File: ChunkyTriMesh.cpp

package info (click to toggle)
openmohaa 0.82.1%2Bdfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 34,192 kB
  • sloc: cpp: 315,720; ansic: 275,789; sh: 312; xml: 246; asm: 141; makefile: 7
file content (315 lines) | stat: -rw-r--r-- 7,445 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty.  In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would be
//    appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//    misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//

#include "ChunkyTriMesh.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

struct BoundsItem
{
	float bmin[2];
	float bmax[2];
	int i;
};

static int compareItemX(const void* va, const void* vb)
{
	const BoundsItem* a = (const BoundsItem*)va;
	const BoundsItem* b = (const BoundsItem*)vb;
	if (a->bmin[0] < b->bmin[0])
		return -1;
	if (a->bmin[0] > b->bmin[0])
		return 1;
	return 0;
}

static int compareItemY(const void* va, const void* vb)
{
	const BoundsItem* a = (const BoundsItem*)va;
	const BoundsItem* b = (const BoundsItem*)vb;
	if (a->bmin[1] < b->bmin[1])
		return -1;
	if (a->bmin[1] > b->bmin[1])
		return 1;
	return 0;
}

static void calcExtends(const BoundsItem* items, const int /*nitems*/,
						const int imin, const int imax,
						float* bmin, float* bmax)
{
	bmin[0] = items[imin].bmin[0];
	bmin[1] = items[imin].bmin[1];
	
	bmax[0] = items[imin].bmax[0];
	bmax[1] = items[imin].bmax[1];
	
	for (int i = imin+1; i < imax; ++i)
	{
		const BoundsItem& it = items[i];
		if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0];
		if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1];
		
		if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0];
		if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1];
	}
}

inline int longestAxis(float x, float y)
{
	return y > x ? 1 : 0;
}

static void subdivide(BoundsItem* items, int nitems, int imin, int imax, int trisPerChunk,
					  int& curNode, rcChunkyTriMeshNode* nodes, const int maxNodes,
					  int& curTri, int* outTris, const int* inTris)
{
	int inum = imax - imin;
	int icur = curNode;
	
	if (curNode >= maxNodes)
		return;

	rcChunkyTriMeshNode& node = nodes[curNode++];
	
	if (inum <= trisPerChunk)
	{
		// Leaf
		calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
		
		// Copy triangles.
		node.i = curTri;
		node.n = inum;
		
		for (int i = imin; i < imax; ++i)
		{
			const int* src = &inTris[items[i].i*3];
			int* dst = &outTris[curTri*3];
			curTri++;
			dst[0] = src[0];
			dst[1] = src[1];
			dst[2] = src[2];
		}
	}
	else
	{
		// Split
		calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
		
		int	axis = longestAxis(node.bmax[0] - node.bmin[0],
							   node.bmax[1] - node.bmin[1]);
		
		if (axis == 0)
		{
			// Sort along x-axis
			qsort(items+imin, static_cast<size_t>(inum), sizeof(BoundsItem), compareItemX);
		}
		else if (axis == 1)
		{
			// Sort along y-axis
			qsort(items+imin, static_cast<size_t>(inum), sizeof(BoundsItem), compareItemY);
		}
		
		int isplit = imin+inum/2;
		
		// Left
		subdivide(items, nitems, imin, isplit, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris);
		// Right
		subdivide(items, nitems, isplit, imax, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris);
		
		int iescape = curNode - icur;
		// Negative index means escape.
		node.i = -iescape;
	}
}

bool rcCreateChunkyTriMesh(const float* verts, const int* tris, int ntris,
						   int trisPerChunk, rcChunkyTriMesh* cm)
{
	int nchunks = (ntris + trisPerChunk-1) / trisPerChunk;

	cm->nodes = new rcChunkyTriMeshNode[nchunks*4];
	if (!cm->nodes)
		return false;
		
	cm->tris = new int[ntris*3];
	if (!cm->tris)
		return false;
		
	cm->ntris = ntris;

