//    do not perform length check here, so that we can support oversized buffers
	if (carry > 0) // && i < GS_LARGEINT_INT_SIZE)
	{
		if (maxlen <= i)
			return gsi_false; // OVERFLOW, no room for extra digit
		dest[i++] = (l_word)carry;
		carry = 0;
	}

	// Copy the rest of the bytes straight over (careful of memory overlap)
	//    this can't happen if there was a carry (see above carry>0 check)
	if (i < longerLen)
	{
		// check overlap
		if (&dest[i] != &longerSrc[i])
			memcpy(&dest[i], &longerSrc[i], (longerLen-i)*sizeof(l_word));
		i = longerLen;
	}
	*lenout = (l_word)i;

	GSLINT_EXITTIMER(GSLintTimerAdd);

	if (carry)
		return gsi_false; // overflow
	else
		return gsi_true;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Subtraction may cause underflow
//   subtracts src1 FROM src2
//   strips leading zeroes (gsiLargeIntSub doesn't strip for compatability with karatsuba fixed size numbers)
gsi_bool gsLargeIntSub(const gsLargeInt_t *src1, const gsLargeInt_t *src2, gsLargeInt_t *dest)
{
	gsi_bool result = gsiLargeIntSub(src1->mData, src1->mLength, src2->mData, src2->mLength, dest->mData, &dest->mLength);
	if (gsi_is_true(result))
		gsiLargeIntStripLeadingZeroes(dest);
	return result;
}

gsi_bool gsiLargeIntSub(const l_word *src1, l_word length1, const l_word *src2, l_word length2, l_word *dest, l_word *lenout)
{
	l_dword borrow = 0; // to hold overflow
	gsi_u32 shorterLen = min(length1, length2);
	gsi_u32 i=0;

	GSLINT_ENTERTIMER(GSLintTimerSub);

	//printf("--From: ");
	//gsiLargeIntPrint(src2, length2);
	//printf("--Subtracting: ");
	//gsiLargeIntPrint(src1, length1);

	// Subtract digits
	while(i < shorterLen)
	{
		borrow = (l_dword)src2[i] - src1[i] - borrow;
		dest[i] = (l_word)borrow;
		borrow = borrow>>63; // shift to last bit.  This will be 1 if negative, 0 if positive
		i++;
	}
	while(i < length2)
	{
		borrow = (l_dword)src2[i]-borrow;
		dest[i] = (l_word)borrow;
		borrow = borrow>>63;
		i++;
	}

	// check for underflow
	if (borrow != 0)
	{
		GSLINT_EXITTIMER(GSLintTimerSub);
		return gsi_false;
	}
	while(length1 > i) // make sure remaining digits are only leading zeroes
	{
		if (src1[i] != 0)
		{
			GSLINT_EXITTIMER(GSLintTimerSub);
			return gsi_false;
		}
		i++;
	}

	// Don't reduce length from subtraction, instead keep leading zeroes
	// (do this for ease of use with Karatsuba which requires Power2 length)
	*lenout = length2;

	GSLINT_EXITTIMER(GSLintTimerSub);
	return gsi_true;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Multiply using normal method (use KMult when working with LargeInt*LargeInt)
gsi_bool gsLargeIntMult(const gsLargeInt_t *src1, const gsLargeInt_t *src2, gsLargeInt_t *dest)
{
	gsi_bool result = gsiLargeIntMult(src1->mData, src1->mLength, src2->mData, src2->mLength, dest->mData, &dest->mLength, GS_LARGEINT_MAX_DIGITS);
	if (gsi_is_false(result))
		memset(dest, 0, sizeof(gsLargeInt_t)); // overflow
	return result;
}

static gsi_bool gsiLargeIntMult(const l_word *data1, l_word length1, const l_word *data2, l_word length2, l_word *dest, l_word *lenout, l_word maxlen)
{
	unsigned int i=0;
	unsigned int k=0;

	gsLargeInt_t temp;
	memset(&temp, 0, sizeof(temp));
	*lenout = 0;

	GSLINT_ENTERTIMER(GSLintTimerMult);

	for(i=0; i<length2; i++)
	{
		// don't have to multiply by 0
		if(data2[i] != 0)
		{
			// multiply data1 by data2[i]
			for (k=0; k<length1; k++)
			{
				// carry starts out as product
				//   (it is mathematically impossible for carry to overflow
				//    at the first addition [see below])
				l_dword carry = (l_dword)data1[k] * data2[i];
				unsigned int digit = (unsigned int)(i+k);
				if (digit >= maxlen)
				{
					GSLINT_EXITTIMER(GSLintTimerMult);
					return gsi_false; // overflow
				}
				while(carry)
				{
					carry += temp.mData[digit];
					temp.mData[digit] = (l_word)carry;
					carry = carry >> GS_LARGEINT_DIGIT_SIZE_BITS;
					digit++;
					if ((digit > maxlen) ||
						(digit == maxlen && carry>0))
					{
						GSLINT_EXITTIMER(GSLintTimerMult);
						return gsi_false; // overflow
					}
				}
				if (digit > (gsi_i32)temp.mLength)
					temp.mLength = (l_word)digit;
			}
		}
	}
	// copy into destination (calculate length at this time)
	while(temp.mLength>0 && temp.mData[temp.mLength-1] == 0)
		temp.mLength--; // strip leading zeroes
	*lenout = temp.mLength;
	memcpy(dest, temp.mData, (*lenout)*sizeof(l_word));

	GSLINT_EXITTIMER(GSLintTimerMult);
	return gsi_true;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// divide src1 by divisor
gsi_bool gsLargeIntDiv(const gsLargeInt_t *src1, const gsLargeInt_t *divisor, gsLargeInt_t *dest, gsLargeInt_t *remainder)
{
	// call the free-buffer version
	return gsiLargeIntDiv(src1->mData, src1->mLength, divisor, dest, remainder);
}

// length1 can be, at most, 2*GS_LARGEINT_INT_SIZE
static gsi_bool gsiLargeIntDiv(const l_word *src, l_word len, const gsLargeInt_t *div, gsLargeInt_t *dest, gsLargeInt_t *remainder)
{
	gsi_i32 result = 0; // temp, to store compare result
	gsi_i32 divisorHighBit = GS_LARGEINT_DIGIT_SIZE_BITS-1; // pre-calculate this

	// Bytes used from src1
	int readIndex = 0;
	int readLength = 0;

	// setup scratch copies 
	gsLargeInt_t quotient;

	l_word  scopy[GS_LARGEINT_MAX_DIGITS*2];  // we support double length source for division, when dest is null
	l_word  scopyLen = len;

	const l_word* divisorData = div->mData;
	l_word  divisorLen = div->mLength;

	gsi_bool endLoop = gsi_false;
	
	GSLINT_ENTERTIMER(GSLintTimerDiv);

	memset(scopy, 0, sizeof(scopy));

	// we only support oversized sources for calculating a remainder
	//    e.g. dest must be null
	if (scopyLen > GS_LARGEINT_MAX_DIGITS && dest != NULL)
		return gsi_false;

	// strip leading zeroes (from our scratch copies)
	while(scopyLen>0 && src[scopyLen-1]==0)
		scopyLen--;
	while(divisorLen>0 && divisorData[divisorLen-1]==0)
		divisorLen--;

	memcpy(scopy, src, scopyLen*sizeof(l_word));
	memset(&quotient, 0, sizeof(quotient)); 

	// check the unusual cases
	if (scopyLen==0 || divisorLen==0)
	{
		if (dest)
		{
			dest->mData[0] = 0;
			dest->mLength = 0;
		}
		if (remainder)
		{
			remainder->mData[0] = 0;
			remainder->mLength = 0;
		}

