File: mort.py

package info (click to toggle)
openmolcas 22.10-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 169,324 kB
  • sloc: fortran: 390,463; f90: 294,374; python: 11,760; ansic: 5,723; sh: 740; pascal: 460; perl: 325; javascript: 284; makefile: 17
file content (716 lines) | stat: -rw-r--r-- 24,178 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
#***********************************************************************
# This file is part of OpenMolcas.                                     *
#                                                                      *
# OpenMolcas is free software; you can redistribute it and/or modify   *
# it under the terms of the GNU Lesser General Public License, v. 2.1. *
# OpenMolcas is distributed in the hope that it will be useful, but it *
# is provided "as is" and without any express or implied warranties.   *
# For more details see the full text of the license in the file        *
# LICENSE or in <http://www.gnu.org/licenses/>.                        *
#                                                                      *
# Copyright (C) 2021, Ignacio Fdez. Galván                             *
#***********************************************************************

import sys
import re
import argparse
import numpy as np
import h5py

version = '1.0'

################################################################################
# FUNCTIONS
################################################################################

# Copy dataset name_in of file_in into dataset name_out of file_out,
# but attributes (description) are taken from name_out.
# If size is specified, no data is copied and a dataset is created with the new size
def copy_dataset(file_in, file_out, name_in, name_out=None, size=None):
  if name_out is None:
    name_out = name_in
  no_attrs = name_in != name_out
  if size is None:
    file_in.copy(file_in[name_in], file_out, name_out, without_attrs=no_attrs)
  else:
    file_out.create_dataset(name_out, size, dtype=file_in[name_out].dtype)
  if no_attrs:
    for attr in file_in[name_out].attrs.keys():
      file_out[name_out].attrs.create(attr, file_in[name_out].attrs[attr])

# Rearrange a symmetry-blocked array into a square array
def sblock_to_square(data, nbas, triangular=False):
  if len(nbas) == 1:
    if triangular:
      mtrx = np.zeros((nbas[0], nbas[0]))
      ii, jj = np.tril_indices(nbas[0])
      mtrx[ii,jj] = data
      mtrx[jj,ii] = data
    else:
      mtrx = np.reshape(data, (nbas[0], nbas[0]))
  else:
    nb = int(np.sum(nbas))
    mtrx = np.zeros((nb, nb))
    j = 0
    for i,n in enumerate(nbas):
      ni = int(np.sum(nbas[:i]))
      if triangular:
        tmp = np.zeros((n, n))
        ii, jj = np.tril_indices(n)
        tmp[ii,jj] = data[j:j+n*(n+1)//2]
        tmp[jj,ii] = data[j:j+n*(n+1)//2]
        mtrx[np.ix_(range(ni,ni+n), range(ni,ni+n))] = tmp[:,:]
        j += n*(n+1)//2
      else:
        mtrx[np.ix_(range(ni,ni+n), range(ni,ni+n))] = np.reshape(data[j:j+n**2], (n, n))
        j += n**2
  return mtrx

# Normalize a rotation matrix,
# i.e., find the closest unitary matrix
def normalize_rot(A, test=True):
  U, s, Vh = np.linalg.svd(A)
  if test:
    if not np.allclose(s, 1.0, atol=1e-3):
      sys.exit('Not a unitary rotation')
  return U @ Vh

# Returns unique permutations (permutations with repeated elements).
# From https://stackoverflow.com/questions/6284396/permutations-with-unique-values
def permute_unique(nums):
  perms = [[]]
  for n in nums:
    new_perm = []
    for perm in perms:
      for i in range(len(perm) + 1):
        new_perm.append(perm[:i]+[n]+perm[i:])
        # handle duplication
        if i < len(perm) and perm[i] == n:
          break
    perms = new_perm
  return perms

# Returns a list of Cartesian factors (0=x, 1=y, 2=z), given l and m
# (note that m goes from -l to +l and beyond)
def factors(l, m):
  ly = int(np.floor((np.sqrt(8*(m+l)+1)-1)/2))
  lz = m+l-ly*(ly+1)//2
  lx = l-ly
  ly -= lz
  f = []
  for i in range(lx):
    f.append(0)
  for i in range(ly):
    f.append(1)
  for i in range(lz):
    f.append(2)
  return f

