1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
|
#***********************************************************************
# This file is part of OpenMolcas. *
# *
# OpenMolcas is free software; you can redistribute it and/or modify *
# it under the terms of the GNU Lesser General Public License, v. 2.1. *
# OpenMolcas is distributed in the hope that it will be useful, but it *
# is provided "as is" and without any express or implied warranties. *
# For more details see the full text of the license in the file *
# LICENSE or in <http://www.gnu.org/licenses/>. *
# *
# Copyright (C) 2021, Ignacio Fdez. Galván *
#***********************************************************************
import sys
import re
import argparse
import numpy as np
import h5py
version = '1.0'
################################################################################
# FUNCTIONS
################################################################################
# Copy dataset name_in of file_in into dataset name_out of file_out,
# but attributes (description) are taken from name_out.
# If size is specified, no data is copied and a dataset is created with the new size
def copy_dataset(file_in, file_out, name_in, name_out=None, size=None):
if name_out is None:
name_out = name_in
no_attrs = name_in != name_out
if size is None:
file_in.copy(file_in[name_in], file_out, name_out, without_attrs=no_attrs)
else:
file_out.create_dataset(name_out, size, dtype=file_in[name_out].dtype)
if no_attrs:
for attr in file_in[name_out].attrs.keys():
file_out[name_out].attrs.create(attr, file_in[name_out].attrs[attr])
# Rearrange a symmetry-blocked array into a square array
def sblock_to_square(data, nbas, triangular=False):
if len(nbas) == 1:
if triangular:
mtrx = np.zeros((nbas[0], nbas[0]))
ii, jj = np.tril_indices(nbas[0])
mtrx[ii,jj] = data
mtrx[jj,ii] = data
else:
mtrx = np.reshape(data, (nbas[0], nbas[0]))
else:
nb = int(np.sum(nbas))
mtrx = np.zeros((nb, nb))
j = 0
for i,n in enumerate(nbas):
ni = int(np.sum(nbas[:i]))
if triangular:
tmp = np.zeros((n, n))
ii, jj = np.tril_indices(n)
tmp[ii,jj] = data[j:j+n*(n+1)//2]
tmp[jj,ii] = data[j:j+n*(n+1)//2]
mtrx[np.ix_(range(ni,ni+n), range(ni,ni+n))] = tmp[:,:]
j += n*(n+1)//2
else:
mtrx[np.ix_(range(ni,ni+n), range(ni,ni+n))] = np.reshape(data[j:j+n**2], (n, n))
j += n**2
return mtrx
# Normalize a rotation matrix,
# i.e., find the closest unitary matrix
def normalize_rot(A, test=True):
U, s, Vh = np.linalg.svd(A)
if test:
if not np.allclose(s, 1.0, atol=1e-3):
sys.exit('Not a unitary rotation')
return U @ Vh
# Returns unique permutations (permutations with repeated elements).
# From https://stackoverflow.com/questions/6284396/permutations-with-unique-values
def permute_unique(nums):
perms = [[]]
for n in nums:
new_perm = []
for perm in perms:
for i in range(len(perm) + 1):
new_perm.append(perm[:i]+[n]+perm[i:])
# handle duplication
if i < len(perm) and perm[i] == n:
break
perms = new_perm
return perms
# Returns a list of Cartesian factors (0=x, 1=y, 2=z), given l and m
# (note that m goes from -l to +l and beyond)
def factors(l, m):
ly = int(np.floor((np.sqrt(8*(m+l)+1)-1)/2))
lz = m+l-ly*(ly+1)//2
lx = l-ly
ly -= lz
f = []
for i in range(lx):
f.append(0)
for i in range(ly):
f.append(1)
for i in range(lz):
f.append(2)