		GSLINT_EXITTIMER(GSLintTimerDiv);

		if (divisorLen == 0)
			return gsi_false; // division by zero
		else
			return gsi_true; // zero divided, this is legal
	}
	if (gsiLargeIntCompare(scopy, scopyLen, divisorData, divisorLen)==-1)
	{
		// divisor is larger than source
		if (dest)
		{
			dest->mLength = 0;
			dest->mData[0] = 0;
		}
		remainder->mLength = scopyLen;
		memcpy(remainder->mData, scopy, scopyLen*sizeof(l_word));
		GSLINT_EXITTIMER(GSLintTimerDiv);
		return gsi_true;
	}
	
	// calculate the divisor high bit
	while((divisorData[divisorLen-1]&(1<<(gsi_u32)divisorHighBit))==0 && divisorHighBit>=0)
		divisorHighBit--;
	if (divisorHighBit == -1)
	{
		GSLINT_EXITTIMER(GSLintTimerDiv);
		return gsi_false; // divide by zero
	}
	divisorHighBit += (divisorLen-1)*GS_LARGEINT_DIGIT_SIZE_BITS;
	
	// position "sliding" window for first interation
	// 41529 / [71389]2564
	// WARNING: digits are indexed [2][1][0], first byte to read is index[2]
	readIndex = (int)(scopyLen - divisorLen);
	readLength = (int)divisorLen;

	//if (readIndex < 0)
	//	_asm {int 3}; // overflow readIndex
	
	do
	{
		result = gsiLargeIntCompare(&scopy[readIndex], (l_word)readLength, divisorData, divisorLen);
		if (result == -1)
		{
			// scopy window is smaller, we'll need an extra digit
			if (readIndex > 0)
			{
				readIndex--; 
				readLength++;
			}
			else
			{
				// no more digits!
				endLoop = gsi_true;
			}
		}
		else if (result == 0)
		{
			// not likely! set digits to zero and slide window
			memset(&scopy[readIndex], 0, readLength*sizeof(l_word));
			quotient.mData[readIndex] += 1;
			if (quotient.mLength < (l_word)(readIndex+readLength))
				quotient.mLength = (l_word)(readIndex+readLength);
			readIndex -= readLength;
			readLength = 1;

			if (readIndex < 0)
				endLoop = gsi_true;; // no more digits
		}
		else
		{
			// subtract directly onto our temp copy, so we don't have to worry about carry values
			l_word quotientTemp = 0;
			//if (readLength > 0xffff)
			//	_asm {int 3}
			if (gsi_is_false(gsiLargeIntSubDivide(&scopy[readIndex], (l_word)readLength, divisorData, divisorLen, (gsi_u32)divisorHighBit, &quotientTemp)))
			{
				// overflow
				GSLINT_EXITTIMER(GSLintTimerDiv);
				return gsi_false;
			}
			quotient.mData[readIndex] = (l_word)(quotient.mData[readIndex] + quotientTemp);
			if (quotient.mLength < (l_word)(readIndex+readLength))
				quotient.mLength = (l_word)(readIndex+readLength);
			// remove new leading zeroes
			while(scopy[readIndex+readLength-1] == 0 && readLength>1)
				readLength--;
			while(scopy[readIndex+readLength-1] == 0 && readIndex>1)
				readIndex--;
		}
	}
	while(gsi_is_false(endLoop));

	// no more digits, leftover is remainder
	if (readIndex >= 0)
	{
		memcpy(remainder->mData, &scopy[readIndex], readLength*sizeof(l_word));
		remainder->mLength = (l_word)readLength;
	}
	else
	{
		remainder->mData[0] = 0;
		remainder->mLength = 0;
	}

	// save off quotient, if desired
	if (dest)
	{
		memcpy(dest->mData, quotient.mData, quotient.mLength*sizeof(l_word));
		dest->mLength = quotient.mLength;
	}
	GSLINT_EXITTIMER(GSLintTimerDiv);
	return gsi_true;
}


// atomic divide.  
//    Subtract divisor directly from src.
//    Leave remainder in src.
static gsi_bool gsiLargeIntSubDivide(l_word *src, l_word length, const l_word *divisor, l_word dlen, 
									 gsi_u32 highbit, l_word *quotient)
{
	l_dword aboveBits = 0;
	gsLargeInt_t temp; // stores temporary product before subtraction
	gsLargeInt_t quotientCopy; // copy of quotient, length padded for multiplication

	GSLINT_ENTERTIMER(GSLintTimerSubDivide);
	// assert(src > divisor)
	// assert(src < (MAX_DIGIT_VALUE * divisor))
	//if(dlen==1 && *divisor==0)
	//	_asm {int 3} // division by zero

	// Q: how many times to subtract?
	// A: we estimate by taking the bits in src above the highest bit in divisor
	if (length > dlen)
		aboveBits = (src[length-2]&divisor[dlen-1]) | ((l_dword)src[length-1]<<GS_LARGEINT_DIGIT_SIZE_BITS);
	else
		aboveBits = src[length-1];
	aboveBits /= divisor[dlen-1];

	memset(&quotientCopy, 0, sizeof(quotientCopy));
	quotientCopy.mData[0] = (l_word)(aboveBits);
	quotientCopy.mData[1] = (l_word)(aboveBits>>GS_LARGEINT_DIGIT_SIZE_BITS);

	// We only support quotients up to MAX_INT
	if (quotientCopy.mData[1] != 0)
	{
		quotientCopy.mData[0] = (l_word)(-1);
		quotientCopy.mData[1] = 0;
	}
	quotientCopy.mLength = 1;
		
	// multiply this value by divisor, and that's how much to subtract
	if (gsi_is_false(gsiLargeIntMult(divisor, dlen, quotientCopy.mData, quotientCopy.mLength, temp.mData, &temp.mLength, GS_LARGEINT_MAX_DIGITS)))
	{
		GSLINT_EXITTIMER(GSLintTimerSubDivide);
		return gsi_false; // overflow
	}

	// while subtraction amount is larger than src, reduce it
	while(gsiLargeIntCompare(temp.mData, temp.mLength, src, length)==1)
	{
		// divide by two
		quotientCopy.mData[0] = (l_word)(quotientCopy.mData[0]>>1);
		//if (quotientCopy.mData[0] == 0)
		//	_asm {int 3}
		if (gsi_is_false(gsiLargeIntMult(divisor, dlen, quotientCopy.mData, quotientCopy.mLength, temp.mData, &temp.mLength, GS_LARGEINT_MAX_DIGITS)))
		{
			GSLINT_EXITTIMER(GSLintTimerSubDivide);
			return gsi_false; // overflow
		}
	}
	//if (gsiLargeIntCompare(temp.mData, temp.mLength, src, length)==1)
	//	_asm {int 3} // temp > src, subtraction will cause underflow!
			