# Compute the rotation matrix for the functions in a Cartesian shell
# of angular momentum l, given the real-space rotation matrix R.
# (The cases l=0,1 are trivial, but we don't treat them separately)
def cartesian_shell_rotation(l, R):
  assert l >= 0
  num = (l+1)*(l+2)//2
  Rot = np.zeros((num, num))
  # Pre-compute the Cartesian factors for each m
  f = []
  for m in range(-l, num-l):
    f.append(factors(l, m))
  for m1 in range(num):
    perms = permute_unique(f[m1])
    for m2 in range(num):
      # Each element [m2,m1] is of the form sum(prod(R[i,j])),
      # where the sum extends over all distinct permutations of the m1 factors
      # and the prod is over the factors of m1 & m2
      for p in perms:
        K = 1.0
        for i,j in zip(p, f[m2]):
          K *= R[i,j]
        Rot[m2,m1] += K
  return Rot

# Compute the rotation matrix for the functions in a spherical harmonics shell
# of angular momentum l, given the real-space rotation matrix R (implicit).
# Uses the recursive algorithm of Ivanic and Ruedenberg (doi:10.1021/jp953350u, doi:10.1021/jp9833350),
# which is valid for l > 1.
# Note that this builds the inverse/transpose, so indexing may look reversed.
def spherical_shell_rotation(l):
  assert l > 1
  def rP(i,mu,m2):
    if abs(mu) > l-1:
      return 0
    # Instead of referring to the original rotation matrix R, we use RotM[1],
    # which is already reordered according to m (but indices are 0,1,2, not -1,0,1).
    # NB: The first two cases are wrong in the original (m' -> l-1)
    elif m2 == l:
      return RotM[1][2,i+1]*RotM[l-1][2*l-2,l-1+mu]-RotM[1][0,i+1]*RotM[l-1][0,l-1+mu]
    elif m2 == -l:
      return RotM[1][2,i+1]*RotM[l-1][0,l-1+mu]+RotM[1][0,i+1]*RotM[l-1][2*l-2,l-1+mu]
    else:
      return RotM[1][1,i+1]*RotM[l-1][l-1+m2,l-1+mu]
  num = 2*l+1
  Rot = np.zeros((num, num))
  for m2 in range(-l, l+1):
    if abs(m2) == l:
      den = 2*l*(2*l-1)
    else:
      den = (l+m2)*(l-m2)
    for m1 in range(-l, l+1):
      u = np.sqrt((l+m1)*(l-m1)/den)
      rU = rP(0,m1,m2)
      if m1 == 0:
        v = -0.5*np.sqrt(2*(l-1)*l/den)
        rV = rP(1,1,m2)+rP(-1,-1,m2)
        w = 0
        rW = 0
      else:
        s = 1 if m1 > 0 else -1
        absm = abs(m1)
        v = 0.5*np.sqrt((l+absm-1)*(l+absm)/den)
        # NB: The case m < 0 is wrong in the correction (sqrt(1-delta) -> sqrt(1+delta))
        if absm == 1:
          rV = np.sqrt(2)*rP(s,absm-1,m2)
        else:
          rV = rP(1,m1-s,m2)-s*rP(-1,-m1+s,m2)
        w = -0.5*np.sqrt((l-absm-1)*(l-absm)/den)
        rW = rP(1,m1+s,m2)+s*rP(-1,-m1-s,m2)
      Rot[l+m2,l+m1] = u*rU+v*rV+w*rW
  return Rot

