1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
// This file contains the detail API documentation for
// elements defined in the Recast.h.
/**
@defgroup recast Recast
Members in this module are used to create mesh data that is then
used to create Detour navigation meshes.
The are a large number of possible ways to building navigation mesh data.
One of the simple piplines is as follows:
-# Prepare the input triangle mesh.
-# Build a #rcHeightfield.
-# Build a #rcCompactHeightfield.
-# Build a #rcContourSet.
-# Build a #rcPolyMesh.
-# Build a #rcPolyMeshDetail.
-# Use the rcPolyMesh and rcPolyMeshDetail to build a Detour navigation mesh
tile.
The general life-cycle of the main classes is as follows:
-# Allocate the object using the Recast allocator. (E.g. #rcAllocHeightfield)
-# Initialize or build the object. (E.g. #rcCreateHeightfield)
-# Update the object as needed. (E.g. #rcRasterizeTriangles)
-# Use the object as part of the pipeline.
-# Free the object using the Recast allocator. (E.g. #rcFreeHeightField)
@struct rcConfig
@par
The is a convenience structure that represents an aggregation of parameters
used at different stages in the Recast build process. Some
values are derived during the build process. Not all parameters
are used for all build processes.
Units are usually in voxels (vx) or world units (wu). The units for voxels,
grid size, and cell size are all based on the values of #cs and #ch.
In this documentation, the term 'field' refers to heightfield and
contour data structures that define spacial information using an integer
grid.
The upper and lower limits for the various parameters often depend on
the platform's floating point accuraccy as well as interdependencies between
the values of multiple parameters. See the individual parameter
documentation for details.
@note First you should decide the size of your agent's logical cylinder.
If your game world uses meters as units, a reasonable starting point for
a human-sized agent might be a radius of `0.4` and a height of `2.0`.
@var rcConfig::borderSize
@par
This value represents the the closest the walkable area of the heightfield
should come to the xz-plane AABB of the field. It does not have any
impact on the borders around internal obstructions.
@var rcConfig::tileSize
@par
This field is only used when building multi-tile meshes.
@var rcConfig::cs
@par
The voxelization cell size #cs defines the voxel size along both axes of
the ground plane: x and z in Recast. This value is usually derived from the
character radius `r`. A recommended starting value for #cs is either `r/2`
or `r/3`. Smaller values of #cs will increase rasterization resolution and
navmesh detail, but total generation time will increase exponentially. In
outdoor environments, `r/2` is often good enough. For indoor scenes with
tight spaces you might want the extra precision, so a value of `r/3` or
smaller may give better results.
The initial instinct is to reduce this value to something very close to zero
to maximize the detail of the generated navmesh. This quickly becomes a case
of diminishing returns, however. Beyond a certain point there's usually not
much perceptable difference in the generated navmesh, but huge increases in
generation time. This hinders your ability to quickly iterate on level
designs and provides little benefit. The general recommendation here is to
use as large a value for #cs as you can get away with.
#cs and #ch define voxel/grid/cell size. So their values have significant
side effects on all parameters defined in voxel units.
The minimum value for this parameter depends on the platform's floating point
accuracy, with the practical minimum usually around 0.05.
@var rcConfig::ch
@par
The voxelization cell height #ch is defined separately in order to allow for
greater precision in height tests. A good starting point for #ch is half the
#cs value. Smaller #ch values ensure that the navmesh properly connects areas
that are only separated by a small curb or ditch. If small holes are generated
in your navmesh around where there are discontinuities in height (for example,
stairs or curbs), you may want to decrease the cell height value to increase
the vertical rasterization precision of Recast.
#cs and #ch define voxel/grid/cell size. So their values have significant
side effects on all parameters defined in voxel units.
The minimum value for this parameter depends on the platform's floating point
accuracy, with the practical minimum usually around 0.05.
@var rcConfig::walkableSlopeAngle
@par
The parameter #walkableSlopeAngle is to filter out areas of the world where
the ground slope would be too steep for an agent to traverse. This value is
defined as a maximum angle in degrees that the surface normal of a polgyon
can differ from the world's up vector. This value must be within the range
`[0, 90]`.
The practical upper limit for this parameter is usually around 85 degrees.
@var rcConfig::walkableHeight
@par
This value defines the worldspace height `h` of the agent in voxels. Th value
of #walkableHeight should be calculated as `ceil(h / ch)`. Note this is based
on #ch not #cs since it's a height value.
