1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
|
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
/// Check whether two bounding boxes overlap
///
/// @param[in] aMin Min axis extents of bounding box A
/// @param[in] aMax Max axis extents of bounding box A
/// @param[in] bMin Min axis extents of bounding box B
/// @param[in] bMax Max axis extents of bounding box B
/// @returns true if the two bounding boxes overlap. False otherwise.
static bool overlapBounds(const float* aMin, const float* aMax, const float* bMin, const float* bMax)
{
return
aMin[0] <= bMax[0] && aMax[0] >= bMin[0] &&
aMin[1] <= bMax[1] && aMax[1] >= bMin[1] &&
aMin[2] <= bMax[2] && aMax[2] >= bMin[2];
}
/// Allocates a new span in the heightfield.
/// Use a memory pool and free list to minimize actual allocations.
///
/// @param[in] hf The heightfield
/// @returns A pointer to the allocated or re-used span memory.
static rcSpan* allocSpan(rcHeightfield& hf)
{
// If necessary, allocate new page and update the freelist.
if (hf.freelist == NULL || hf.freelist->next == NULL)
{
// Create new page.
// Allocate memory for the new pool.
rcSpanPool* spanPool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM);
if (spanPool == NULL)
{
return NULL;
}
// Add the pool into the list of pools.
spanPool->next = hf.pools;
hf.pools = spanPool;
// Add new spans to the free list.
rcSpan* freeList = hf.freelist;
rcSpan* head = &spanPool->items[0];
rcSpan* it = &spanPool->items[RC_SPANS_PER_POOL];
do
{
--it;
it->next = freeList;
freeList = it;
}
while (it != head);
hf.freelist = it;
}
// Pop item from the front of the free list.
rcSpan* newSpan = hf.freelist;
hf.freelist = hf.freelist->next;
return newSpan;
}
/// Releases the memory used by the span back to the heightfield, so it can be re-used for new spans.
/// @param[in] hf The heightfield.
/// @param[in] span A pointer to the span to free
static void freeSpan(rcHeightfield& hf, rcSpan* span)
{
if (span == NULL)
{
return;
}
// Add the span to the front of the free list.
span->next = hf.freelist;
hf.freelist = span;
}
/// Adds a span to the heightfield. If the new span overlaps existing spans,
/// it will merge the new span with the existing ones.
///
/// @param[in] hf Heightfield to add spans to
/// @param[in] x The new span's column cell x index
/// @param[in] z The new span's column cell z index
/// @param[in] min The new span's minimum cell index
/// @param[in] max The new span's maximum cell index
/// @param[in] areaID The new span's area type ID
/// @param[in] flagMergeThreshold How close two spans maximum extents need to be to merge area type IDs
static bool addSpan(rcHeightfield& hf,
const int x, const int z,
const unsigned short min, const unsigned short max,
const unsigned char areaID, const int flagMergeThreshold)
{
// Create the new span.
rcSpan* newSpan = allocSpan(hf);
if (newSpan == NULL)
{
return false;
}
newSpan->smin = min;
newSpan->smax = max;
newSpan->area = areaID;
newSpan->next = NULL;
const int columnIndex = x + z * hf.width;
rcSpan* previousSpan = NULL;
rcSpan* currentSpan = hf.spans[columnIndex];
// Insert the new span, possibly merging it with existing spans.
while (currentSpan != NULL)
{
if (currentSpan->smin > newSpan->smax)
{
// Current span is completely after the new span, break.
break;
}
if (currentSpan->smax < newSpan->smin)
{
// Current span is completely before the new span. Keep going.
previousSpan = currentSpan;
currentSpan = currentSpan->next;
}
else
{
// The new span overlaps with an existing span. Merge them.
if (currentSpan->smin < newSpan->smin)
{
newSpan->smin = currentSpan->smin;
}
if (currentSpan->smax > newSpan->smax)
{
newSpan->smax = currentSpan->smax;
}
// Merge flags.
if (rcAbs((int)newSpan->smax - (int)currentSpan->smax) <= flagMergeThreshold)
{
// Higher area ID numbers indicate higher resolution priority.
newSpan->area = rcMax(newSpan->area, currentSpan->area);
}
// Remove the current span since it's now merged with newSpan.