return f
# Compute the rotation matrix for the functions in a Cartesian shell
# of angular momentum l, given the real-space rotation matrix R.
# (The cases l=0,1 are trivial, but we don't treat them separately)
def cartesian_shell_rotation(l, R):
assert l >= 0
num = (l+1)*(l+2)//2
Rot = np.zeros((num, num))
# Pre-compute the Cartesian factors for each m
f = []
for m in range(-l, num-l):
f.append(factors(l, m))
for m1 in range(num):
perms = permute_unique(f[m1])
for m2 in range(num):
# Each element [m2,m1] is of the form sum(prod(R[i,j])),
# where the sum extends over all distinct permutations of the m1 factors
# and the prod is over the factors of m1 & m2
for p in perms:
K = 1.0
for i,j in zip(p, f[m2]):
K *= R[i,j]
Rot[m2,m1] += K
return Rot
# Compute the rotation matrix for the functions in a spherical harmonics shell
# of angular momentum l, given the real-space rotation matrix R (implicit).
# Uses the recursive algorithm of Ivanic and Ruedenberg (doi:10.1021/jp953350u, doi:10.1021/jp9833350),
# which is valid for l > 1.
# Note that this builds the inverse/transpose, so indexing may look reversed.
def spherical_shell_rotation(l):
assert l > 1
def rP(i,mu,m2):
if abs(mu) > l-1:
return 0
# Instead of referring to the original rotation matrix R, we use RotM[1],
# which is already reordered according to m (but indices are 0,1,2, not -1,0,1).
# NB: The first two cases are wrong in the original (m' -> l-1)
elif m2 == l:
return RotM[1][2,i+1]*RotM[l-1][2*l-2,l-1+mu]-RotM[1][0,i+1]*RotM[l-1][0,l-1+mu]
elif m2 == -l:
return RotM[1][2,i+1]*RotM[l-1][0,l-1+mu]+RotM[1][0,i+1]*RotM[l-1][2*l-2,l-1+mu]
else:
return RotM[1][1,i+1]*RotM[l-1][l-1+m2,l-1+mu]
num = 2*l+1
Rot = np.zeros((num, num))
for m2 in range(-l, l+1):
if abs(m2) == l:
den = 2*l*(2*l-1)
else:
den = (l+m2)*(l-m2)
for m1 in range(-l, l+1):
u = np.sqrt((l+m1)*(l-m1)/den)
rU = rP(0,m1,m2)
if m1 == 0:
v = -0.5*np.sqrt(2*(l-1)*l/den)
rV = rP(1,1,m2)+rP(-1,-1,m2)
w = 0
rW = 0
else:
s = 1 if m1 > 0 else -1
absm = abs(m1)
v = 0.5*np.sqrt((l+absm-1)*(l+absm)/den)
# NB: The case m < 0 is wrong in the correction (sqrt(1-delta) -> sqrt(1+delta))
if absm == 1:
rV = np.sqrt(2)*rP(s,absm-1,m2)
else:
rV = rP(1,m1-s,m2)-s*rP(-1,-m1+s,m2)
w = -0.5*np.sqrt((l-absm-1)*(l-absm)/den)
rW = rP(1,m1+s,m2)+s*rP(-1,-m1-s,m2)
Rot[l+m2,l+m1] = u*rU+v*rV+w*rW
return Rot
################################################################################
# Command-line arguments
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=24,width=120))
parser.version = f'MORT: molecular orbital rotation and translation (version {version})'
parser.add_argument('-v', '--version', help='print version number', action='version')
parser.add_argument('-r', '--rotate', help='rotation matrix to apply (9 real values)', type=float, nargs=9, metavar=('Rxx','Rxy','Rxz','Ryx','Ryy','Ryz','Rzx','Rzy','Rzz'))
parser.add_argument('-t', '--translate', help='translation vector to apply after rotation (3 real values, in bohr)', type=float, nargs=3, metavar=('Tx','Ty','Tz'))
parser.add_argument('-x', '--exchange', help='reorder atoms (comma-separated list of integers giving order in the output file)', metavar='n1,n2,...')
