File: grid2cube.py

package info (click to toggle)
openmolcas 22.10-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 169,324 kB
  • sloc: fortran: 390,463; f90: 294,374; python: 11,760; ansic: 5,723; sh: 740; pascal: 460; perl: 325; javascript: 284; makefile: 17
file content (439 lines) | stat: -rwxr-xr-x 15,445 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#!/usr/bin/python
# -*- coding: utf-8 -*-

#***********************************************************************
# This file is part of OpenMolcas.                                     *
#                                                                      *
# OpenMolcas is free software; you can redistribute it and/or modify   *
# it under the terms of the GNU Lesser General Public License, v. 2.1. *
# OpenMolcas is distributed in the hope that it will be useful, but it *
# is provided "as is" and without any express or implied warranties.   *
# For more details see the full text of the license in the file        *
# LICENSE or in <http://www.gnu.org/licenses/>.                        *
#                                                                      *
# Copyright (C) 2013,2017, Ignacio Fdez. Galván                        *
#               2008,2009, Neil Martinsen-Burrell (FortranFile)        *
#***********************************************************************
# ==============================================================================
# Python script for converting Molcas "grid" files into Gaussian "cube" format
#
# For reading binary grid files, it uses part of the FortranFile library
# (see below)
#
# Last modified: 2017 September 1
#            by: Ignacio Fdez. Galván
# ==============================================================================

import sys, re, os

def usage():
  print ""
  print "Convert a Molcas grid file into a Gaussian cube file."
  print "The input file can be ASCII, binary (non-packed), or in"
  print "Luscus format, the generated output file will be ASCII."
  print ""
  print "USAGE:"
  print "  {0} input_file output_file".format( os.path.basename(__file__) )
  print ""
  print "If there are several grids in the input file,"
  print "the user will be asked which one to convert."
  print ""

# Define symbol list, to get atomic numbers
symbol = [                                              "X",\
  "H",  "HE", "LI", "BE", "B",  "C",  "N",  "O",  "F",  "NE",
  "NA", "MG", "AL", "SI", "P",  "S",  "CL", "AR", "K",  "CA",
  "SC", "TI", "V",  "CR", "MN", "FE", "CO", "NI", "CU", "ZN",
  "GA", "GE", "AS", "SE", "BR", "KR", "RB", "SR", "Y",  "ZR",
  "NB", "MO", "TC", "RU", "RH", "PD", "AG", "CD", "IN", "SN",
  "SB", "TE", "I",  "XE", "CS", "BA", "LA", "CE", "PR", "ND",
  "PM", "SM", "EU", "GD", "TB", "DY", "HO", "ER", "TM", "YB",
  "LU", "HF", "TA", "W",  "RE", "OS", "IR", "PT", "AU", "HG",
  "TL", "PB", "BI", "PO", "AT", "RN", "FR", "RA", "AC", "TH",
  "PA", "U",  "NP", "PU", "AM", "CM", "BK", "CF", "ES", "FM",
  "MD", "NO", "LR", "RF", "DB", "SG", "BH", "HS", "MT", "DS",
  "RG", "CN", "NH", "FL", "MC", "LV", "TS", "OG"
]

# First argument is a grid input file
try:
  grid_input = sys.argv[1]
except IndexError:
  usage()
  sys.exit("** Missing input grid file")

# Second argument is a cube output file
try:
  cube_output = sys.argv[2]
except IndexError:
  usage()
  sys.exit("** Missing output cube file")

#===============================================================================
# THE FOLLOWING IS A MINIMIZED VERSION OF FortranFile
#    ( http://scipy-cookbook.readthedocs.io/items/FortranIO_FortranFile.html )
#
# Copyright 2008, 2009 Neil Martinsen-Burrell
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

import struct, numpy

class FortranFile(file):

  def _get_header_length(self):
    return struct.calcsize(self._header_prec)