// Keep going because there might be other overlapping spans that also need to be merged.
rcSpan* next = currentSpan->next;
freeSpan(hf, currentSpan);
if (previousSpan)
{
previousSpan->next = next;
}
else
{
hf.spans[columnIndex] = next;
}
currentSpan = next;
}
}
// Insert new span after prev
if (previousSpan != NULL)
{
newSpan->next = previousSpan->next;
previousSpan->next = newSpan;
}
else
{
// This span should go before the others in the list
newSpan->next = hf.spans[columnIndex];
hf.spans[columnIndex] = newSpan;
}
return true;
}
bool rcAddSpan(rcContext* context, rcHeightfield& heightfield,
const int x, const int z,
const unsigned short spanMin, const unsigned short spanMax,
const unsigned char areaID, const int flagMergeThreshold)
{
rcAssert(context);
if (!addSpan(heightfield, x, z, spanMin, spanMax, areaID, flagMergeThreshold))
{
context->log(RC_LOG_ERROR, "rcAddSpan: Out of memory.");
return false;
}
return true;
}
enum rcAxis
{
RC_AXIS_X = 0,
RC_AXIS_Y = 1,
RC_AXIS_Z = 2
};
/// Divides a convex polygon of max 12 vertices into two convex polygons
/// across a separating axis.
///
/// @param[in] inVerts The input polygon vertices
/// @param[in] inVertsCount The number of input polygon vertices
/// @param[out] outVerts1 Resulting polygon 1's vertices
/// @param[out] outVerts1Count The number of resulting polygon 1 vertices
/// @param[out] outVerts2 Resulting polygon 2's vertices
/// @param[out] outVerts2Count The number of resulting polygon 2 vertices
/// @param[in] axisOffset THe offset along the specified axis
/// @param[in] axis The separating axis
static void dividePoly(const float* inVerts, int inVertsCount,
float* outVerts1, int* outVerts1Count,
float* outVerts2, int* outVerts2Count,
float axisOffset, rcAxis axis)
{
rcAssert(inVertsCount <= 12);
// How far positive or negative away from the separating axis is each vertex.
float inVertAxisDelta[12];
for (int inVert = 0; inVert < inVertsCount; ++inVert)
{
inVertAxisDelta[inVert] = axisOffset - inVerts[inVert * 3 + axis];
}
int poly1Vert = 0;
int poly2Vert = 0;
for (int inVertA = 0, inVertB = inVertsCount - 1; inVertA < inVertsCount; inVertB = inVertA, ++inVertA)
{
// If the two vertices are on the same side of the separating axis
bool sameSide = (inVertAxisDelta[inVertA] >= 0) == (inVertAxisDelta[inVertB] >= 0);
if (!sameSide)
{
float s = inVertAxisDelta[inVertB] / (inVertAxisDelta[inVertB] - inVertAxisDelta[inVertA]);
outVerts1[poly1Vert * 3 + 0] = inVerts[inVertB * 3 + 0] + (inVerts[inVertA * 3 + 0] - inVerts[inVertB * 3 + 0]) * s;
outVerts1[poly1Vert * 3 + 1] = inVerts[inVertB * 3 + 1] + (inVerts[inVertA * 3 + 1] - inVerts[inVertB * 3 + 1]) * s;
outVerts1[poly1Vert * 3 + 2] = inVerts[inVertB * 3 + 2] + (inVerts[inVertA * 3 + 2] - inVerts[inVertB * 3 + 2]) * s;
rcVcopy(&outVerts2[poly2Vert * 3], &outVerts1[poly1Vert * 3]);
poly1Vert++;
poly2Vert++;
// add the inVertA point to the right polygon. Do NOT add points that are on the dividing line
// since these were already added above
if (inVertAxisDelta[inVertA] > 0)
{
rcVcopy(&outVerts1[poly1Vert * 3], &inVerts[inVertA * 3]);
poly1Vert++;
}
else if (inVertAxisDelta[inVertA] < 0)
{
rcVcopy(&outVerts2[poly2Vert * 3], &inVerts[inVertA * 3]);
poly2Vert++;
}
}
else
{
// add the inVertA point to the right polygon. Addition is done even for points on the dividing line
if (inVertAxisDelta[inVertA] >= 0)
{
rcVcopy(&outVerts1[poly1Vert * 3], &inVerts[inVertA * 3]);
poly1Vert++;
if (inVertAxisDelta[inVertA] != 0)
{
continue;
}
}
rcVcopy(&outVerts2[poly2Vert * 3], &inVerts[inVertA * 3]);
poly2Vert++;
}
}
*outVerts1Count = poly1Vert;
*outVerts2Count = poly2Vert;
}
/// Rasterize a single triangle to the heightfield.