Permits detection of overhangs in the source geometry that make the geometry
below un-walkable. The value is usually set to the maximum agent height.
@var rcConfig::walkableClimb
@par
The #walkableClimb value defines the maximum height of ledges and steps that
the agent can walk up. Given a designer-defined `maxClimb` distance in world
units, the value of #walkableClimb should be calculated as `ceil(maxClimb / ch)`.
Note that this is using #ch not #cs because it's a height-based value.
Allows the mesh to flow over low lying obstructions such as curbs and
up/down stairways. The value is usually set to how far up/down an agent can step.
@var rcConfig::walkableRadius
@par
The parameter #walkableRadius defines the worldspace agent radius `r` in voxels.
Most often, this value of #walkableRadius should be calculated as `ceil(r / cs)`.
Note this is based on #cs since the agent radius is always parallel to the ground
plane.
If the #walkableRadius value is greater than zero, the edges of the navmesh will
be pushed away from all obstacles by this amount.
A non-zero #walkableRadius allows for much simpler runtime navmesh collision checks.
The game only needs to check that the center point of the agent is contained within
a navmesh polygon. Without this erosion, runtime navigation checks need to collide
the geometric projection of the agent's logical cylinder onto the navmesh with the
boundary edges of the navmesh polygons.
In general, this is the closest any part of the final mesh should get to an
obstruction in the source geometry. It is usually set to the maximum
agent radius.
If you want to have tight-fitting navmesh, or want to reuse the same navmesh for
multiple agents with differing radii, you can use a `walkableRadius` value of zero.
Be advised though that you will need to perform your own collisions with the navmesh
edges, and odd edge cases issues in the mesh generation can potentially occur. For
these reasons, specifying a radius of zero is allowed but is not recommended.
@var rcConfig::maxEdgeLen
@par
In certain cases, long outer edges may decrease the quality of the resulting
triangulation, creating very long thin triangles. This can sometimes be
remedied by limiting the maximum edge length, causing the problematic long
edges to be broken up into smaller segments.
The parameter #maxEdgeLen defines the maximum edge length and is defined in
terms of voxels. A good value for #maxEdgeLen is something like
`walkableRadius * 8`. A good way to adjust this value is to first set it really
high and see if your data creates long edges. If it does, decrease #maxEdgeLen
until you find the largest value which improves the resulting tesselation.
Extra vertices will be inserted as needed to keep contour edges below this
length. A value of zero effectively disables this feature.
@var rcConfig::maxSimplificationError
@par
When the rasterized areas are converted back to a vectorized representation,
the #maxSimplificationError describes how loosely the simplification is done.
The simplification process uses the
<a href="https://en.wikipedia.org/wiki/Ramer–Douglas–Peucker_algorithm">Ramer–Douglas-Peucker algorithm</a>,
and this value describes the max deviation in voxels.
Good values for #maxSimplificationError are in the range `[1.1, 1.5]`.
A value of `1.3` is a good starting point and usually yields good results.
If the value is less than `1.1`, some sawtoothing starts to appear at the
generated edges. If the value is more than `1.5`, the mesh simplification
starts to cut some corners it shouldn't.
The effect of this parameter only applies to the xz-plane.
@var rcConfig::minRegionArea
@par
Watershed partitioning is really prone to noise in the input distance field.
In order to get nicer areas, the areas are merged and small disconnected areas
are removed after the water shed partitioning. The parameter #minRegionArea
describes the minimum isolated region size that is still kept. A region is
removed if the number of voxels in the region is less than the square of
#minRegionArea.
Any regions that are smaller than this area will be marked as unwalkable.
This is useful in removing useless regions that can sometimes form on
geometry such as table tops, box tops, etc.
@var rcConfig::maxVertsPerPoly
@par
If the mesh data is to be used to construct a Detour navigation mesh, then the upper limit
is limited to <= #DT_VERTS_PER_POLYGON.
@var rcConfig::mergeRegionArea
@par
The triangulation process works best with small, localized voxel regions.
The parameter #mergeRegionArea controls the maximum voxel area of a region
that is allowed to be merged with another region. If you see small patches
missing here and there, you could lower the #minRegionArea value.
@struct rcHeightfield
@par
The grid of a heightfield is layed out on the xz-plane based on the
value of #cs. Spans exist within the grid columns with the span
min/max values at increments of #ch from the base of the grid. The smallest
possible span size is <tt>(#cs width) * (#cs depth) * (#ch height)</tt>. (Which is a single voxel.)