	// subtract it
	gsiLargeIntSub(temp.mData, temp.mLength, src, length, src, &length);

	*quotient = quotientCopy.mData[0];
	//if (quotientCopy.mData[1] != 0)
	//	_asm {int 3}
	GSLINT_EXITTIMER(GSLintTimerSubDivide);

	GSI_UNUSED(highbit);
	return gsi_true;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Multiply using Karatsuba
//   Karatsuba requires that the sizes be equal and a power of two
gsi_bool gsLargeIntKMult(const gsLargeInt_t *src1, const gsLargeInt_t *src2, gsLargeInt_t *dest)
{
	l_word len = 0;
	gsi_bool result = gsi_false;

	gsLargeInt_t temp; // to prevent issues if (src1 == src2 == dest)

	// quick check for multiplication by 0
	if (src1->mLength == 0 || src2->mLength == 0)
	{
		dest->mLength = 0;
		return gsi_true;
	}

	// when length is small it's faster to use "normal" multiplication
	if (max(src1->mLength,src2->mLength) < GS_LARGEINT_KARATSUBA_CUTOFF)
		return gsLargeIntMult(src1, src2, dest);

	// Check for size/length restrictions
	result = gsiLargeIntSizePower2(src1, src2, &len);
	if (gsi_is_false(result) || len>(GS_LARGEINT_MAX_DIGITS/2))
	{
		// try regular multiplication
		return gsLargeIntMult(src1, src2, dest); 
	}

	// (don't time above section since it defers to Mult)
	GSLINT_ENTERTIMER(GSLintTimerKMult);

	// clear the temporary dest
	memset(&temp, 0, sizeof(gsLargeInt_t));
	temp.mLength = 0;

	// resize if necessary
	if (src1->mLength != len || src2->mLength != len)
	{
		// size is not correct, make a copy then multiply
		gsLargeInt_t src1Copy;
		gsLargeInt_t src2Copy;
		memcpy(&src1Copy, src1, sizeof(gsLargeInt_t));
		memcpy(&src2Copy, src2, sizeof(gsLargeInt_t));
		gsiLargeIntResize(&src1Copy, len);
		gsiLargeIntResize(&src2Copy, len);

		result = gsiLargeIntKMult(src1Copy.mData, src2Copy.mData, len, temp.mData, &temp.mLength, GS_LARGEINT_MAX_DIGITS);
	}
	else
	{
		// size is correct, perform multiplication
		result = gsiLargeIntKMult(src1->mData, src2->mData, len, temp.mData, &temp.mLength, GS_LARGEINT_MAX_DIGITS);
	}
	if (gsi_is_true(result))
	{
		// strip leading zeroes and copy into dest
		gsiLargeIntStripLeadingZeroes(&temp);
		memcpy(dest, &temp, sizeof(gsLargeInt_t));
	}
	GSLINT_EXITTIMER(GSLintTimerKMult);
	return result;
}


// Utility for Karasuba
static gsi_bool gsiLargeIntKMult(const l_word *data1, const l_word *data2, l_word length,
								 l_word *dest, l_word *lenout, l_word maxlen)
{
	// No timer here, this function is only called from GSLINTKMult
	//GSLINT_ENTERTIMER(GSLintTimerKMult);

	// "normal" multiplication is faster when length is small
	if (length <= GS_LARGEINT_KARATSUBA_CUTOFF)
		return gsiLargeIntMult(data1, length, data2, length, dest, lenout, maxlen);
	else
	{
		gsLargeInt_t temp1, temp2, temp3;
		l_word halfLen = (l_word)(length>>1);

		temp1.mLength = 0;
		temp2.mLength = 0;
		temp3.mLength = 0;

		//printf("Karasuba splitting at %d (1/2 = %d)\r\n", length, halfLen);

		// Karatsuba:  k = 12*34
		//  a = (1*3)
		//  b = (1+2)*(3+4)-a-c
		//  c = (2*4)
		//  k = a*B^N+b*B^(N/2)+c = a*100+b*10+c

		// Enter the recursive portion
		//   TH = top half
		//   BH = bottom half

		// Note that since (a*B^N + c) cannot overlap, we can immediately store both in dest

		// Compute a. (TH of data1 * TH of data2)
		//      Stores in TH of dest, so later *B^N isn't necessary
		//      For the example, this puts 1*3 into the high half 03xx
		gsiLargeIntKMult(&data1[halfLen], &data2[halfLen], halfLen, &dest[length], lenout, (l_word)(maxlen-length));
		//printf("Calculated A (%d) = ", *lenout);
		//gsiLargeIntPrint(&dest[length], *lenout);

		// Compute c. (BH of data1 * BH of data2)
		//      For the example, this puts 2*4 into the low half xx08
		gsiLargeIntKMult(data1, data2, halfLen, dest, lenout, maxlen);
		//printf("Calculated C (%d) = ", *lenout);
		//gsiLargeIntPrint(dest, *lenout);

		// Compute b1. (TH of data1 + BH of data1) 
		gsiLargeIntAdd(&data1[halfLen], halfLen, data1, halfLen, temp1.mData, &temp1.mLength, GS_LARGEINT_MAX_DIGITS);
		//printf("Calculated B1 (%d) = ", temp1.mLength);
		//gsiLargeIntPrint(temp1.mData, temp1.mLength);

		// Compute b2. (TH of data2 + BH of data2)
		gsiLargeIntAdd(&data2[halfLen], halfLen, data2, halfLen, temp2.mData, &temp2.mLength, GS_LARGEINT_MAX_DIGITS);
		//printf("Calculated B2 (%d) = ", temp2.mLength);
		//gsiLargeIntPrint(temp2.mData, temp2.mLength);

		// Compute b3. (b1*b2) (*B^N)
		//      For the example, (1+2)(3+4)*B^N = 21*B^N = 0210
		memset(&temp3, 0, sizeof(gsLargeInt_t));
		
		// May require resizing, but don't go above halfLen
		if (temp1.mLength > halfLen || temp2.mLength > halfLen)
			gsiLargeIntMult(temp1.mData, temp1.mLength, temp2.mData, temp2.mLength, &temp3.mData[halfLen], &temp3.mLength, (l_word)(GS_LARGEINT_MAX_DIGITS-halfLen));
		else
		{
			gsi_bool result = gsiLargeIntSizePower2(&temp1, &temp2, lenout);
			if (gsi_is_false(result))
				return gsi_false; // could not resize
			gsiLargeIntResize(&temp1, *lenout); // pad to new size
			gsiLargeIntResize(&temp2, *lenout); // pad to new size
			gsiLargeIntKMult(temp1.mData, temp2.mData, *lenout, &temp3.mData[halfLen], &temp3.mLength, (l_word)(GS_LARGEINT_MAX_DIGITS-halfLen));
		}
		temp3.mLength = (l_word)(temp3.mLength + halfLen); // fix length for temp3
		//if (temp3.mLength > GS_LARGEINT_INT_SIZE)
		//	_asm {int 3} // this should be at most temp1.mLength+temp2.mLength
		memset(temp3.mData, 0, halfLen*sizeof(l_word));
		//printf("Calculated B3 (%d) = ", temp3.mLength);
		//gsiLargeIntPrint(&temp3.mData[halfLen], temp3.mLength-halfLen);

		// Compute final b. (b3-a-c) (*B^N)
		//      Note: The subtraction is in terms of (*B^N)
		//      For the example, 021x - 03x - 08x = 0100
		gsiLargeIntSub(&dest[length], length, &temp3.mData[halfLen], (l_word)(temp3.mLength-halfLen), &temp3.mData[halfLen], &temp3.mLength);
		temp3.mLength = (l_word)(temp3.mLength + halfLen);
		gsiLargeIntSub( dest        , length, &temp3.mData[halfLen], (l_word)(temp3.mLength-halfLen), &temp3.mData[halfLen], &temp3.mLength);
		temp3.mLength = (l_word)(temp3.mLength + halfLen);
		//printf("Calculated B (%d) = ", temp3.mLength);
		//gsiLargeIntPrint(temp3.mData, temp3.mLength);

		// Add em up
		//      Dest already contains A+C, so Add B
		//      For the example, 0308 + 0100 = 0408 (the correct answer)
		gsiLargeIntAdd(dest, (l_word)(length*2), temp3.mData, temp3.mLength, dest, lenout, maxlen);
	}
	// strip leading zeroes from dest
	while(*lenout > 0 && dest[*lenout-1] == 0)
		*lenout = (l_word)(*lenout-1);

	return gsi_true;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
gsi_bool gsLargeIntSquareMod(const gsLargeInt_t *lint, const gsLargeInt_t *mod, gsLargeInt_t *dest)
{
	int i = 0;
	int k = 0;
	int len = (int)lint->mLength; // signed version
	l_dword carry = 0;
	int oldShiftBit = 0;
	int newShiftBit = 0;
	gsi_bool result = gsi_false;
	unsigned int mask = (unsigned int)1<<(GS_LARGEINT_DIGIT_SIZE_BITS-1);

	l_word squareSums[GS_LARGEINT_MAX_DIGITS*2];   // temp dest for square sums
	l_word otherSums[GS_LARGEINT_MAX_DIGITS*2];    // temp dest for other sums
	l_word squareLen = 0;
	l_word otherLen = 0;