///
/// This code is extremely hot, so much care should be given to maintaining maximum perf here.
///
/// @param[in] v0 Triangle vertex 0
/// @param[in] v1 Triangle vertex 1
/// @param[in] v2 Triangle vertex 2
/// @param[in] areaID The area ID to assign to the rasterized spans
/// @param[in] hf Heightfield to rasterize into
/// @param[in] hfBBMin The min extents of the heightfield bounding box
/// @param[in] hfBBMax The max extents of the heightfield bounding box
/// @param[in] cellSize The x and z axis size of a voxel in the heightfield
/// @param[in] inverseCellSize 1 / cellSize
/// @param[in] inverseCellHeight 1 / cellHeight
/// @param[in] flagMergeThreshold The threshold in which area flags will be merged
/// @returns true if the operation completes successfully. false if there was an error adding spans to the heightfield.
static bool rasterizeTri(const float* v0, const float* v1, const float* v2,
const unsigned char areaID, rcHeightfield& hf,
const float* hfBBMin, const float* hfBBMax,
const float cellSize, const float inverseCellSize, const float inverseCellHeight,
const int flagMergeThreshold)
{
// Calculate the bounding box of the triangle.
float triBBMin[3];
rcVcopy(triBBMin, v0);
rcVmin(triBBMin, v1);
rcVmin(triBBMin, v2);
float triBBMax[3];
rcVcopy(triBBMax, v0);
rcVmax(triBBMax, v1);
rcVmax(triBBMax, v2);
// If the triangle does not touch the bounding box of the heightfield, skip the triangle.
if (!overlapBounds(triBBMin, triBBMax, hfBBMin, hfBBMax))
{
return true;
}
const int w = hf.width;
const int h = hf.height;
const float by = hfBBMax[1] - hfBBMin[1];
// Calculate the footprint of the triangle on the grid's z-axis
int z0 = (int)((triBBMin[2] - hfBBMin[2]) * inverseCellSize);
int z1 = (int)((triBBMax[2] - hfBBMin[2]) * inverseCellSize);
// use -1 rather than 0 to cut the polygon properly at the start of the tile
z0 = rcClamp(z0, -1, h - 1);
z1 = rcClamp(z1, 0, h - 1);
// Clip the triangle into all grid cells it touches.
float buf[7 * 3 * 4];
float* in = buf;
float* inRow = buf + 7 * 3;
float* p1 = inRow + 7 * 3;
float* p2 = p1 + 7 * 3;
rcVcopy(&in[0], v0);
rcVcopy(&in[1 * 3], v1);
rcVcopy(&in[2 * 3], v2);
int nvRow;
int nvIn = 3;
for (int z = z0; z <= z1; ++z)
{
// Clip polygon to row. Store the remaining polygon as well
const float cellZ = hfBBMin[2] + (float)z * cellSize;
dividePoly(in, nvIn, inRow, &nvRow, p1, &nvIn, cellZ + cellSize, RC_AXIS_Z);
rcSwap(in, p1);
if (nvRow < 3)
{
continue;
}
if (z < 0)
{
continue;
}
// find X-axis bounds of the row
float minX = inRow[0];
float maxX = inRow[0];
for (int vert = 1; vert < nvRow; ++vert)
{
if (minX > inRow[vert * 3])
{
minX = inRow[vert * 3];
}
if (maxX < inRow[vert * 3])
{
maxX = inRow[vert * 3];
}
}
int x0 = (int)((minX - hfBBMin[0]) * inverseCellSize);
int x1 = (int)((maxX - hfBBMin[0]) * inverseCellSize);
if (x1 < 0 || x0 >= w)
{
continue;
}
x0 = rcClamp(x0, -1, w - 1);
x1 = rcClamp(x1, 0, w - 1);
int nv;
int nv2 = nvRow;
for (int x = x0; x <= x1; ++x)
{
// Clip polygon to column. store the remaining polygon as well
const float cx = hfBBMin[0] + (float)x * cellSize;
dividePoly(inRow, nv2, p1, &nv, p2, &nv2, cx + cellSize, RC_AXIS_X);
rcSwap(inRow, p2);
if (nv < 3)
{
continue;
}
if (x < 0)
{
continue;
}
// Calculate min and max of the span.