The standard process for buidling a heightfield is to allocate it using
#rcAllocHeightfield, initialize it using #rcCreateHeightfield, then
add spans using the various helper functions such as #rcRasterizeTriangle.
Building a heightfield is one of the first steps in creating a polygon mesh
from source geometry. After it is populated, it is used to build a
rcCompactHeightfield.
Example of iterating the spans in a heightfield:
@code
// Where hf is a reference to an heightfield object.
const float* orig = hf.bmin;
const float cs = hf.cs;
const float ch = hf.ch;
const int w = hf.width;
const int h = hf.height;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
// Deriving the minimum corner of the grid location.
float fx = orig[0] + x*cs;
float fz = orig[2] + y*cs;
// The base span in the column. (May be null.)
const rcSpan* s = hf.spans[x + y*w];
while (s)
{
// Detriving the minium and maximum world position of the span.
float fymin = orig[1]+s->smin*ch;
float fymax = orig[1] + s->smax*ch;
// Do other things with the span before moving up the column.
s = s->next;
}
}
}
@endcode
@see rcAllocHeightfield, rcFreeHeightField, rcCreateHeightfield
@struct rcCompactCell
@par
See the rcCompactHeightfield documentation for an example of how compact cells
are used to iterate the heightfield.
Useful instances of this type can only by obtained from a #rcCompactHeightfield object.
@see rcCompactHeightfield
@struct rcCompactSpan
@par
The span represents open, unobstructed space within a compact heightfield column.
See the rcCompactHeightfield documentation for an example of iterating spans and searching
span connections.
Useful instances of this type can only by obtained from a #rcCompactHeightfield object.
@see rcCompactHeightfield
@struct rcCompactHeightfield
@par
For this type of heightfield, the spans represent the open (unobstructed)
space above the solid surfaces of a voxel field. It is usually created from
a #rcHeightfield object. Data is stored in a compact, efficient manner,
but the structure is not condusive to adding and removing spans.
The standard process for buidling a compact heightfield is to allocate it
using #rcAllocCompactHeightfield, build it using #rcBuildCompactHeightfield,
then run it through the various helper functions to generate neighbor
and region data.
Connected neighbor spans form non-overlapping surfaces. When neighbor
information is generated, spans will include data that can be used to
locate axis-neighbors. Axis-neighbors are connected
spans that are offset from the current cell column as follows:
<pre>
Direction 0 = (-1, 0)
Direction 1 = (0, 1)
Direction 2 = (1, 0)
Direction 3 = (0, -1)
</pre>
Example of iterating and inspecting spans, including connected neighbors:
@code
// Where chf is an instance of a rcCompactHeightfield.
const float cs = chf.cs;
const float ch = chf.ch;
for (int y = 0; y < chf.height; ++y)
{
for (int x = 0; x < chf.width; ++x)
{
// Deriving the minimum corner of the grid location.
const float fx = chf.bmin[0] + x*cs;
const float fz = chf.bmin[2] + y*cs;
// Get the cell for the grid location then iterate
// up the column.
const rcCompactCell& c = chf.cells[x+y*chf.width];
for (unsigned i = c.index, ni = c.index+c.count; i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
Deriving the minimum (floor) of the span.
const float fy = chf.bmin[1] + (s.y+1)*ch;
// Testing the area assignment of the span.
if (chf.areas[i] == RC_WALKABLE_AREA)
{
// The span is in the default 'walkable area'.
}
else if (chf.areas[i] == RC_NULL_AREA)
{
// The surface is not considered walkable.
// E.g. It was filtered out during the build processes.
}
else
{
// Do something. (Only applicable for custom build
// build processes.)
}
// Iterating the connected axis-neighbor spans.
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
// There is a neighbor in this direction.
const int nx = x + rcGetDirOffsetX(dir);
const int ny = y + rcGetDirOffsetY(dir);
const int ni = (int)chf.cells[nx+ny*w].index + rcGetCon(s, 0);
const rcCompactSpan& ns = chf.spans[ni];
// Do something with the neighbor span.
}
}
}
}
}
@endcode
@see rcAllocCompactHeightfield, rcFreeCompactHeightfield, rcBuildCompactHeightfield
@struct rcContour
@par
A contour only exists within the context of a #rcContourSet object.
While the height of the contour's border may vary, the contour will always
form a simple polygon when projected onto the xz-plane.