	GSLINT_ENTERTIMER(GSLintTimerSquareMod);

	memset(&squareSums, 0, sizeof(squareSums));
	memset(&otherSums, 0, sizeof(otherSums));

	// Go through each digit, multiplying with each other digit
	// (only do this once per pair, since AB == BA)
	// Ex: ABC * ABC, we want AB,AC,BC only
	for (i=1; i < len; i++)
	{
		for(k=0; k < i; k++)
		{
			carry += (l_dword)lint->mData[i]*lint->mData[k] + otherSums[i+k];
			otherSums[i+k] = (l_word)carry;
			carry  = carry >> GS_LARGEINT_DIGIT_SIZE_BITS;
		}
		if(carry)
		{
			otherSums[i+k] = (l_word)carry;
			carry = carry >> GS_LARGEINT_DIGIT_SIZE_BITS;
		}
	}

	// Multiply by 2 (because each internal pair appears twice)
	for (i=0; i < (2*len); i++)
	{
		newShiftBit = (otherSums[i] & mask)==mask?1:0; // calc next carry 1 or 0
		otherSums[i] = (l_word)((otherSums[i] << 1) + oldShiftBit); // do the shift
		oldShiftBit = newShiftBit;
	}
	// don't worry about left-overy carry because this can't overflow
	// maxlen N-digit*N-digit = 2n-digit

	// Go through each digit, multiplying with itself
	for (i=0; i <len; i++)
	{
		carry = (l_dword)lint->mData[i] * lint->mData[i];
		squareSums[i*2] = (l_word)carry;
		squareSums[i*2+1] = (l_word)(carry >> GS_LARGEINT_DIGIT_SIZE_BITS);
	}
	squareLen = (l_word)(2*len);
	otherLen = (l_word)(2*len); 

	// Add the two together
	result = gsiLargeIntAdd(otherSums, otherLen, squareSums, squareLen, squareSums, &squareLen, GS_LARGEINT_MAX_DIGITS*2);
	result = gsiLargeIntDiv(squareSums, squareLen, mod, NULL, dest);

	GSLINT_EXITTIMER(GSLintTimerSquareMod);
	return result;
}

//#define NEWEXP
#ifdef NEWEXP

//#define printf

///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Montgomery exponentiation (see HAC 14.94)
//
// SPECIAL NOTE:
//    A small public exponent will reduce the load on client encryption.
//    (below 65535 is a security risk, so don't go too small)
gsi_bool gsLargeIntPowerMod(const gsLargeInt_t *b, const gsLargeInt_t *p, const gsLargeInt_t *m, gsLargeInt_t *dest)
{
	gsLargeInt_t base;
	gsLargeInt_t power;
	gsLargeInt_t mod;
	gsLargeInt_t one;

	gsi_u32 expHighBit; // highest bit set in exponent;

	int i = 0;        // temp / counter
	int k = 0;        // binary size of our subdigits
	int pow2k = 0;    // 2^k
	int kmask = 0;    // 2^k-1
	int kdigits = 0;  // number of k-sized digits in p
	//int leadingZeroBits = 0; // to make p evenly divisible by k

	l_word modPrime;
	gsLargeInt_t R;     // "R" as used in the montgomery exponentiation algorithm.
	//gsLargeInt_t Rmod;  // R mod n
	//gsLargeInt_t R2mod; // R^2 mod n

	gsLargeInt_t * lut = NULL;

	GSLINT_ENTERTIMER(GSLintTimerPowerMod);

	memcpy(&base, b, sizeof(base));
	memcpy(&power, p, sizeof(power));
	memcpy(&mod, m, sizeof(mod));
	memset(&R, 0, sizeof(R));
	
	gsLargeIntSetValue(&one, 1);

	// Catch the unusual cases
	if (mod.mLength == 0)
	{
		// mod 0 = undefined
		dest->mLength = 0;
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_false;
	}
	else if (mod.mLength==1 && mod.mData[0]==1)
	{
		// mod 1 = 0
		dest->mLength = 0;
		dest->mData[0] = 0;
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_true;
	}
	else if (power.mLength == 0)
	{
		// x^0 = 1
		dest->mLength = 1;
		dest->mData[0] = 1;
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_true;
	}
	else if ((mod.mData[0]&1) == 0)
	{
		// Montgomery only works with odd modulus!
		// (rsa modulus is prime1*prime2, which must be odd)
		dest->mLength = 0;
		dest->mData[0] = 0;
		//_asm {int 3}
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_false;
	}
	// If base is larger than mod, we can (must) reduce it
	if (gsiLargeIntCompare(base.mData, base.mLength, mod.mData, mod.mLength)!=-1)
	{
		gsLargeIntDiv(&base, &mod, NULL, &base);
	}
	if (base.mLength == 0)
	{
		// 0^e = 0
		dest->mLength = 0;
		dest->mData[0] = 0;
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_true;
	}

	// find the highest bit set in power
	expHighBit=GS_LARGEINT_DIGIT_SIZE_BITS;
	while(((1<<(expHighBit-1))&power.mData[power.mLength-1]) == 0)
		expHighBit--;
	expHighBit += ((power.mLength-1) * GS_LARGEINT_DIGIT_SIZE_BITS); // add in 32 bits for each extra byte

	// The previous algorithm used 1-bit digits
	// This algorithm uses k-bit digits
	// Determine the optimal size for k
	k=8; // this will support up to 4096 bit encryption (and probably higher)
	while ( (k > 1) && 
		(gsi_u32)((k - 1) * (k << ((k - 1) << 1)) / ((1 << k) - k - 1)) >= expHighBit - 1
		)
    {
      --k;
    }
	pow2k = 1 << k;
	kmask = pow2k-1;
	kdigits = (expHighBit+(k-1)) / k;  // ceiling(expHighBit/k)

	// calculate "R" (if mod=5678, R=10000 e.g. One digit higher)
	memset(&R, 0, sizeof(R));
	R.mLength = (l_word)(mod.mLength+1);
	if (R.mLength > GS_LARGEINT_MAX_DIGITS)
		return gsi_false; // you need to increase the large int capacity
	R.mData[R.mLength-1] = 1; // set first bit one byte higher than mod

	// find the multiplicative inverse of mod
	gsiLargeIntInverseMod(&mod, &modPrime);

/*
	// calculate Rmod (R%mod)
	if (gsi_is_false(gsLargeIntDiv(&R, &mod, NULL, &Rmod)))
	{
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_false;
	}

	// calculate R2mod  (R^2%mod = (Rmod*Rmod)%mod)
	if (gsi_is_false(gsLargeIntSquareMod(&Rmod, &mod, &R2mod)))
	{
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_false;
	}
*/
	// Allocate space for a table of values that will come up repeatedly
	//    xwiggle is (br mod n)
	//    These are the odd powers of xwiggle, x^3, x^5 and so on
	//    We generate these by repeated multiplications by xwiggle
	//if (k >= 3)
	{
		// no no no[0] = xwiggle^3  (montgomery multiply [2]*[1])
		// no no no[1] = xwiggle^5  (montgomery multiply [2]*[3])
		// no no no[2] = xwiggle^7  (montgomery multiply [2]*[5])