################################################################################

# Command-line arguments
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=24,width=120))
parser.version = f'MORT: molecular orbital rotation and translation (version {version})'
parser.add_argument('-v', '--version', help='print version number', action='version')
parser.add_argument('-r', '--rotate', help='rotation matrix to apply (9 real values)', type=float, nargs=9, metavar=('Rxx','Rxy','Rxz','Ryx','Ryy','Ryz','Rzx','Rzy','Rzz'))
parser.add_argument('-t', '--translate', help='translation vector to apply after rotation (3 real values, in bohr)', type=float, nargs=3, metavar=('Tx','Ty','Tz'))
parser.add_argument('-x', '--exchange', help='reorder atoms (comma-separated list of integers giving order in the output file)', metavar='n1,n2,...')
parser.add_argument('-d', '--desymmetrize', help='desymmetrize data', action='store_true')
parser.add_argument('-a', '--all', help='copy all unhandled datasets and attributes to output file (some items may be wrong!)', action='store_true')
parser.add_argument('infile', help='input file (HDF5 format)', metavar='input_file')
parser.add_argument('outfile', help='output file (HDF5 format, will be overwritten)', metavar='output_file')
if len(sys.argv) < 2 and sys.stdin.isatty():
  parser.print_help(sys.stderr)
  sys.exit(1)
else:
  args = vars(parser.parse_args())

# Read input file

with h5py.File(args['infile'], 'r') as f:
  nsym = f.attrs['NSYM']
  if nsym != 1:
    if not args['desymmetrize']:
      sys.exit('Error: Symmetry is only supported with --desymmetrize')
  try:
    if nsym == 1:
      b_id_ref = f['BASIS_FUNCTION_IDS'][:]
    else:
      b_id_ref = f['DESYM_BASIS_FUNCTION_IDS'][:]
    nb = len(b_id_ref)
  except KeyError:
    sys.exit('Error: Input file does not have basis set information')
  try:
    if nsym == 1:
      nat = f.attrs['NATOMS_UNIQUE']
    else:
      nat = f.attrs['NATOMS_ALL']
  except KeyError:
    sys.exit('Error: Input file does not have number of atoms')

# Compute transformation matrices

if args['rotate']:
  do_rot = True
  R = np.reshape(args['rotate'], (3,3))
  # Normalize to clean up numerical errors
  R = normalize_rot(R)

  # Maximum l in spherical shells
  # (Cartesian shells have negative l and don't need recursion)
  max_l = np.max(b_id_ref[:,2])

  # Group the basis functions by shells
  # (same center, l, and radial part)
  l_idx = {}
  b_num = []
  for i,b in enumerate(b_id_ref):
    l = b[2] 
    for j,bb in enumerate(b_id_ref[:i,:]):
      if tuple(b[0:3]) == tuple(bb[0:3]):
        num = b_num[j] 
        l_idx[l][num].append(i)
        b_num.append(num)
        break
    else:
      if l in l_idx:
        l_idx[l].append([i])
      else:
        l_idx[l] = [[i]]
      b_num.append(len(l_idx[l])-1)
    
  # Make sure each shell is ordered by m
  for l in l_idx:
    for i,shell in enumerate(l_idx[l]):
      l_idx[l][i] = sorted(shell, key=lambda x: b_id_ref[x,3])

  # Compute the rotation matrices for the different shells
  RotM = {}
  # First the Cartesian shells
  for l in l_idx.keys():
    # s and p shells (l=0,1) are always considered Cartesian
    if l < 2:
      RotM[l] = cartesian_shell_rotation(abs(l), R)
  # Reorder the p rotation to match the m ordering (1=x, -1=y, 0=z)
  RotM[1] = RotM[1][np.ix_([1,2,0],[1,2,0])]
  # Then the spherical harmonics shells
  for l in range(2,max_l+1):
    RotM[l] = spherical_shell_rotation(l)
  
  # Build the big (all functions), sparse transformation matrix and its inverse,
  # which is needed because the Cartesian rotations are not unitary
  U = np.zeros((nb, nb))
  V = np.zeros((nb, nb))
  for l in l_idx:
    for shell in l_idx[l]:
      U[np.ix_(shell,shell)] = RotM[l]
      if l < 0:
        V[np.ix_(shell,shell)] = np.linalg.inv(RotM[l])
      else:
        V[np.ix_(shell,shell)] = RotM[l].T
else:
  do_rot = False
  RotM = {}
  R = np.eye(3)
  U = np.eye(nb)
  V = np.eye(nb)

if args['translate']:
  do_trans = True
  T = np.array(args['translate'])
else:
  do_trans = False
  T = np.zeros(3)