parser.add_argument('-d', '--desymmetrize', help='desymmetrize data', action='store_true')
parser.add_argument('-a', '--all', help='copy all unhandled datasets and attributes to output file (some items may be wrong!)', action='store_true')
parser.add_argument('infile', help='input file (HDF5 format)', metavar='input_file')
parser.add_argument('outfile', help='output file (HDF5 format, will be overwritten)', metavar='output_file')
if len(sys.argv) < 2 and sys.stdin.isatty():
parser.print_help(sys.stderr)
sys.exit(1)
else:
args = vars(parser.parse_args())
# Read input file
with h5py.File(args['infile'], 'r') as f:
nsym = f.attrs['NSYM']
if nsym != 1:
if not args['desymmetrize']:
sys.exit('Error: Symmetry is only supported with --desymmetrize')
try:
if nsym == 1:
b_id_ref = f['BASIS_FUNCTION_IDS'][:]
else:
b_id_ref = f['DESYM_BASIS_FUNCTION_IDS'][:]
nb = len(b_id_ref)
except KeyError:
sys.exit('Error: Input file does not have basis set information')
try:
if nsym == 1:
nat = f.attrs['NATOMS_UNIQUE']
else:
nat = f.attrs['NATOMS_ALL']
except KeyError:
sys.exit('Error: Input file does not have number of atoms')
# Compute transformation matrices
if args['rotate']:
do_rot = True
R = np.reshape(args['rotate'], (3,3))
# Normalize to clean up numerical errors
R = normalize_rot(R)
# Maximum l in spherical shells
# (Cartesian shells have negative l and don't need recursion)
max_l = np.max(b_id_ref[:,2])
# Group the basis functions by shells
# (same center, l, and radial part)
l_idx = {}
b_num = []
for i,b in enumerate(b_id_ref):
l = b[2]
for j,bb in enumerate(b_id_ref[:i,:]):
if tuple(b[0:3]) == tuple(bb[0:3]):
num = b_num[j]
l_idx[l][num].append(i)
b_num.append(num)
break
else:
if l in l_idx:
l_idx[l].append([i])
else:
l_idx[l] = [[i]]
b_num.append(len(l_idx[l])-1)
# Make sure each shell is ordered by m
for l in l_idx:
for i,shell in enumerate(l_idx[l]):
l_idx[l][i] = sorted(shell, key=lambda x: b_id_ref[x,3])
# Compute the rotation matrices for the different shells
RotM = {}
# First the Cartesian shells
for l in l_idx.keys():
# s and p shells (l=0,1) are always considered Cartesian
if l < 2:
RotM[l] = cartesian_shell_rotation(abs(l), R)
# Reorder the p rotation to match the m ordering (1=x, -1=y, 0=z)
RotM[1] = RotM[1][np.ix_([1,2,0],[1,2,0])]
# Then the spherical harmonics shells
for l in range(2,max_l+1):
RotM[l] = spherical_shell_rotation(l)
# Build the big (all functions), sparse transformation matrix and its inverse,
# which is needed because the Cartesian rotations are not unitary
U = np.zeros((nb, nb))
V = np.zeros((nb, nb))
for l in l_idx:
for shell in l_idx[l]:
U[np.ix_(shell,shell)] = RotM[l]
if l < 0:
V[np.ix_(shell,shell)] = np.linalg.inv(RotM[l])
else:
V[np.ix_(shell,shell)] = RotM[l].T
else:
do_rot = False
RotM = {}
R = np.eye(3)
U = np.eye(nb)
V = np.eye(nb)
if args['translate']:
do_trans = True
T = np.array(args['translate'])