	// Build tree
	BoundsItem* items = new BoundsItem[ntris];
	if (!items)
		return false;

	for (int i = 0; i < ntris; i++)
	{
		const int* t = &tris[i*3];
		BoundsItem& it = items[i];
		it.i = i;
		// Calc triangle XZ bounds.
		it.bmin[0] = it.bmax[0] = verts[t[0]*3+0];
		it.bmin[1] = it.bmax[1] = verts[t[0]*3+2];
		for (int j = 1; j < 3; ++j)
		{
			const float* v = &verts[t[j]*3];
			if (v[0] < it.bmin[0]) it.bmin[0] = v[0]; 
			if (v[2] < it.bmin[1]) it.bmin[1] = v[2]; 

			if (v[0] > it.bmax[0]) it.bmax[0] = v[0]; 
			if (v[2] > it.bmax[1]) it.bmax[1] = v[2]; 
		}
	}

	int curTri = 0;
	int curNode = 0;
	subdivide(items, ntris, 0, ntris, trisPerChunk, curNode, cm->nodes, nchunks*4, curTri, cm->tris, tris);
	
	delete [] items;
	
	cm->nnodes = curNode;
	
	// Calc max tris per node.
	cm->maxTrisPerChunk = 0;
	for (int i = 0; i < cm->nnodes; ++i)
	{
		rcChunkyTriMeshNode& node = cm->nodes[i];
		const bool isLeaf = node.i >= 0;
		if (!isLeaf) continue;
		if (node.n > cm->maxTrisPerChunk)
			cm->maxTrisPerChunk = node.n;
	}
	 
	return true;
}


inline bool checkOverlapRect(const float amin[2], const float amax[2],
							 const float bmin[2], const float bmax[2])
{
	bool overlap = true;
	overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
	overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
	return overlap;
}

int rcGetChunksOverlappingRect(const rcChunkyTriMesh* cm,
							   float bmin[2], float bmax[2],
							   int* ids, const int maxIds)
{
	// Traverse tree
	int i = 0;
	int n = 0;
	while (i < cm->nnodes)
	{
		const rcChunkyTriMeshNode* node = &cm->nodes[i];
		const bool overlap = checkOverlapRect(bmin, bmax, node->bmin, node->bmax);
		const bool isLeafNode = node->i >= 0;
		
		if (isLeafNode && overlap)
		{
			if (n < maxIds)
			{
				ids[n] = i;
				n++;
			}
		}
		
		if (overlap || isLeafNode)
			i++;
		else
		{
			const int escapeIndex = -node->i;
			i += escapeIndex;
		}
	}
	
	return n;
}



static bool checkOverlapSegment(const float p[2], const float q[2],
								const float bmin[2], const float bmax[2])
{
	static const float EPSILON = 1e-6f;

	float tmin = 0;
	float tmax = 1;
	float d[2];
	d[0] = q[0] - p[0];
	d[1] = q[1] - p[1];
	
	for (int i = 0; i < 2; i++)
	{
		if (fabsf(d[i]) < EPSILON)
		{
			// Ray is parallel to slab. No hit if origin not within slab
			if (p[i] < bmin[i] || p[i] > bmax[i])
				return false;
		}
		else
		{
			// Compute intersection t value of ray with near and far plane of slab
			float ood = 1.0f / d[i];
			float t1 = (bmin[i] - p[i]) * ood;
			float t2 = (bmax[i] - p[i]) * ood;
			if (t1 > t2) { float tmp = t1; t1 = t2; t2 = tmp; }
			if (t1 > tmin) tmin = t1;
			if (t2 < tmax) tmax = t2;
			if (tmin > tmax) return false;
		}
	}
	return true;
}

int rcGetChunksOverlappingSegment(const rcChunkyTriMesh* cm,
								  float p[2], float q[2],
								  int* ids, const int maxIds)
{
	// Traverse tree
	int i = 0;
	int n = 0;
	while (i < cm->nnodes)
	{
		const rcChunkyTriMeshNode* node = &cm->nodes[i];
		const bool overlap = checkOverlapSegment(p, q, node->bmin, node->bmax);
		const bool isLeafNode = node->i >= 0;
		
		if (isLeafNode && overlap)
		{
			if (n < maxIds)
			{
				ids[n] = i;
				n++;
			}
		}
		
		if (overlap || isLeafNode)
			i++;
		else
		{
			const int escapeIndex = -node->i;
			i += escapeIndex;
		}
	}
	
	return n;
}