		// allocate space
		// ~1k for typical small RSA public exponents (e.g. 65537)
		// ~16k for 1024-bit RSA exponent
		// ~32k for 2048-bit RSA exponent
		// ~64k for 4096-bit RSA exponent
		int i=0;
		int valuesNeeded = pow2k;//((pow2k/2)-1);
		int spaceneeded = sizeof(gsLargeInt_t) * valuesNeeded;

		lut = (gsLargeInt_t*)gsimalloc(spaceneeded);
		if (lut == NULL)
			return gsi_false; // out of memory
		memset(lut, 0x00, spaceneeded);

		// set first values
		//   [0] = 1
		//   [1] = br mod n (normal multiplication)
		//   [i] = mont([1] * [i-1])
		gsLargeIntSetValue(&lut[0], 1);
		if (gsi_is_false(gsLargeIntMult(&base, &R, &lut[1])) ||
			gsi_is_false(gsLargeIntDiv(&lut[1], &mod, NULL, &lut[1])) )
		{
			gsifree(lut);
			GSLINT_EXITTIMER(GSLintTimerPowerMod);
			return gsi_false;
		}

		// fill in the values
		for (i=2; i < valuesNeeded; i++)
		{
			if (gsi_is_false(gsiLargeIntMultM(&lut[1], &lut[i-1], &mod, modPrime, &lut[i])) )
			{
				gsifree(lut);
				GSLINT_EXITTIMER(GSLintTimerPowerMod);
				return gsi_false;
			}
		}
	}

	// set starting point
	if (gsi_is_false(gsLargeIntMult(&base, &R, dest)) ||      // Normal multiply
		gsi_is_false(gsLargeIntDiv(dest, &mod, NULL, dest)) ) // A mod operation
	{
		gsifree(lut);
		return gsi_false;
	}

	// loop through the k-sized digits
	for (i=0; i < kdigits; i++)
	{
		int bitReadIndex = expHighBit - (i*k); // index of the bit we're reading
		int l_index; // = ((bitReadIndex-1)/GS_LARGEINT_DIGIT_SIZE_BITS); // -1 to use zero based indexes
		int l_firstbit;
		l_dword twodigits;
		l_dword mask;
		l_word digitval;

		l_index = ((bitReadIndex-1)/GS_LARGEINT_DIGIT_SIZE_BITS); // -1 to use zero based indexes

		// for first digit, use leading zeroes when necessary
		if ((bitReadIndex % k) != 0)
			bitReadIndex += k - (bitReadIndex % k); // round up to next k
		if (i != 0)
		{
			if (bitReadIndex - (l_index*GS_LARGEINT_DIGIT_SIZE_BITS)> GS_LARGEINT_DIGIT_SIZE_BITS)
				l_index++;
		}

		if (i==0) 
		{
			// first digit
			l_firstbit = l_index * GS_LARGEINT_DIGIT_SIZE_BITS; // first bit of this digit
			twodigits = p->mData[l_index];
		}
		else if (l_index > 0)
		{
			// middle digits
			l_firstbit = (l_index-1) * GS_LARGEINT_DIGIT_SIZE_BITS; // first bit of this digit
			twodigits = (l_dword)((l_dword)p->mData[l_index] << GS_LARGEINT_DIGIT_SIZE_BITS) | p->mData[l_index-1];
		}
		else if (l_index == 0 && p->mLength > 1)
		{
			// final digit, when there are proceeding digits
			l_firstbit = 0;
			twodigits = (l_dword)(p->mData[l_index+1] << GS_LARGEINT_DIGIT_SIZE_BITS) | p->mData[l_index];
		}
		else
		{
			// final digit, no proceeding digits
			l_firstbit = l_index * GS_LARGEINT_DIGIT_SIZE_BITS; // first bit of this digit
			twodigits = p->mData[l_index];
		}
		mask = (l_dword)kmask << (bitReadIndex-l_firstbit-k);
		digitval = (l_word)((twodigits & mask) >> (bitReadIndex-l_firstbit-k));

		// use digitval to determine how many squaring and multiplication operations we need to perform
		{
			static int twotab[] =
			{0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0,
			 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
			 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0,
			 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
			 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0,
			 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
			 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};


			static USHORT oddtab[] =
			{0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1,
			 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15,
			 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77, 39, 79, 5, 81, 41, 83, 21, 85, 43, 87, 11,
			 89, 45, 91, 23, 93, 47, 95, 3, 97, 49, 99, 25, 101, 51, 103, 13, 105, 53, 107, 27, 109, 55, 111, 7, 113,
			 57, 115, 29, 117, 59, 119, 15, 121, 61, 123, 31, 125, 63, 127, 1, 129, 65, 131, 33, 133, 67, 135, 17,
			 137, 69, 139, 35, 141, 71, 143, 9, 145, 73, 147, 37, 149, 75, 151, 19, 153, 77, 155, 39, 157, 79, 159,
			 5, 161, 81, 163, 41, 165, 83, 167, 21, 169, 85, 171, 43, 173, 87, 175, 11, 177, 89, 179, 45, 181, 91,
			 183, 23, 185, 93, 187, 47, 189, 95, 191, 3, 193, 97, 195, 49, 197, 99, 199, 25, 201, 101, 203, 51, 205,
			 103, 207, 13, 209, 105, 211, 53, 213, 107, 215, 27, 217, 109, 219, 55, 221, 111, 223, 7, 225, 113,
			 227, 57, 229, 115, 231, 29, 233, 117, 235, 59, 237, 119, 239, 15, 241, 121, 243, 61, 245, 123, 247, 31,
			 249, 125, 251, 63, 253, 127, 255};


			//printf("[gsint] Digit %d = %d\r\n", i, digitval);
			if (i==0)
			{
				int counter = 0;

				memcpy(dest, &lut[oddtab[digitval]], sizeof(gsLargeInt_t));
				//printf("[gsint] Set start to %d\r\n", dest->mData[0]);

				for (counter = twotab[digitval]; counter> 0; counter--)
				{
					if (gsi_is_false(gsiLargeIntMultM(dest,dest, &mod, modPrime, dest)))
					{
						gsifree(lut);
						return gsi_false;
					}
					//printf("[gsint] First digit, squared to %d\r\n", dest->mData[0]);
				}
			}
			else if (digitval != 0)
			{
				int counter = 0;
				int lutindex = oddtab[digitval]; // we only precalculate the odd powers
				//int lutindex = (oddtab[digitval]+1)/2; // we only precalculate the odd powers

				for (counter = (int)(k-twotab[digitval]); counter> 0; counter--)
				{
					if (gsi_is_false(gsiLargeIntMultM(dest,dest, &mod, modPrime, dest)))
					{
						gsifree(lut);
						return gsi_false;
					}
					//printf("[gsint]    Squared to %d\r\n", dest->mData[0]);
				}
		
				if (gsi_is_false(gsiLargeIntMultM(dest, &lut[lutindex], &mod, modPrime, dest)))
				{
					gsifree(lut);
					return gsi_false;
				}
				//printf("[gsint]    Mult by [%d](%d) to %d\r\n", lutindex, lut[lutindex].mData[0], dest->mData[0]);
				for (counter = twotab[digitval]; counter> 0; counter--)
				{
					if (gsi_is_false(gsiLargeIntMultM(dest,dest, &mod, modPrime, dest)))
					{
						gsifree(lut);
						return gsi_false;
					}
					//printf("[gsint]    Squared to %d\r\n", dest->mData[0]);
				}
			}
			else
			{
				int counter = 0;
				for (counter = k; counter > 0; counter--)
				{
					if (gsi_is_false(gsiLargeIntMultM(dest,dest, &mod, modPrime, dest)))
					{
						gsifree(lut);
						return gsi_false;
					}
					//printf("[gsint]    Squared to %d\r\n", dest->mData[0]);
				}
			}
		}
	}