else:
do_trans = False
T = np.zeros(3)
if args['exchange']:
do_exch = True
# List that specifies how the centers are reordered, its inverse, and the corresponding matrix
reindex = [int(i)-1 for i in args['exchange'].split(',')]
assert len(reindex) == nat, 'Error: length of --exchange list does not match number of atoms'
reindex_inv = []
for i in range(len(reindex)):
reindex_inv.append(reindex.index(i))
reorder = np.eye(nat)[reindex]
else:
do_exch = False
reindex = list(range(nat))
reindex_inv = reindex
reorder = np.eye(nat)
if args['desymmetrize']:
do_desym = nsym != 1
else:
do_desym = False
if do_desym or do_exch:
# List that specifies how basis functions are reordered and its matrix
bf_reindex = []
# Create an auxiliary array to use lexsort on:
aux_bfid = b_id_ref.copy()
for b in aux_bfid:
if do_exch:
b[0] = reindex_inv[b[0]-1]+1
b[2] = abs(b[2])
# p shells are ordered x,y,z
if b[2] == 1:
if b[3] == 1:
b[3] = -1
elif b[3] == -1:
b[3] = 0
elif b[3] == 0:
b[3] = 1
bf_reindex = np.lexsort((aux_bfid[:,1], aux_bfid[:,3], aux_bfid[:,2], aux_bfid[:,0]))
bf_reorder = np.eye(nb)[bf_reindex]
# U and V are easily reordered
# (this affects the matrices even if there was no rotation, so enforce rotation)
do_rot = True
U = U @ bf_reorder.T
V = bf_reorder @ V
do_smth = do_rot or do_trans or do_exch or do_desym
# Process the input data and write the output file
# Known attributes and datasets that are generally safe to copy (need no transformation)
safe_to_copy = [
# attributes
'A2LEV',
'CI_TYPE',
'L2ACT',
'MOLCAS_MODULE',
'MOLCAS_VERSION',
'NACTEL',
'NCONF',
'NELEC3',
'NHOLE1',
'NPRIM',
'NROOTS',
'NSTATE',
'NSTATES',
'ORBITAL_TYPE',
'POTNUC',
'RASSCF_ITERATIONS',
'ROOT2STATE',
'SPINMULT',
'STATE_SPINMULT',
# datasets
'CI_VECTORS',
'ENERGY',
'H_EFF',
'ORIGINAL_OVERLAPS',
'ROOT_ENERGIES',
'SFS_COEFFICIENTS',
'SFS_ENERGIES',
'STATE_WEIGHT',
'STATE_PT2_ENERGIES',
'STATE_REFWF_ENERGIES',
'STATE_ROOTID',
]
# Attributes and datasets that cannot be transformed with desymmetrization
# (e.g. state order is not known)
not_with_desym = [
# attributes
'NCONF',
# datasets
'CI_VECTORS',
'STATE_ROOTID',
]
warning_item = []
warning_renum = False
with h5py.File(args['infile'], 'r') as fi, h5py.File(args['outfile'], 'w') as fo:
fo.attrs.create('MORT_version', np.array(f'MORT v{version}', dtype='S'))
module = fi.attrs['MOLCAS_MODULE'].decode()
# Pick up the data needed for desymmetrization, which includes reordering MOs
if do_desym:
desym = np.reshape(fi['DESYM_MATRIX'], (nb, nb))
nbas = fi.attrs['NBAS']
mo_reindex = np.lexsort((fi['MO_ENERGIES'], -fi['MO_OCCUPATIONS'][:]))
try:
# In case of UHF
mo_alpha_reindex = np.lexsort((fi['MO_ALPHA_ENERGIES'], -fi['MO_ALPHA_OCCUPATIONS'][:]))
mo_beta_reindex = np.lexsort((fi['MO_BETA_ENERGIES'], -fi['MO_BETA_OCCUPATIONS'][:]))
except KeyError:
pass
try:
# In case of [CR]ASSCF, some data is on active orbitals only
tpidx = fi['MO_TYPEINDICES'][:]
except KeyError:
pass
else:
actidx = np.isin(tpidx, [b'1', b'2', b'3']).nonzero()[0]
nact = actidx.shape[0]
act_reindex = np.empty(nact)
for i in range(nact):
act_reindex[i] = np.where(mo_reindex == actidx[i])[0][0]
act_reindex = np.argsort(act_reindex)
act_reorder = np.eye(nact)[act_reindex]
# In CASPT2 density matrices are stored for all (non-frozen, non-deleted) orbitals
if module == 'CASPT2':
pt2idx = np.logical_not(np.isin(tpidx, [b'F', b'D'])).nonzero()[0]
bins = [0]
for i in nbas:
bins.append(bins[-1]+i)
pt2nbas = np.histogram(pt2idx, bins=bins)[0]
# TODO: reindex/reorder MOs for CASPT2 (even if nothing happens by default)
V = V @ desym.T
else:
nbas = [nb]
for name in fi.attrs:
if name in safe_to_copy:
if do_desym and name in not_with_desym:
continue
fo.attrs[name] = fi.attrs[name]
elif name == 'LSYM':
if do_desym:
fo.attrs[name] = 1
else:
fo.attrs[name] = fi.attrs[name]
elif name == 'NSYM':
if do_desym:
fo.attrs[name] = 1
else:
fo.attrs[name] = fi.attrs[name]
elif name == 'IRREP_LABELS':
if do_desym:
fo.attrs[name] = np.array(['a '], dtype='S')
else:
fo.attrs[name] = fi.attrs[name]
elif name == 'STATE_IRREPS':
fo.attrs[name] = fi.attrs[name]
if do_desym:
fo.attrs[name][:] = 1
elif name == 'NBAS':
if do_desym:
fo.attrs[name] = [np.sum(fi.attrs[name])]
else:
fo.attrs[name] = fi.attrs[name]
elif name in ['NATOMS_UNIQUE', 'NATOMS_ALL']:
if do_desym:
name2 = 'NATOMS_UNIQUE'
if name == name2:
continue
fo.attrs[name2] = fi.attrs[name]
else:
fo.attrs[name] = fi.attrs[name]
elif args['all']:
fo.attrs[name] = fi.attrs[name]
warning_item.append(name)
for name in fi:
if name in safe_to_copy:
if do_desym and name in not_with_desym:
continue
copy_dataset(fi, fo, name)
elif name in ['DESYM_MATRIX']:
continue
# Coordinates are transformed with the input rotation
elif name in ['CENTER_COORDINATES', 'DESYM_CENTER_COORDINATES']:
name2 = name
if name.startswith('DESYM_'):
name2 = name[6:]
elif do_desym:
continue
copy_dataset(fi, fo, name, name2)
if do_rot or do_trans or do_exch:
coor = fi[name]
fo[name2][:] = reorder @ (coor @ R.T + T)
# Multipole centers too, but they are not reordered
elif name == 'MLTPL_ORIG':
copy_dataset(fi, fo, name)
if do_rot or do_trans:
coor = fi[name]
fo[name][:] = coor @ R.T + T
# Other center data are reordered only
elif name in ['CENTER_ATNUMS', 'CENTER_CHARGES', 'DESYM_CENTER_ATNUMS', 'DESYM_CENTER_CHARGES']:
name2 = name
if name.startswith('DESYM_'):
name2 = name[6:]
elif do_desym:
continue
copy_dataset(fi, fo, name, name2)
if do_exch:
data = fi[name]
fo[name2][:] = data[:][reindex]
# Special care with strings (can't just copy dataset because lengths may be different)
elif name in ['CENTER_LABELS', 'DESYM_CENTER_LABELS']:
name2 = name
if name.startswith('DESYM_'):
name2 = name[6:]
elif do_desym:
continue
copy_dataset(fi, fo, name, name2, size=(nat,))