  _header_length = property(fget=_get_header_length)

  def _set_header_prec(self, prec):
    if prec in 'hilq':
      self._header_prec = prec
    else:
      raise ValueError('Cannot set header precision')

  def _get_header_prec(self):
    return self._header_prec

  HEADER_PREC = property(fset=_set_header_prec,
                         fget=_get_header_prec,
                         doc="Possible header precisions are 'h', 'i', 'l', 'q'"
                        )

  def __init__(self, fname, endian='@', header_prec='i', *args, **kwargs):
    file.__init__(self, fname, *args, **kwargs)
    self.ENDIAN = endian
    self.HEADER_PREC = header_prec

  def _read_exactly(self, num_bytes):
    data = ''
    while True:
      l = len(data)
      if l == num_bytes:
        return data
      else:
        read_data = self.read(num_bytes - l)
      if read_data == '':
        raise IOError('Could not read enough data.'
                      '  Wanted %d bytes, got %d.' % (num_bytes, l))
      data += read_data

  def _read_check(self):
    return struct.unpack(self.ENDIAN+self.HEADER_PREC,
                         self._read_exactly(self._header_length)
                        )[0]

  def readRecord(self):
    l = self._read_check()
    data_str = self._read_exactly(l)
    check_size = self._read_check()
    if check_size != l:
      raise IOError('Error reading record from data file')
    return data_str

  _real_precisions = 'df'

  def readReals(self, prec='f'):
    _numpy_precisions = {'d': numpy.float64,
                         'f': numpy.float32
                        }
    if prec not in self._real_precisions:
      raise ValueError('Not an appropriate precision')
    data_str = self.readRecord()
    num = len(data_str)/struct.calcsize(prec)
    numbers =struct.unpack(self.ENDIAN+str(num)+prec,data_str)
    return numpy.array(numbers, dtype=_numpy_precisions[prec])

# HERE ENDS THE FortranFile PART
#===============================================================================

#===============================================================================
# READ INPUT FILE
#===============================================================================

# Detect LUSCUS, ASCII or binary file
binary = False
luscus = False
file_grid = open(grid_input, "rb")
tell = file_grid.readline()[0]
if (tell != "0"):
  if (tell == " "):
    file_grid.seek(0)
    luscus = True
  else:
    file_grid.close()
    file_grid = FortranFile(grid_input)
    binary = True

grid = []
if (luscus):
  # Hard-coded conversion factor
  angstrom = 0.52917721067
  # Number of atoms, the geometry follows
  line = file_grid.readline()
  natoms = int(line)
  line = file_grid.readline()
  atom = []
  for i in range(natoms):
    tmp = file_grid.readline().split()
    atom.append( { "name": tmp[0], "x": float(tmp[1])/angstrom, "y": float(tmp[2])/angstrom, "z": float(tmp[3])/angstrom } )
  line = file_grid.readline()
  if (line.strip() != '<GRID>'):
    sys.exit("** Error in Luscus format")
  # Number of data per block (per grid)
  line = file_grid.readline()
  match = re.match("\s*N_of_MO=\s*(\d+)\s*N_of_Grids=\s*(\d+)\s*N_of_Points=\s*(\d+)\s*Block_Size=\s*(\d+)\s*N_Blocks=\s*(\d+)\s*Is_cutoff=\s*(\d+)\s*CutOff=\s*(\d+\.\d+)\s*N_P=\s*(\d+)\s*", line)
  if (not match):
    sys.exit("** Error in Luscus format")
  block_size = int(match.group(4))
  # Number of grids
  n_grid = int(match.group(2))
  # Number of grid divisions per dimension
  line = file_grid.readline()
  line = file_grid.readline()
  match = re.match("\s*Net=(.*)", line)
  if (not match):
    sys.exit("** Error in Luscus format")
  tmp = match.group(1).split()
  npt = map(int, tmp)
  # Number of net points is one less in each dimension
  net = map(lambda x: x-1, npt)
  # Origin of the grid (smallest corner)
  line = file_grid.readline()
  match = re.match("\s*Origin=(.*)", line)
  if (not match):
    sys.exit("** Error in Luscus format")
  tmp = match.group(1).split()
  origin = map(float, tmp)
  # The three edges
  line = file_grid.readline()
  match = re.match("\s*Axis_1=(.*)", line)
  if (not match):
    sys.exit("** Error in Luscus format")
  tmp = match.group(1).split()
  axis_1 = map(float, tmp)
  line = file_grid.readline()
  match = re.match("\s*Axis_2=(.*)", line)
  if (not match):
    sys.exit("** Error in Luscus format")
  tmp = match.group(1).split()
  axis_2 = map(float, tmp)
  line = file_grid.readline()
  match = re.match("\s*Axis_3=(.*)", line)
  if (not match):
    sys.exit("** Error in Luscus format")
  tmp = match.group(1).split()
  axis_3 = map(float, tmp)
  # Name of all grids present in the file
  line = file_grid.readline()
  for i in range(n_grid):
    line = file_grid.readline()
    match = re.match("\s*GridName=(.*)", line)
    if (not match):
      sys.exit("** Error in Luscus format")
    grid.append(match.group(1).strip())
else:
  # Read only the header (until the first "Title=" is found)
  while True:
    # Get next line/record in binary or ASCII mode
    if (binary):
      line = file_grid.readRecord()
    else:
      line = file_grid.readline()