Example of converting vertices into world space:
@code
// Where cset is the rcContourSet object to which the contour belongs.
float worldX = cset.bmin[0] + vertX * cset.cs;
float worldY = cset.bmin[1] + vertY * cset.ch;
float worldZ = cset.bmin[2] + vertZ * cset.cs;
@endcode
@see rcContourSet
@var rcContour::verts
@par
The simplified contour is a version of the raw contour with all
'unnecessary' vertices removed. Whether a vertex is
considered unnecessary depends on the contour build process.
The data format is as follows: (x, y, z, r) * #nverts
A contour edge is formed by the current and next vertex. The r-value
represents region and connection information for the edge. For example:
@code
int r = verts[i*4+3];
int regionId = r & RC_CONTOUR_REG_MASK;
if (r & RC_BORDER_VERTEX)
{
// The edge represents a solid border.
}
if (r & RC_AREA_BORDER)
{
// The edge represents a transition between different areas.
}
@endcode
@var rcContour::rverts
@par
See #verts for information on element layout.
@struct rcContourSet
@par
All contours within the set share the minimum bounds and cell sizes of the set.
The standard process for building a contour set is to allocate it
using #rcAllocContourSet, then initialize it using #rcBuildContours.
@see rcAllocContourSet, rcFreeContourSet, rcBuildContours
@struct rcPolyMesh
@par
A mesh of potentially overlapping convex polygons of between three
and #nvp vertices. The mesh exists within the context of an axis-aligned
bounding box (AABB) with vertices laid out in an evenly spaced grid, based
on the values of #cs and #ch.
The standard process for building a contour set is to allocate it using
#rcAllocPolyMesh, the initialize it using #rcBuildPolyMesh
Example of iterating the polygons:
@code
// Where mesh is a reference to a rcPolyMesh object.
const int nvp = mesh.nvp;
const float cs = mesh.cs;
const float ch = mesh.ch;
const float* orig = mesh.bmin;
for (int i = 0; i < mesh.npolys; ++i)
{
const unsigned short* p = &mesh.polys[i*nvp*2];
// Iterate the vertices.
unsigned short vi[3]; // The vertex indices.
for (int j = 0; j < nvp; ++j)
{
if (p[j] == RC_MESH_NULL_IDX)
break; // End of vertices.
if (p[j + nvp] == RC_MESH_NULL_IDX)
{
// The edge beginning with this vertex is a solid border.
}
else
{
// The edge beginning with this vertex connects to
// polygon p[j + nvp].
}
// Convert to world space.
const unsigned short* v = &mesh.verts[p[j]*3];
const float x = orig[0] + v[0]*cs;
const float y = orig[1] + v[1]*ch;
const float z = orig[2] + v[2]*cs;
// Do something with the vertices.
}
}
@endcode
@see rcAllocPolyMesh, rcFreePolyMesh, rcBuildPolyMesh
@var rcPolyMesh::verts
@par
The values of #bmin ,#cs, and #ch are used to convert vertex coordinates
to world space as follows:
@code
float worldX = bmin[0] + verts[i*3+0] * cs
float worldY = bmin[1] + verts[i*3+1] * ch
float worldZ = bmin[2] + verts[i*3+2] * cs
@endcode
@var rcPolyMesh::polys
@par
Each entry is <tt>2 * #nvp</tt> in length. The first half of the entry
contains the indices of the polygon. The first instance of #RC_MESH_NULL_IDX
indicates the end of the indices for the entry. The second half contains
indices to neighbor polygons. A value of #RC_MESH_NULL_IDX indicates no
connection for the associated edge. (I.e. The edge is a solid border.)
For example:
<pre>
nvp = 6
For the entry: (1, 3, 4, 8, RC_MESH_NULL_IDX, RC_MESH_NULL_IDX,
18, RC_MESH_NULL_IDX , 21, RC_MESH_NULL_IDX, RC_MESH_NULL_IDX, RC_MESH_NULL_IDX)
(1, 3, 4, 8) defines a polygon with 4 vertices.
Edge 1->3 is shared with polygon 18.
Edge 4->8 is shared with polygon 21.
Edges 3->4 and 4->8 are border edges not shared with any other polygon.
</pre>
@var rcPolyMesh::areas
@par
The standard build process assigns the value of #RC_WALKABLE_AREA to all walkable polygons.
This value can then be changed to meet user requirements.