if do_exch or do_desym:
data = fi[name][:]
# Find out if labels need renumbering
any_num = False
do_renum = True
for i,lab in enumerate(fi[name2]):
match = re.match(r'[A-Za-z]{1,2}(\d+)\s*', lab.decode())
# Need renumbering if all labels have a number and all match the index
if match:
any_num = True
if int(match.group(1)) != i+1:
do_renum = False
else:
do_renum = False
if do_renum:
for i,lab in enumerate(data[reindex]):
data[reindex[i]] = re.sub(r'^([A-Za-z]{1,2})(\d+).{4}', r'\g<1>'+f'{i+1} ', lab.decode())
elif any_num:
warning_renum = True
fo[name2][:] = data[reindex]
else:
fo[name2][:] = fi[name][:]
# Basis info must be reordered and reindexed
elif name in ['BASIS_FUNCTION_IDS', 'DESYM_BASIS_FUNCTION_IDS']:
name2 = name
if name.startswith('DESYM_'):
name2 = name[6:]
elif do_desym:
continue
copy_dataset(fi, fo, name, name2)
if do_exch or do_desym:
bfid = fi[name][:][bf_reindex]
for b in bfid:
b[0] = reindex_inv[b[0]-1]+1
fo[name2][:] = bfid
# Primitive info is similar to basis, but it was not read before
elif name in ['PRIMITIVES', 'PRIMITIVE_IDS']:
# Just to make sure these are processed in the right order
if name == 'PRIMITIVES':
continue
copy_dataset(fi, fo, name)
name = 'PRIMITIVES'
copy_dataset(fi, fo, name)
if do_exch:
name = 'PRIMITIVE_IDS'
prid = fi[name][:]
pr_reindex = []
for i in reindex:
pr_reindex.extend([j for j,p in enumerate(prid) if p[0] == i+1])
for p in prid:
p[0] = reindex_inv[p[0]-1]+1
fo[name][:] = prid[pr_reindex]
name = 'PRIMITIVES'
prim = fi[name][:][pr_reindex]
fo[name][:] = prim
# MO coefficients are transformed with the U matrix
elif name == 'MO_VECTORS':
copy_dataset(fi, fo, name, size=(nb**2,))
if do_rot or do_desym:
mo = sblock_to_square(fi[name], nbas)
if do_desym:
mo = (mo @ desym)[mo_reindex]
fo[name][:] = (mo @ U).flatten()
elif name == 'MO_ALPHA_VECTORS':
copy_dataset(fi, fo, name, size=(nb**2,))
if do_rot or do_desym:
mo = sblock_to_square(fi[name], nbas)
if do_desym:
mo = (mo @ desym)[mo_alpha_reindex]
fo[name][:] = (mo @ U).flatten()
elif name == 'MO_BETA_VECTORS':
copy_dataset(fi, fo, name, size=(nb**2,))
if do_rot or do_desym:
mo = sblock_to_square(fi[name], nbas)
if do_desym:
mo = (mo @ desym)[mo_beta_reindex]
fo[name][:] = (mo @ U).flatten()
# Other MO data are just reordered if desymmetrized
elif name in ['MO_ENERGIES', 'MO_OCCUPATIONS', 'MO_TYPEINDICES', 'SUPSYM_IRREP_INDICES']:
copy_dataset(fi, fo, name)
if do_desym:
data = fi[name]
fo[name][:] = data[:][mo_reindex]
elif name in ['MO_ALPHA_ENERGIES', 'MO_ALPHA_OCCUPATIONS', 'MO_ALPHA_TYPEINDICES']:
copy_dataset(fi, fo, name)
if do_desym:
data = fi[name]
fo[name][:] = data[:][mo_alpha_reindex]
elif name in ['MO_BETA_ENERGIES', 'MO_BETA_OCCUPATIONS', 'MO_BETA_TYPEINDICES']:
copy_dataset(fi, fo, name)
if do_desym:
data = fi[name]
fo[name][:] = data[:][mo_beta_reindex]