	// normalize  (MultM by 1)
	if (gsi_is_false(gsiLargeIntMultM(dest, &one, &mod, modPrime, dest)))
		return gsi_false;

	gsifree(lut);
	return gsi_true;
}

#else


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Montgomery exponentiation (see HAC 14.94)
//
// SPECIAL NOTE:
//    A small public exponent will reduce the load on client encryption.
//    (below 65535 is a security risk, so don't go too small)
gsi_bool gsLargeIntPowerMod(const gsLargeInt_t *b, const gsLargeInt_t *p, const gsLargeInt_t *m, gsLargeInt_t *dest)
{
	int i=0; // temp/counter
	int digitNum=0; // temp/counter
	int digitBit=0;
	
	l_word modPrime;

	gsi_u32 expHighBit; // highest bit set in exponent;

	gsLargeInt_t R; // "R" as used in the montgomery exponentiation algorithm.
	gsLargeInt_t Rmod;   // R%mod
	gsLargeInt_t R2mod;  // R^2%mod
	gsLargeInt_t temp;
	gsLargeInt_t xwiggle; // montgomery mult of (x,R2mod)

	gsLargeInt_t base;
	gsLargeInt_t power;
	gsLargeInt_t mod;

	GSLINT_ENTERTIMER(GSLintTimerPowerMod);

	memset(&R, 0, sizeof(R));
	memset(&Rmod, 0, sizeof(Rmod));
	memset(&R2mod, 0, sizeof(R2mod));
	memset(&temp, 0, sizeof(temp));
	memset(&xwiggle, 0, sizeof(xwiggle));

	memcpy(&base, b, sizeof(base));
	memcpy(&power, p, sizeof(power));
	memcpy(&mod, m, sizeof(mod));

	gsiLargeIntStripLeadingZeroes(&base);
	gsiLargeIntStripLeadingZeroes(&power);
	gsiLargeIntStripLeadingZeroes(&mod);

	// Catch the unusual cases
	if (mod.mLength == 0)
	{
		// mod 0 = undefined
		dest->mLength = 0;
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_false;
	}
	else if (mod.mLength==1 && mod.mData[0]==1)
	{
		// mod 1 = 0
		dest->mLength = 0;
		dest->mData[0] = 0;
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_true;
	}
	else if (power.mLength == 0)
	{
		// x^0 = 1
		dest->mLength = 1;
		dest->mData[0] = 1;
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_true;
	}
	else if ((mod.mData[0]&1) == 0)
	{
		// Montgomery only works with odd modulus!
		// (rsa modulus is prime1*prime2, which must be odd)
		dest->mLength = 0;
		dest->mData[0] = 0;
		//_asm {int 3}
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_false;
	}
	// If base is larger than mod, we can (must) reduce it
	if (gsiLargeIntCompare(base.mData, base.mLength, mod.mData, mod.mLength)!=-1)
	{
		gsLargeIntDiv(&base, &mod, NULL, &base);
	}
	if (base.mLength == 0)
	{
		// 0^e = 0
		dest->mLength = 0;
		dest->mData[0] = 0;
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_true;
	}

	// find the highest bit set in power
	expHighBit=GS_LARGEINT_DIGIT_SIZE_BITS;
	while(((1<<(expHighBit-1))&power.mData[power.mLength-1]) == 0)
		expHighBit--;
	expHighBit += ((power.mLength-1) * GS_LARGEINT_DIGIT_SIZE_BITS); // add in 32 bits for each extra byte
	
	// On to the tricky tricky!
	//    1) We can't compute B^P and later apply the mod; B^P is just too big
	//       So we have to make modular reductions along the way
	//    2) Since modular reduction is essentially a division, we would like
	//       to use a mod 2^E so that division is just a bit strip.
	//       ex. (1383 mod 16) = binary(0000010101100111 mod 00010000) = 00000111 = dec 7

	// Precalculate some values that will come up repeatedly

	// calculate "R" (if mod=5678, R=10000 e.g. One digit higher)
	memset(&R, 0, sizeof(R));
	R.mLength = (l_word)(mod.mLength+1);
	if (R.mLength > GS_LARGEINT_MAX_DIGITS)
		return gsi_false; // you need to increase the large int capacity
	R.mData[R.mLength-1] = 1; // set first bit one byte higher than mod

	// find the multiplicative inverse of mod
	gsiLargeIntInverseMod(&mod, &modPrime);

	// calculate Rmod (R%mod)
	if (gsi_is_false(gsLargeIntDiv(&R, &mod, NULL, &Rmod)))
	{
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_false;
	}

	// calculate R2mod  (R^2%mod = (Rmod*Rmod)%mod)
	if (gsi_is_false(gsLargeIntSquareMod(&Rmod, &mod, &R2mod)))
	{
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_false;
	}

	// calculate xwiggle
	if (gsi_is_false(gsiLargeIntMultM(&base, &R2mod, &mod, modPrime, &xwiggle)))
	{
		GSLINT_EXITTIMER(GSLintTimerPowerMod);
		return gsi_false;
	}

	// loop through the BITS of power
	//    if the bit is 1, perform a multiplication by xwiggle? (11/2/2006)
	//    TODO:  THIS DOESN'T WORK IF THE HIGHBIT IS EVER ABOVE GS_LARGEINT_DIGIT_SIZE_BITS
	memcpy(dest, &Rmod, sizeof(gsLargeInt_t)); // start dest at Rmod
	for (i=(int)(expHighBit-1); i>=0; i--)
	{
		// mont square the current total
		gsiLargeIntMultM(dest, dest, &mod, modPrime, dest);
		digitNum = (gsi_i32)(i/GS_LARGEINT_DIGIT_SIZE_BITS);    // which digit to extract a bit from?
		digitBit = (gsi_i32)(i % GS_LARGEINT_DIGIT_SIZE_BITS);  // which bit to extract from that digit?
		//if ((power.mData[k] & (1<<i))==((l_word)1<<i))
		
		// HACKED DUE TO COMPILER CRASH
		// THE REPEATED 1<<digitbit caused the optimizer to 'splode
		{
			GS_LARGEINT_DIGIT_TYPE digit = power.mData[digitNum];
			GS_LARGEINT_DIGIT_TYPE mask = (GS_LARGEINT_DIGIT_TYPE)(1<<digitBit); 
			GS_LARGEINT_DIGIT_TYPE masked = digit & mask; //(1<<digitBit);

			// FORCE COMPILER TO NOT OPTIMIZE THIS
			if (mask == masked)
				gsiLargeIntMultM(dest, &xwiggle, &mod, modPrime, dest);
		}
	}

	// Since we're working with Montgomery values (x*R2mod)
	// we have to adjust back to x
	temp.mLength = 1;
	temp.mData[0] = 1;
	gsiLargeIntMultM(dest, &temp, &mod, modPrime, dest);