    # Number of atoms, the geometry follows
    match = re.match("Natom=\s*(\d+)", line)
    if (match):
      natoms = int(match.group(1))
      atom = []
      for i in range(natoms):
        if (binary):
          tmp = file_grid.readRecord().split()
        else:
          tmp = file_grid.readline().split()
        atom.append( { "name": tmp[0], "x": float(tmp[1]), "y": float(tmp[2]), "z": float(tmp[3]) } )
    # Number of data per block (per grid)
    match = re.match("Block_Size=(.*)", line)
    if (match):
      block_size = int(match.group(1))
    # Number of grid divisions per dimension
    match = re.match("Net=(.*)", line)
    if (match):
      tmp = match.group(1).split()
      net = map(int, tmp)
      # Number of points is one more in each dimension
      npt = map(lambda x: x+1, net)
    # Origin of the grid (smallest corner)
    match = re.match("Origin=(.*)", line)
    if (match):
      tmp = match.group(1).split()
      origin = map(float, tmp)
    # The three edges
    match = re.match("Axis_1=(.*)", line)
    if (match):
      tmp = match.group(1).split()
      axis_1 = map(float, tmp)
    match = re.match("Axis_2=(.*)", line)
    if (match):
      tmp = match.group(1).split()
      axis_2 = map(float, tmp)
    match = re.match("Axis_3=(.*)", line)
    if (match):
      tmp = match.group(1).split()
      axis_3 = map(float, tmp)
    # Name of all grids present in the file
    match = re.match("GridName=(.*)", line)
    if (match):
      grid.append(match.group(1).strip())
    # The first grid data starts, stop reading header
    match = re.match("Title=(.*)", line)
    if (match):
      break

#---------------------------------------
# Select a grid from the input file
#---------------------------------------

# Print a menu showing the grids found in the file
if (len(grid) == 1):
  ng = 1
if (len(grid) < 1):
  sys.exit("** No grids found in input file")
if (len(grid) > 1):
  print "Grids in input file:"
  for i in range(len(grid)):
    print "{0:3}: {1}".format( i+1, grid[i] )
  # Read the user selection
  try:
    ng = int(raw_input("Which one to convert? "))
  except ValueError:
    sys.exit("** Sorry, I don't understand")
  if (ng < 1 or ng > len(grid)):
    sys.exit("** Sorry, no such grid")