float spanMin = p1[1];
float spanMax = p1[1];
for (int vert = 1; vert < nv; ++vert)
{
spanMin = rcMin(spanMin, p1[vert * 3 + 1]);
spanMax = rcMax(spanMax, p1[vert * 3 + 1]);
}
spanMin -= hfBBMin[1];
spanMax -= hfBBMin[1];
// Skip the span if it's completely outside the heightfield bounding box
if (spanMax < 0.0f)
{
continue;
}
if (spanMin > by)
{
continue;
}
// Clamp the span to the heightfield bounding box.
if (spanMin < 0.0f)
{
spanMin = 0;
}
if (spanMax > by)
{
spanMax = by;
}
// Snap the span to the heightfield height grid.
unsigned short spanMinCellIndex = (unsigned short)rcClamp((int)floorf(spanMin * inverseCellHeight), 0, RC_SPAN_MAX_HEIGHT);
unsigned short spanMaxCellIndex = (unsigned short)rcClamp((int)ceilf(spanMax * inverseCellHeight), (int)spanMinCellIndex + 1, RC_SPAN_MAX_HEIGHT);
if (!addSpan(hf, x, z, spanMinCellIndex, spanMaxCellIndex, areaID, flagMergeThreshold))
{
return false;
}
}
}
return true;
}
bool rcRasterizeTriangle(rcContext* context,
const float* v0, const float* v1, const float* v2,
const unsigned char areaID, rcHeightfield& heightfield, const int flagMergeThreshold)
{
rcAssert(context != NULL);
rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
// Rasterize the single triangle.
const float inverseCellSize = 1.0f / heightfield.cs;
const float inverseCellHeight = 1.0f / heightfield.ch;
if (!rasterizeTri(v0, v1, v2, areaID, heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
{
context->log(RC_LOG_ERROR, "rcRasterizeTriangle: Out of memory.");
return false;
}
return true;
}
bool rcRasterizeTriangles(rcContext* context,
const float* verts, const int /*nv*/,
const int* tris, const unsigned char* triAreaIDs, const int numTris,
rcHeightfield& heightfield, const int flagMergeThreshold)
{
rcAssert(context != NULL);
rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
// Rasterize the triangles.
const float inverseCellSize = 1.0f / heightfield.cs;
const float inverseCellHeight = 1.0f / heightfield.ch;
for (int triIndex = 0; triIndex < numTris; ++triIndex)
{
const float* v0 = &verts[tris[triIndex * 3 + 0] * 3];
const float* v1 = &verts[tris[triIndex * 3 + 1] * 3];
const float* v2 = &verts[tris[triIndex * 3 + 2] * 3];
if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
{
context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
return false;
}
}
return true;
}
bool rcRasterizeTriangles(rcContext* context,
const float* verts, const int /*nv*/,
const unsigned short* tris, const unsigned char* triAreaIDs, const int numTris,
rcHeightfield& heightfield, const int flagMergeThreshold)
{
rcAssert(context != NULL);
rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
// Rasterize the triangles.
const float inverseCellSize = 1.0f / heightfield.cs;
const float inverseCellHeight = 1.0f / heightfield.ch;
for (int triIndex = 0; triIndex < numTris; ++triIndex)
{
const float* v0 = &verts[tris[triIndex * 3 + 0] * 3];
const float* v1 = &verts[tris[triIndex * 3 + 1] * 3];
const float* v2 = &verts[tris[triIndex * 3 + 2] * 3];
if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
{
context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
return false;
}
}
return true;
}
bool rcRasterizeTriangles(rcContext* context,
const float* verts, const unsigned char* triAreaIDs, const int numTris,
rcHeightfield& heightfield, const int flagMergeThreshold)
{
rcAssert(context != NULL);
rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
// Rasterize the triangles.
const float inverseCellSize = 1.0f / heightfield.cs;
const float inverseCellHeight = 1.0f / heightfield.ch;
for (int triIndex = 0; triIndex < numTris; ++triIndex)
{
const float* v0 = &verts[(triIndex * 3 + 0) * 3];
const float* v1 = &verts[(triIndex * 3 + 1) * 3];
const float* v2 = &verts[(triIndex * 3 + 2) * 3];
if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
{
context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
return false;
}
}
return true;
}
|