	GSLINT_EXITTIMER(GSLintTimerPowerMod);
	return gsi_true;
}

#endif


#define NEWMULTM
#ifdef  NEWMULTM

///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Montgomery multiplication
//    Computes (src1*src2*r^-1)%mod
gsi_bool gsiLargeIntMultM(gsLargeInt_t *x, gsLargeInt_t *y, const gsLargeInt_t *m, gsi_u32 modPrime, gsLargeInt_t *dest)
{
	l_word tempLen = 0;
	l_word temp[GS_LARGEINT_MAX_DIGITS*2];

	l_word* lasttnptr;
	const l_word* lastnptr;
	l_word* tptr;
	const l_word* nptr;
	l_word* tiptr;
	
	l_dword carry = 0;
	l_word mi = 0;

	l_word logB_r = m->mLength;

	memset(temp, 0, sizeof(temp));

	if (gsi_is_false(gsiLargeIntMult(x->mData, x->mLength, y->mData, y->mLength, temp, &tempLen, GS_LARGEINT_MAX_DIGITS*2)))
		return gsi_false;
	
	lasttnptr = &temp[m->mLength-1];
	lastnptr = &m->mData[m->mLength-1];

	if (tempLen < m->mLength*2)
	{
		memset(&temp[tempLen], 0, (m->mLength*2 - tempLen) * GS_LARGEINT_DIGIT_SIZE_BYTES);
		//memset(&temp[tempLen], 0, sizeof(temp) - tempLen * GS_LARGEINT_DIGIT_SIZE_BYTES); // safer to clear out the whole thing?
		tempLen = (l_word)(m->mLength*2);
	}

	for (tptr = &temp[0]; tptr <= lasttnptr; tptr++)
	{
		carry = 0;
		mi = (l_word)((l_dword)modPrime * (l_dword)*tptr);
		tiptr = tptr;
		for (nptr = &m->mData[0]; nptr <= lastnptr; nptr++, tiptr++)
		{
			carry = (l_dword)mi * (l_dword)*nptr +
				    (l_dword)*tiptr + (l_dword)(l_word)(carry >> GS_LARGEINT_DIGIT_SIZE_BITS);
			*tiptr = (l_word)(carry);
		}

		// apply the carry value
		for (; ((carry >> GS_LARGEINT_DIGIT_SIZE_BITS) > 0) && tiptr <= &temp[tempLen-1]; tiptr++)
		{
			*tiptr = (l_word)(carry = (l_dword)*tiptr + (l_dword)(l_word)(carry >> GS_LARGEINT_DIGIT_SIZE_BITS));
		}

		// If we still have a carry, increase the length of temp
		if (((carry >> GS_LARGEINT_DIGIT_SIZE_BITS) > 0))
		{
			*tiptr = (l_word)(carry >> GS_LARGEINT_DIGIT_SIZE_BITS);
			tempLen++;
		}
	}

	// **WARNING**
	// Bytes from the plain text message may appear within the temporary buffer.
	// These bytes should be cleared to prevent bugs where that data may be exposed.  (buffer overrun?)
	if (gsiLargeIntCompare(&temp[logB_r], tempLen - logB_r, m->mData, m->mLength) != -1)
	{
		if (gsi_is_false(gsiLargeIntSub(m->mData, m->mLength, &temp[logB_r], tempLen - logB_r, dest->mData, &dest->mLength)))
		{
			memset(temp, 0, sizeof(temp));
			memset(dest, 0, sizeof(gsLargeInt_t));
			return gsi_false;
		}
	}
	else
	{
		memset(dest, 0, sizeof(gsLargeInt_t));
		dest->mLength = m->mLength;
		memcpy(dest->mData, &temp[logB_r], (tempLen - logB_r)*GS_LARGEINT_DIGIT_SIZE_BYTES);
		memset(temp, 0, sizeof(temp));
	}

	return gsi_true;
}

#else


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Montgomery multiplication
//    Computes (src1*src2*r^-1)%mod
// Note:
//    This implementation is based on HAC14.36 which has a lot of room for improvement  
//    FLINT algorithm runs approx 30 times faster. 
gsi_bool gsiLargeIntMultM(gsLargeInt_t *x, gsLargeInt_t *y, const gsLargeInt_t *m, gsi_u32 modPrime, gsLargeInt_t *dest)
{
	int i=0;
	l_dword xiy0;
	l_word u = 0;

	gsLargeInt_t A;
	gsLargeInt_t xiy;
	gsLargeInt_t temp; 

	GSLINT_ENTERTIMER(GSLintTimerMultM);

	gsiLargeIntStripLeadingZeroes(x);
	gsiLargeIntStripLeadingZeroes(y);

	// Check inputs
	i=(int)(m->mLength);
	while(i>0 && m->mData[i-1]==0)
		i--;
	if (i==0)
	{
		// modulus is zero, answer undefined
		dest->mData[0] = 0;
		dest->mLength = 0;
		GSLINT_EXITTIMER(GSLintTimerMultM);
		return gsi_false;
	}
	if (x->mLength==0)
	{
		// x == 0
		dest->mLength = 0;
		dest->mData[0] = 0;
		GSLINT_EXITTIMER(GSLintTimerMultM);
		return gsi_true;
	}
	if (y->mLength==0)
	{
		// y == 0
		dest->mLength = 0;
		dest->mData[0] = 0;
		GSLINT_EXITTIMER(GSLintTimerMultM);
		return gsi_true;
	}

	// We pad with zeroes so that we don't have to check for overruns in the loop below
	//   (note: resize will not remove non-zero digits from x or y)
	gsiLargeIntResize(x, m->mLength);
	gsiLargeIntResize(y, m->mLength);

	// Continue with the Multiplication
	memset(&A, 0, sizeof(A));
	memset(&temp, 0, sizeof(temp));
	memset(&xiy, 0, sizeof(xiy));
	
	for (i=0; (gsi_u32)i < m->mLength; i++)
	{
		xiy0 = (l_dword)x->mData[i]*y->mData[0];  // y[0], NOT y[i] !!
		u = (l_word)((xiy0+A.mData[0])*modPrime); // strip bits over the first digit

		// A = (A+x[i]*y + u[i]*m)/b
		//    compute x[i]*y
		memset(temp.mData, 0, y->mLength*sizeof(l_word)); // clear out a portion of temp
		temp.mData[0] = x->mData[i];
		temp.mLength = y->mLength; // xi padded with zeroes
		if (gsi_is_false(gsiLargeIntMult(temp.mData, temp.mLength, y->mData, y->mLength, xiy.mData, &xiy.mLength, GS_LARGEINT_MAX_DIGITS)))
		{
			// overflow
			dest->mLength = 0;
			dest->mData[0] = 0;
			GSLINT_EXITTIMER(GSLintTimerMultM);
			return gsi_false;
		}
		//    compute u[i]*m
		memset(temp.mData, 0, m->mLength*sizeof(l_word)); // clear out a portion of temp
		temp.mData[0] = u;
		temp.mLength = m->mLength;
		//if (gsi_is_false(gsiLargeIntMult(temp.mData, temp.mLength, m->mData, m->mLength, temp.mData, &temp.mLength)))
		if (gsi_is_false(gsLargeIntKMult(&temp, m, &temp)))
		{
			// overflow
			dest->mLength = 0;
			dest->mData[0] = 0;
			GSLINT_EXITTIMER(GSLintTimerMultM);
			return gsi_false;
		}
		//    Add both to A
		if (gsi_is_false(gsiLargeIntAdd(xiy.mData, xiy.mLength, A.mData, A.mLength, A.mData, &A.mLength, GS_LARGEINT_MAX_DIGITS)))
		{
			// overflow
			dest->mLength = 0;
			dest->mData[0] = 0;
			GSLINT_EXITTIMER(GSLintTimerMultM);
			return gsi_false;
		}
		if (gsi_is_false(gsiLargeIntAdd(temp.mData, temp.mLength, A.mData, A.mLength, A.mData, &A.mLength, GS_LARGEINT_MAX_DIGITS)))
		{
			// overflow
			dest->mLength = 0;
			dest->mData[0] = 0;
			GSLINT_EXITTIMER(GSLintTimerMultM);
			return gsi_false;
		}
		//    Divide by b  (e.g. Remove first digit from A)
		if (A.mLength > 1)
		{
			memmove(&A.mData[0], &A.mData[1], (A.mLength-1)*sizeof(l_word));
			A.mData[A.mLength-1] = 0;
			A.mLength--;
		}
		else
		{
			A.mLength = 0;
			A.mData[0] = 0;
		}
	}