# AO matrices are transformed with the V matrix
elif name in ['AO_OVERLAP_MATRIX', 'AO_FOCKINT_MATRIX']:
copy_dataset(fi, fo, name, size=(nb**2,))
if do_rot or do_desym:
mtrx = sblock_to_square(fi[name], nbas)
fo[name][:] = (V @ mtrx @ V.T).flatten()
# Multipole AO matrices are further transformed among their components
elif name in ['AO_MLTPL_X', 'AO_MLTPL_Y', 'AO_MLTPL_Z']:
comp = ['X', 'Y', 'Z']
# Do all work only when the first component is found
if name.endswith(('_'+comp[1], '_'+comp[2])):
continue
ao_mltpl1 = np.empty((len(comp), nb, nb))
for i,lab in enumerate(comp):
name = 'AO_MLTPL_'+lab
copy_dataset(fi, fo, name)
ao_mltpl1[i,:,:] = fi[name]
if do_rot:
# Transform each component
for i in range(len(comp)):
ao_mltpl1[i,:,:] = V @ ao_mltpl1[i,:,:] @ V.T
# Combine components
ao_mltpl1 = np.tensordot(R, ao_mltpl1, axes=1)
for i,lab in enumerate(comp):
name = 'AO_MLTPL_'+lab
fo[name][:] = ao_mltpl1[i,:,:]
elif name in ['AO_MLTPL_XX', 'AO_MLTPL_XY', 'AO_MLTPL_XZ', 'AO_MLTPL_YY', 'AO_MLTPL_YZ', 'AO_MLTPL_ZZ']:
comp = ['XX', 'XY', 'XZ', 'YY', 'YZ', 'ZZ']
# Do all work only when the first component is found
if name.endswith(('_'+comp[1], '_'+comp[2], '_'+comp[3], '_'+comp[4], '_'+comp[5])):
continue
ao_mltpl2 = np.empty((len(comp), nb, nb))
for i,lab in enumerate(comp):
name = 'AO_MLTPL_'+lab
copy_dataset(fi, fo, name)
ao_mltpl2[i,:,:] = fi[name]
if do_rot:
# Transform each component
for i in range(len(comp)):
ao_mltpl2[i,:,:] = V @ ao_mltpl2[i,:,:] @ V.T
# Quadrupoles transform like a Cartesian d shell (the inverse)
if -2 in RotM:
QRot = np.linalg.inv(RotM[-2])
else:
QRot = np.linalg.inv(cartesian_shell_rotation(2, R))
# Combine components
ao_mltpl2 = np.tensordot(QRot, ao_mltpl2, axes=1)
for i,lab in enumerate(comp):
name = 'AO_MLTPL_'+lab
fo[name][:] = ao_mltpl2[i,:,:]
# Density matrices may need to be reordered if desymmetrizing
elif name in ['DENSITY_MATRIX', 'SPINDENSITY_MATRIX', 'TRANSITION_DENSITY_MATRIX', 'TRANSITION_SPIN_DENSITY_MATRIX']:
copy_dataset(fi, fo, name)
if do_desym:
if module == 'CASPT2':
# In CASPT2, DM is in triangular storage
dmsize = list(fo[name].shape)
del fo[name]
n = int(np.sum(pt2nbas))
dmsize[1] = n*(n+1)//2
copy_dataset(fi, fo, name, size=dmsize)
for i in range(dmsize[0]):
dm = sblock_to_square(fi[name][i,:], pt2nbas, triangular=True)
fo[name][i,:] = dm[np.tril_indices(n)]
else:
dm = fi[name][:]
for i in range(dm.shape[0]):
dm[i,:,:] = act_reorder @ dm[i,:,:] @ act_reorder.T
fo[name][:] = dm
elif args['all']:
copy_dataset(fi, fo, name)
warning_item.append(name)
# In case something unsafe was done
if warning_item and do_smth:
print('WARNING: The following attributes and/or datasets are not recognized, and were copied verbatim.')
print(' If they would need transformation, they are probably WRONG!')
print()
for name in warning_item:
print(name)
if warning_renum:
print('WARNING: Atoms were reordered, but labels are not renumbered')
|