if args['exchange']:
  do_exch = True
  # List that specifies how the centers are reordered, its inverse, and the corresponding matrix
  reindex = [int(i)-1 for i in args['exchange'].split(',')]
  assert len(reindex) == nat, 'Error: length of --exchange list does not match number of atoms'
  reindex_inv = []
  for i in range(len(reindex)):
    reindex_inv.append(reindex.index(i))
  reorder = np.eye(nat)[reindex]
else:
  do_exch = False
  reindex = list(range(nat))
  reindex_inv = reindex
  reorder = np.eye(nat)

if args['desymmetrize']:
  do_desym = nsym != 1
else:
  do_desym = False

if do_desym or do_exch:
  # List that specifies how basis functions are reordered and its matrix
  bf_reindex = []
  # Create an auxiliary array to use lexsort on:
  aux_bfid = b_id_ref.copy()
  for b in aux_bfid:
    if do_exch:
      b[0] = reindex_inv[b[0]-1]+1
    b[2] = abs(b[2])
    # p shells are ordered x,y,z
    if b[2] == 1:
      if b[3] == 1:
        b[3] = -1
      elif b[3] == -1:
        b[3] = 0
      elif b[3] == 0:
        b[3] = 1
  bf_reindex = np.lexsort((aux_bfid[:,1], aux_bfid[:,3], aux_bfid[:,2], aux_bfid[:,0]))
  bf_reorder = np.eye(nb)[bf_reindex]
  # U and V are easily reordered
  # (this affects the matrices even if there was no rotation, so enforce rotation)
  do_rot = True
  U = U @ bf_reorder.T
  V = bf_reorder @ V

do_smth = do_rot or do_trans or do_exch or do_desym

# Process the input data and write the output file

# Known attributes and datasets that are generally safe to copy (need no transformation)
safe_to_copy = [
  # attributes
  'A2LEV',
  'CI_TYPE',
  'L2ACT',
  'MOLCAS_MODULE',
  'MOLCAS_VERSION',
  'NACTEL',
  'NCONF',
  'NELEC3',
  'NHOLE1',
  'NPRIM',
  'NROOTS',
  'NSTATE',
  'NSTATES',
  'ORBITAL_TYPE',
  'POTNUC',
  'RASSCF_ITERATIONS',
  'ROOT2STATE',
  'SPINMULT',
  'STATE_SPINMULT',
  # datasets
  'CI_VECTORS',
  'ENERGY',
  'H_EFF',
  'ORIGINAL_OVERLAPS',
  'ROOT_ENERGIES',
  'SFS_COEFFICIENTS',
  'SFS_ENERGIES',
  'STATE_WEIGHT',
  'STATE_PT2_ENERGIES',
  'STATE_REFWF_ENERGIES',
  'STATE_ROOTID',
]

# Attributes and datasets that cannot be transformed with desymmetrization 
# (e.g. state order is not known)
not_with_desym = [
  # attributes
  'NCONF',
  # datasets
  'CI_VECTORS',
  'STATE_ROOTID',
]

warning_item = []
warning_renum = False
with h5py.File(args['infile'], 'r') as fi, h5py.File(args['outfile'], 'w') as fo:

  fo.attrs.create('MORT_version', np.array(f'MORT v{version}', dtype='S'))

  module = fi.attrs['MOLCAS_MODULE'].decode()

  # Pick up the data needed for desymmetrization, which includes reordering MOs
  if do_desym:
    desym = np.reshape(fi['DESYM_MATRIX'], (nb, nb))
    nbas = fi.attrs['NBAS']
    mo_reindex = np.lexsort((fi['MO_ENERGIES'], -fi['MO_OCCUPATIONS'][:]))
    try:
      # In case of UHF
      mo_alpha_reindex = np.lexsort((fi['MO_ALPHA_ENERGIES'], -fi['MO_ALPHA_OCCUPATIONS'][:]))
      mo_beta_reindex = np.lexsort((fi['MO_BETA_ENERGIES'], -fi['MO_BETA_OCCUPATIONS'][:]))
    except KeyError:
      pass
    try:
      # In case of [CR]ASSCF, some data is on active orbitals only
      tpidx = fi['MO_TYPEINDICES'][:]
    except KeyError:
      pass
    else:
      actidx = np.isin(tpidx, [b'1', b'2', b'3']).nonzero()[0]
      nact = actidx.shape[0]
      act_reindex = np.empty(nact)
      for i in range(nact):
        act_reindex[i] = np.where(mo_reindex == actidx[i])[0][0]
      act_reindex = np.argsort(act_reindex)
      act_reorder = np.eye(nact)[act_reindex]
      # In CASPT2 density matrices are stored for all (non-frozen, non-deleted) orbitals
      if module == 'CASPT2':
        pt2idx = np.logical_not(np.isin(tpidx, [b'F', b'D'])).nonzero()[0]
        bins = [0]
        for i in nbas:
          bins.append(bins[-1]+i)
        pt2nbas = np.histogram(pt2idx, bins=bins)[0]
        # TODO: reindex/reorder MOs for CASPT2 (even if nothing happens by default)
    V = V @ desym.T
  else:
    nbas = [nb]