	//if (A >= m then subtract another m)
	if (gsiLargeIntCompare(A.mData, A.mLength, m->mData, m->mLength)!=-1)
		gsiLargeIntSub(m->mData, m->mLength, A.mData, A.mLength, dest->mData, &dest->mLength);
	else
		memcpy(dest, &A, sizeof(A));
	GSLINT_EXITTIMER(GSLintTimerMultM);
	return gsi_true;
}

#endif
/*
//    Computes (src*src*r^-1)%mod
static gsi_bool gsiLargeIntSquareM(const gsLargeInt_t *src, const gsLargeInt_t *mod, gsi_u32 modPrime, gsi_u32 R, gsLargeInt_t *dest)
{
	GSI_UNUSED(src);
	GSI_UNUSED(mod);
	GSI_UNUSED(modPrime);
	GSI_UNUSED(R);
	GSI_UNUSED(dest);
	assert(0);
	return gsi_true;
}*/


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Calculate multiplicative inverse of mod, (-mod^-1 mod 2^R)
//    ala. Dusse and Kaliski, extended Euclidean algorithm
gsi_bool gsiLargeIntInverseMod(const gsLargeInt_t *mod, l_word *dest)
{
	l_dword x=2;
	l_dword y=1;
	l_dword check = 0;

	gsi_u32 i;
	for (i = 2; i <= GS_LARGEINT_DIGIT_SIZE_BITS; i++)
	{
		check = (l_dword)mod->mData[0] * (l_dword)y;
		if (x < (check & ((x<<1)-1)))
			y += x;
		x = x << 1;
	}
	*dest = (l_word)(x-y);
	return gsi_true;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
gsi_bool gsLargeIntPrint(FILE* logFile, const gsLargeInt_t *lint)
{
	return gsiLargeIntPrint(logFile, lint->mData, lint->mLength);
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
gsi_bool gsiLargeIntPrint(FILE* logFile, const l_word *data, l_word length)
{
// this is only specific to NITRO since for other platforms the fprintf will
// resolve to a STDOUT
#if !defined(_NITRO)
	while(length >0)
	{
		fprintf(logFile, "%08X", data[length-1]);
		length--;
	}
	fprintf(logFile, "\r\n");
	return gsi_true;
#else
	GSI_UNUSED(logFile);
	GSI_UNUSED(data);
	GSI_UNUSED(length);
	return gsi_false;			
#endif
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// stream of bytes, big endian.  (first byte = most significant digit)
gsi_bool gsLargeIntSetFromHexString(gsLargeInt_t *lint, const char* hexstream)
{
	l_word* writePos = lint->mData;
	gsi_u32 temp;
	int len = 0;
	int byteIndex = 0;

	GS_ASSERT(hexstream != NULL);
	
	len = (int)strlen(hexstream);
	if (len == 0)
	{
		lint->mLength = 0;
		lint->mData[0] = 0;
		return gsi_true;
	}
	if ((len/2) > (GS_LARGEINT_MAX_DIGITS*GS_LARGEINT_DIGIT_SIZE_BYTES))
		return gsi_false;
	
	// 2 characters per byte, 4 bytes per integer
	lint->mLength = (l_word)((len+(2*GS_LARGEINT_DIGIT_SIZE_BYTES-1))/(2*GS_LARGEINT_DIGIT_SIZE_BYTES));
	lint->mData[lint->mLength-1] = 0; // set last byte to zero for left over characters
	
	while(len > 0)
	{
		if(len >= 2)
			sscanf((char*)(hexstream+len-2), "%02x", &temp); // sscanf requires a 4 byte dest
		else
			sscanf((char*)(hexstream+len-1), "%01x", &temp); // sscanf requires a 4 byte dest
		if(byteIndex == 0)
			*writePos = 0;
		*writePos |= (temp << (byteIndex * 8));
		if(++byteIndex == GS_LARGEINT_DIGIT_SIZE_BYTES)
		{
			writePos++;
			byteIndex = 0;
		}
		len-=min(2,len);
	}
	return gsi_true;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Reverse bytes in a LINT, which are LittleEndian
//     ex: Packing an RSA message of which the first bytes are 0x00 0x02
//         The first bytes of the packet must become the MSD of the LINT
gsi_bool gsLargeIntReverseBytes(gsLargeInt_t *lint)
{
#if defined(GSI_LITTLE_ENDIAN)
	char *left = (char*)&lint->mData[0];
	char *right = ((char*)&lint->mData[lint->mLength])-1;
	char  temp;
#else
	l_word *left = lint->mData;
	l_word *right = lint->mData + (lint->mLength - 1);
	l_word  temp;
#endif


	if (lint->mLength == 0)
		return gsi_true;

	while(left < right)
	{
		temp = *left;
		(*left++) = (*right);
		(*right--) = temp;
	}
	return gsi_true;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// hashing is made complicated by differing byte orders 
void gsLargeIntAddToMD5(const gsLargeInt_t * _lint, MD5_CTX * md5)
{
	int byteLength = 0;
	gsi_u8 * dataStart = NULL;

	// Create a non-const copy so we can reverse bytes to add to the MD5 hash
	gsLargeInt_t lint;
	memcpy(&lint, _lint, sizeof(lint));

	// first, calculate the byte length
	byteLength = (int)gsLargeIntGetByteLength(&lint);
	if (byteLength == 0)
		return; // no data

	dataStart = (gsi_u8*)lint.mData;
	if ((byteLength % GS_LARGEINT_DIGIT_SIZE_BYTES) != 0)
		dataStart += GS_LARGEINT_DIGIT_SIZE_BYTES - (byteLength % GS_LARGEINT_DIGIT_SIZE_BYTES);

	// reverse to big-endian (MS) then hash
	gsLargeIntReverseBytes(&lint);
	MD5Update(md5, dataStart, (unsigned int)byteLength);
	gsLargeIntReverseBytes(&lint);
} 


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Length in bytes so leading zeroes can be dropped from hex strings
gsi_u32  gsLargeIntGetByteLength(const gsLargeInt_t *lint)
{
	int intSize = (int)lint->mLength;
	int byteSize = 0;
	int i=0;
	l_word mask = 0xFF;

	// skip leading zeroes
	while(intSize > 0 && lint->mData[intSize-1] == 0)
		intSize --;
	if (intSize == 0)
		return 0; // no data

	byteSize = intSize * (gsi_i32)sizeof(l_word);

	// subtract bytes for each leading 0x00 byte
	mask = 0xFF;
	for (i=1; i < GS_LARGEINT_DIGIT_SIZE_BYTES; i++)
	{
		if (lint->mData[intSize-1] <= mask)
		{
			byteSize -= sizeof(l_word)-i;
			break;
		}
		mask = (l_word)((mask << 8) | 0xFF);
	}

	return (gsi_u32)byteSize;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Creates a large int from a byte buffer
//		Essentially, constructs the array of digits in appropriate byte order
gsi_bool gsLargeIntSetFromMemoryStream(gsLargeInt_t *lint, const gsi_u8* data, gsi_u32 len)
{
	lint->mData[0] = 0;
	memcpy(((char*)lint->mData)+(4-len%4)%4, data, len);

	// Set length to ceiling of len/digit_size
	lint->mLength = (unsigned int)((len+(GS_LARGEINT_DIGIT_SIZE_BYTES-1))/GS_LARGEINT_DIGIT_SIZE_BYTES);

	return gsLargeIntReverseBytes(lint);
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
gsi_bool gsLargeIntWriteToMemoryStream(const gsLargeInt_t *lint, gsi_u8* data)
{
	gsLargeInt_t copy;
	memcpy(&copy, lint, sizeof(gsLargeInt_t));

	gsLargeIntReverseBytes(&copy);

	memcpy(data, copy.mData, copy.mLength * GS_LARGEINT_DIGIT_SIZE_BYTES);
	return gsi_true;
}