@struct rcPolyMeshDetail
@par
The detail mesh is made up of triangle sub-meshes that provide extra
height detail for each polygon in its assoicated polygon mesh.
The standard process for building a detail mesh is to allocate it
using #rcAllocPolyMeshDetail, then build it using #rcBuildPolyMeshDetail.
See the individual field definitions for details realted to the structure
the mesh.
@see rcAllocPolyMeshDetail, rcFreePolyMeshDetail, rcBuildPolyMeshDetail, rcPolyMesh
@var rcPolyMeshDetail::meshes
@par
[(baseVertIndex, vertCount, baseTriIndex, triCount) * #nmeshes]
Maximum number of vertices per sub-mesh: 127<br/>
Maximum number of triangles per sub-mesh: 255
The sub-meshes are stored in the same order as the polygons from the
rcPolyMesh they represent. E.g. rcPolyMeshDetail sub-mesh 5 is associated
with #rcPolyMesh polygon 5.
Example of iterating the triangles in a sub-mesh.
@code
// Where dmesh is a reference to a rcPolyMeshDetail object.
// Iterate the sub-meshes. (One for each source polygon.)
for (int i = 0; i < dmesh.nmeshes; ++i)
{
const unsigned int* meshDef = &dmesh.meshes[i*4];
const unsigned int baseVerts = meshDef[0];
const unsigned int baseTri = meshDef[2];
const int ntris = (int)meshDef[3];
const float* verts = &dmesh.verts[baseVerts*3];
const unsigned char* tris = &dmesh.tris[baseTri*4];
// Iterate the sub-mesh's triangles.
for (int j = 0; j < ntris; ++j)
{
const float x = verts[tris[j*4+0]*3];
const float y = verts[tris[j*4+1]*3];
const float z = verts[tris[j*4+2]*3];
// Do something with the vertex.
}
}
@endcode
@var rcPolyMeshDetail::verts
@par
[(x, y, z) * #nverts]
The vertices are grouped by sub-mesh and will contain duplicates since
each sub-mesh is independently defined.
The first group of vertices for each sub-mesh are in the same order as
the vertices for the sub-mesh's associated PolyMesh polygon. These
vertices are followed by any additional detail vertices. So it the
associated polygon has 5 vertices, the sub-mesh will have a minimum
of 5 vertices and the first 5 vertices will be equivalent to the 5
polygon vertices.
@var rcPolyMeshDetail::tris
@par
[(vertIndexA, vertIndexB, vertIndexC, flags) * #ntris]
The triangles are grouped by sub-mesh.
<b>Vertex Indices</b>
The vertex indices in the triangle array are local to the sub-mesh, not global.
To translate into an global index in the vertices array, the values must be
offset by the sub-mesh's base vertex index.
Example: If the baseVertexIndex for the sub-mesh is 5 and the triangle entry
is (4, 8, 7, 0), then the actual indices for the vertices are (4 + 5, 8 + 5, 7 + 5).
@b Flags
The flags entry indicates which edges are internal and which are external to
the sub-mesh. Internal edges connect to other triangles within the same sub-mesh.
External edges represent portals to other sub-meshes or the null region.
Each flag is stored in a 2-bit position. Where position 0 is the lowest 2-bits
and position 4 is the highest 2-bits:
<tt>
Position 0: Edge AB (>> 0)<br/>
Position 1: Edge BC (>> 2)<br/>
Position 2: Edge CA (>> 4)<br/>
Position 4: Unused<br/>
</tt>
Testing can be performed as follows:
@code
if (((flags >> 2) & 0x3) != 0)
{
// Edge BC is an external edge.
}
@endcode
@fn void rcSetCon(rcCompactSpan &s, int dir, int i)
@par
This function is used by the build process. It is rarely of use to end users.
@see #rcCompactHeightfield, #rcCompactSpan
@fn int rcGetCon(const rcCompactSpan &s, int dir)
@par
Can be used to locate neighbor spans in a compact heightfield. See the
#rcCompactHeightfield documentation for details on its use.
@see #rcCompactHeightfield, #rcCompactSpan
@fn int rcGetDirOffsetX(int dir)
@par
The value of @p dir will be automatically wrapped. So a value of 6 will be interpreted as 2.
See the #rcCompactHeightfield documentation for usage details.
@fn int rcGetDirOffsetY(int dir)
@par
The value of @p dir will be automatically wrapped. So a value of 6 will be interpreted as 2.
See the #rcCompactHeightfield documentation for usage details.
*/
|