  for name in fi.attrs:

    if name in safe_to_copy:
      if do_desym and name in not_with_desym:
        continue
      fo.attrs[name] = fi.attrs[name]

    elif name == 'LSYM':
      if do_desym:
        fo.attrs[name] = 1
      else:
        fo.attrs[name] = fi.attrs[name]

    elif name == 'NSYM':
      if do_desym:
        fo.attrs[name] = 1
      else:
        fo.attrs[name] = fi.attrs[name]

    elif name == 'IRREP_LABELS':
      if do_desym:
        fo.attrs[name] = np.array(['a  '], dtype='S')
      else:
        fo.attrs[name] = fi.attrs[name]

    elif name == 'STATE_IRREPS':
      fo.attrs[name] = fi.attrs[name]
      if do_desym:
        fo.attrs[name][:] = 1

    elif name == 'NBAS':
      if do_desym:
        fo.attrs[name] = [np.sum(fi.attrs[name])]
      else:
        fo.attrs[name] = fi.attrs[name]

    elif name in ['NATOMS_UNIQUE', 'NATOMS_ALL']:
      if do_desym:
        name2 = 'NATOMS_UNIQUE'
        if name == name2:
          continue
        fo.attrs[name2] = fi.attrs[name]
      else:
        fo.attrs[name] = fi.attrs[name]

    elif args['all']:
      fo.attrs[name] = fi.attrs[name]
      warning_item.append(name)

  for name in fi:

    if name in safe_to_copy:
      if do_desym and name in not_with_desym:
        continue
      copy_dataset(fi, fo, name)

    elif name in ['DESYM_MATRIX']:
      continue

    # Coordinates are transformed with the input rotation
    elif name in ['CENTER_COORDINATES', 'DESYM_CENTER_COORDINATES']:
      name2 = name
      if name.startswith('DESYM_'):
        name2 = name[6:]
      elif do_desym:
        continue
      copy_dataset(fi, fo, name, name2)
      if do_rot or do_trans or do_exch:
        coor = fi[name]
        fo[name2][:] = reorder @ (coor @ R.T + T)

    # Multipole centers too, but they are not reordered
    elif name == 'MLTPL_ORIG':
      copy_dataset(fi, fo, name)
      if do_rot or do_trans:
        coor = fi[name]
        fo[name][:] = coor @ R.T + T

    # Other center data are reordered only
    elif name in ['CENTER_ATNUMS', 'CENTER_CHARGES', 'DESYM_CENTER_ATNUMS', 'DESYM_CENTER_CHARGES']:
      name2 = name
      if name.startswith('DESYM_'):
        name2 = name[6:]
      elif do_desym:
        continue
      copy_dataset(fi, fo, name, name2)
      if do_exch:
        data = fi[name]
        fo[name2][:] = data[:][reindex]