# Total number of grid points to read
np = npt[0]*npt[1]*npt[2]
data = []

if (luscus):
  loc = 0
  while True:
    line = file_grid.readline()
    if (re.match("\s*<DENSITY>", line)):
      loc = file_grid.tell()
      break
  if (loc == 0):
    sys.exit("** Error in Luscus format")
  l = struct.calcsize('d')
  # number of points read
  npr = 0
  # read the points by blocks
  while (npr < np):
    # number of points in the block
    npb = min(np-npr, block_size)
    # skip previous grids
    file_grid.seek((ng-1)*npb*l, 1)
    # read the block for this grid
    data.extend( list(struct.unpack(npb*'d', file_grid.read(npb*l))) )
    npr += npb
    # skip following grids
    file_grid.seek((n_grid-ng)*npb*l, 1)
else:
  # The data for each grid is written across several blocks separated by "Title="
  i = 0
  j = 0
  file_grid.seek(0)
  if (binary):
    line = file_grid.readRecord()
  else:
    line = file_grid.readline()
  while True:
    # When a new block starts, step the grid count by 1
    # (and start again when the last grid is reached)
    match = re.match("Title=(.*)", line)
    if (match):
      i = (i % len(grid))+1
    # Only read the data if this is the grid we want
    if (i == ng):
      if (binary):
        # Assume we are reading double precision
        line = file_grid.readReals(prec='d')
        data.extend(line)
        j += len(line)
      else:
        # Each block is at most of block_size length (the last one is shorter)
        for k in range(min(np-j, block_size)):
          data.append( float(file_grid.readline().split()[0]) )
        j += k+1
    if (j >= np): break
    if (binary):
      line = file_grid.readRecord()
    else:
      line = file_grid.readline()

file_grid.close()

#===============================================================================
# WRITE OUTPUT FILE
#===============================================================================

# Set the delta values in each dimension
dx = map( lambda x: x/float(net[0]), axis_1 )
dy = map( lambda x: x/float(net[1]), axis_2 )
dz = map( lambda x: x/float(net[2]), axis_3 )
# Assign an atomic number for each atom
# (from symbol, which is assumed to be the first 1 or 2 letters)
for i in atom:
  match = re.match("([A-Za-z]{1,2})", i["name"])
  i["number"] = symbol.index(match.group(1).upper())

file_cube = open(cube_output, "w")

# Write the header
file_cube.write("File converted from MOLCAS grid format\n")
file_cube.write("Title = {0}\n".format( grid[ng-1] ))
# Grid properties
file_cube.write("{0:5}{1:12.6f}{2:12.6f}{3:12.6f}\n".format( natoms, *origin ))
file_cube.write("{0:5}{1:12.6f}{2:12.6f}{3:12.6f}\n".format( npt[0], *dx ))
file_cube.write("{0:5}{1:12.6f}{2:12.6f}{3:12.6f}\n".format( npt[1], *dy ))
file_cube.write("{0:5}{1:12.6f}{2:12.6f}{3:12.6f}\n".format( npt[2], *dz ))
# Molecular geometry
for i in atom:
  file_cube.write("{0:5}{1:12.6f}{2:12.6f}{3:12.6f}{4:12.6f}\n".format( i["number"], 0.0, i["x"], i["y"], i["z"] ))

# Write the grid data, nd values in each line, new line every npt[2] elements
k = 0
nd = 6 # default 6
for i in range(npt[0]):
  for j in range(npt[1]):
    # kk is the final element of this block (i,j pair)
    kk = k+npt[2]
    # end is the final relative element of this (previous) line
    end = 0
    while (k+end < kk):
      # next element to print is k+end
      k += end
      # final element of this line is either kk or k+nd
      end = min(kk-k, nd)
      # write elements from k to k+end
      file_cube.write("".join([ "{0:13.5E}".format(num) for num in data[k:k+end] ] )+"\n")
    # update for the final line of the block
    k += end

file_cube.close()