    # Special care with strings (can't just copy dataset because lengths may be different)
    elif name in ['CENTER_LABELS', 'DESYM_CENTER_LABELS']:
      name2 = name
      if name.startswith('DESYM_'):
        name2 = name[6:]
      elif do_desym:
        continue
      copy_dataset(fi, fo, name, name2, size=(nat,))
      if do_exch or do_desym:
        data = fi[name][:]
        # Find out if labels need renumbering
        any_num = False
        do_renum = True
        for i,lab in enumerate(fi[name2]):
          match = re.match(r'[A-Za-z]{1,2}(\d+)\s*', lab.decode())
          # Need renumbering if all labels have a number and all match the index
          if match:
            any_num = True
            if int(match.group(1)) != i+1:
              do_renum = False
          else:
            do_renum = False
        if do_renum:
          for i,lab in enumerate(data[reindex]):
            data[reindex[i]] = re.sub(r'^([A-Za-z]{1,2})(\d+).{4}', r'\g<1>'+f'{i+1}    ', lab.decode())
        elif any_num:
          warning_renum = True
        fo[name2][:] = data[reindex]
      else:
        fo[name2][:] = fi[name][:]

    # Basis info must be reordered and reindexed
    elif name in ['BASIS_FUNCTION_IDS', 'DESYM_BASIS_FUNCTION_IDS']:
      name2 = name
      if name.startswith('DESYM_'):
        name2 = name[6:]
      elif do_desym:
        continue
      copy_dataset(fi, fo, name, name2)
      if do_exch or do_desym:
        bfid = fi[name][:][bf_reindex]
        for b in bfid:
          b[0] = reindex_inv[b[0]-1]+1
        fo[name2][:] = bfid

    # Primitive info is similar to basis, but it was not read before
    elif name in ['PRIMITIVES', 'PRIMITIVE_IDS']:
      # Just to make sure these are processed in the right order
      if name == 'PRIMITIVES':
        continue
      copy_dataset(fi, fo, name)
      name = 'PRIMITIVES'
      copy_dataset(fi, fo, name)
      if do_exch:
        name = 'PRIMITIVE_IDS'
        prid = fi[name][:]
        pr_reindex = []
        for i in reindex:
          pr_reindex.extend([j for j,p in enumerate(prid) if p[0] == i+1])
        for p in prid:
          p[0] = reindex_inv[p[0]-1]+1
        fo[name][:] = prid[pr_reindex]
        name = 'PRIMITIVES'
        prim = fi[name][:][pr_reindex]
        fo[name][:] = prim

    # MO coefficients are transformed with the U matrix
    elif name == 'MO_VECTORS':
      copy_dataset(fi, fo, name, size=(nb**2,))
      if do_rot or do_desym:
        mo = sblock_to_square(fi[name], nbas)
        if do_desym:
          mo = (mo @ desym)[mo_reindex]
        fo[name][:] = (mo @ U).flatten()
    elif name == 'MO_ALPHA_VECTORS':
      copy_dataset(fi, fo, name, size=(nb**2,))
      if do_rot or do_desym:
        mo = sblock_to_square(fi[name], nbas)
        if do_desym:
          mo = (mo @ desym)[mo_alpha_reindex]
        fo[name][:] = (mo @ U).flatten()
    elif name == 'MO_BETA_VECTORS':
      copy_dataset(fi, fo, name, size=(nb**2,))
      if do_rot or do_desym:
        mo = sblock_to_square(fi[name], nbas)
        if do_desym:
          mo = (mo @ desym)[mo_beta_reindex]
        fo[name][:] = (mo @ U).flatten()

    # Other MO data are just reordered if desymmetrized
    elif name in ['MO_ENERGIES', 'MO_OCCUPATIONS', 'MO_TYPEINDICES', 'SUPSYM_IRREP_INDICES']:
      copy_dataset(fi, fo, name)
      if do_desym:
        data = fi[name]
        fo[name][:] = data[:][mo_reindex]
    elif name in ['MO_ALPHA_ENERGIES', 'MO_ALPHA_OCCUPATIONS', 'MO_ALPHA_TYPEINDICES']:
      copy_dataset(fi, fo, name)
      if do_desym:
        data = fi[name]
        fo[name][:] = data[:][mo_alpha_reindex]
    elif name in ['MO_BETA_ENERGIES', 'MO_BETA_OCCUPATIONS', 'MO_BETA_TYPEINDICES']:
      copy_dataset(fi, fo, name)
      if do_desym:
        data = fi[name]
        fo[name][:] = data[:][mo_beta_reindex]

    # AO matrices are transformed with the V matrix
    elif name in ['AO_OVERLAP_MATRIX', 'AO_FOCKINT_MATRIX']:
      copy_dataset(fi, fo, name, size=(nb**2,))
      if do_rot or do_desym:
        mtrx = sblock_to_square(fi[name], nbas)
        fo[name][:] = (V @ mtrx @ V.T).flatten()

    # Multipole AO matrices are further transformed among their components
    elif name in ['AO_MLTPL_X', 'AO_MLTPL_Y', 'AO_MLTPL_Z']:
      comp = ['X', 'Y', 'Z']
      # Do all work only when the first component is found
      if name.endswith(('_'+comp[1], '_'+comp[2])):
        continue
      ao_mltpl1 = np.empty((len(comp), nb, nb))
      for i,lab in enumerate(comp):
        name = 'AO_MLTPL_'+lab
        copy_dataset(fi, fo, name)
        ao_mltpl1[i,:,:] = fi[name]
      if do_rot:
        # Transform each component
        for i in range(len(comp)):
          ao_mltpl1[i,:,:] = V @ ao_mltpl1[i,:,:] @ V.T 
        # Combine components
        ao_mltpl1 = np.tensordot(R, ao_mltpl1, axes=1)
        for i,lab in enumerate(comp):
          name = 'AO_MLTPL_'+lab
          fo[name][:] = ao_mltpl1[i,:,:]
    elif name in ['AO_MLTPL_XX', 'AO_MLTPL_XY', 'AO_MLTPL_XZ', 'AO_MLTPL_YY', 'AO_MLTPL_YZ', 'AO_MLTPL_ZZ']:
      comp = ['XX', 'XY', 'XZ', 'YY', 'YZ', 'ZZ']
      # Do all work only when the first component is found
      if name.endswith(('_'+comp[1], '_'+comp[2], '_'+comp[3], '_'+comp[4], '_'+comp[5])):
        continue
      ao_mltpl2 = np.empty((len(comp), nb, nb))
      for i,lab in enumerate(comp):
        name = 'AO_MLTPL_'+lab
        copy_dataset(fi, fo, name)
        ao_mltpl2[i,:,:] = fi[name]
      if do_rot:
        # Transform each component
        for i in range(len(comp)):
          ao_mltpl2[i,:,:] = V @ ao_mltpl2[i,:,:] @ V.T 
        # Quadrupoles transform like a Cartesian d shell (the inverse)
        if -2 in RotM:
          QRot = np.linalg.inv(RotM[-2])
        else:
          QRot = np.linalg.inv(cartesian_shell_rotation(2, R))
        # Combine components
        ao_mltpl2 = np.tensordot(QRot, ao_mltpl2, axes=1)
        for i,lab in enumerate(comp):
          name = 'AO_MLTPL_'+lab
          fo[name][:] = ao_mltpl2[i,:,:]

    # Density matrices may need to be reordered if desymmetrizing
    elif name in ['DENSITY_MATRIX', 'SPINDENSITY_MATRIX', 'TRANSITION_DENSITY_MATRIX', 'TRANSITION_SPIN_DENSITY_MATRIX']:
      copy_dataset(fi, fo, name)
      if  do_desym:
        if module == 'CASPT2':
          # In CASPT2, DM is in triangular storage
          dmsize = list(fo[name].shape)
          del fo[name]
          n = int(np.sum(pt2nbas))
          dmsize[1] = n*(n+1)//2
          copy_dataset(fi, fo, name, size=dmsize)
          for i in range(dmsize[0]):
            dm = sblock_to_square(fi[name][i,:], pt2nbas, triangular=True)
            fo[name][i,:] = dm[np.tril_indices(n)]
        else:
          dm = fi[name][:]
          for i in range(dm.shape[0]):
            dm[i,:,:] = act_reorder @ dm[i,:,:] @ act_reorder.T
            fo[name][:] = dm

    elif args['all']:
      copy_dataset(fi, fo, name)
      warning_item.append(name)

# In case something unsafe was done
if warning_item and do_smth:
  print('WARNING: The following attributes and/or datasets are not recognized, and were copied verbatim.')
  print('         If they would need transformation, they are probably WRONG!')
  print()
  for name in warning_item:
    print(name)
if warning_renum:
  print('WARNING: Atoms were reordered, but labels are not renumbered')