File: caspt2_udl.f90

package info (click to toggle)
openmolcas 25.02-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 170,204 kB
  • sloc: f90: 498,088; fortran: 139,779; python: 13,587; ansic: 5,745; sh: 745; javascript: 660; pascal: 460; perl: 325; makefile: 17
file content (855 lines) | stat: -rw-r--r-- 20,802 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
!***********************************************************************
! This file is part of OpenMolcas.                                     *
!                                                                      *
! OpenMolcas is free software; you can redistribute it and/or modify   *
! it under the terms of the GNU Lesser General Public License, v. 2.1. *
! OpenMolcas is distributed in the hope that it will be useful, but it *
! is provided "as is" and without any express or implied warranties.   *
! For more details see the full text of the license in the file        *
! LICENSE or in <http://www.gnu.org/licenses/>.                        *
!***********************************************************************
SUBROUTINE CASPT2_UDL(PSI,F,NAO,NMO,CMO,ONEINT,TWOINT)
  ! Computes the CASPT2 second-order energy of the wavefunction PSI, provided
  ! that the full Fock matrix and necessary 1- and 2-el integrals are given.

  ! Uses UDL decomposition of the Fock matrix and transforms the RHS according
  ! to the upper and lower triangular blocks Q of U and L by means of the
  ! exponential operator exp(Q).

  USE ISO_FORTRAN_ENV, ONLY: REAL64
  USE SECOND_QUANTIZATION
  USE WAVEFUNCTION
  USE DENSITY
  USE FOCKMATRIX
  USE ORBINT
  IMPLICIT NONE

  TYPE(WFN), INTENT(INOUT) :: PSI
  TYPE(FMAT), INTENT(INOUT) :: F
  INTEGER, INTENT(IN) :: NAO, NMO
  REAL(REAL64), INTENT(INOUT) :: ONEINT(NMO,NMO), TWOINT(NMO,NMO,NMO,NMO)
  REAL(REAL64), INTENT(INOUT) :: CMO(NAO,NMO)

  INTEGER :: NI, NA, NS
  INTEGER :: NACTEL, NTOTEL, MULT

  TYPE(WFN) :: PSI1, SGM, TAU, RHS
  REAL(REAL64), ALLOCATABLE :: D1(:,:), D2(:,:,:,:), FTOT(:,:)
  REAL(REAL64) :: FACT

  REAL(REAL64), ALLOCATABLE :: VPQRS(:,:,:,:), V0(:), X(:)
  REAL(REAL64), ALLOCATABLE :: H0(:,:), S0(:,:), U0(:,:), T0(:,:)
  REAL(REAL64), ALLOCATABLE :: TMP(:,:), TMPV(:)
  REAL(REAL64) :: E0, E2
  INTEGER :: ISD, JSD, NSD, MSD

  REAL(REAL64), ALLOCATABLE :: PSI1BRA(:,:,:), PSI1KET(:,:,:), FOCKKET(:,:,:)

  REAL(REAL64), ALLOCATABLE :: WORK(:), EVAL(:)
  INTEGER :: NWORK, INFO

  INTEGER, ALLOCATABLE :: IPIV(:)

  INTEGER :: A, I, T, P, Q, R, S, IA, IB
  INTEGER :: DETA, DETB, TMPA, TMPB
  INTEGER, ALLOCATABLE :: IDXA(:), IDXB(:), ADET(:), BDET(:)

  REAL(REAL64), EXTERNAL :: DNRM2_, DDOT_

  ! get appropriate orbital space dimensions from the supplied Fock matrix
  NI=SIZE(F%II,1)
  NA=SIZE(F%AA,1)
  NS=SIZE(F%SS,1)

#ifdef _DEBUG_
  WRITE(*,'(1X,A,I6)') '#inactive  orbitals = ', NI
  WRITE(*,'(1X,A,I6)') '#active    orbitals = ', NA
  WRITE(*,'(1X,A,I6)') '#secondary orbitals = ', NS
  WRITE(*,'(1X,A,I6)') '#molecular orbitals = ', NMO
#endif

  ! some sanity checks
  IF (PSI%NORB.NE.NA) STOP 'CASPT2_AXB: PSI%NORB does not match #active orbitals'
  IF (NMO.NE.NI+NA+NS) STOP 'CASPT2_AXB: supplied total #orbitals does not compute'

  NACTEL=PSI%NEL
  NTOTEL=2*NI+NACTEL
  MULT=PSI%MULT

  ! reconstruct density matrices
  ALLOCATE(D1(NA,NA))
  ALLOCATE(D2(NA,NA,NA,NA))
  CALL D1_ANN(PSI,D1)
  CALL D2_ANN(PSI,D2)

  WRITE(*,*) 'Before inactive/active orbital rotation:'
  WRITE(*,*)
  CALL WFN_PRINT(PSI,0.0D0)
  CALL WFN_ENERGY(NI,NA,NS,D1,D2,ONEINT,TWOINT)

  ! copy Fock matrix and apply UDL decomposition after shifting by E0!
  E0 = -4.39765297778118
  DO I=1,NI
    F%II(I,I)=F%II(I,I)-E0/NTOTEL
  END DO
  DO T=1,NA
    F%AA(T,T)=F%AA(T,T)-E0/NTOTEL
  END DO
  DO A=1,NS
    F%SS(A,A)=F%SS(A,A)-E0/NTOTEL
  END DO

  CALL FMAT_UDL(F)
  WRITE(*,*) 'After UDL decomposition'
  CALL FMAT_PRINT(F)

  ! store diagonal in FTOT
  ALLOCATE(FTOT(NMO,NMO))
  FTOT=0.0D0
  DO I=1,NI
    FTOT(I,I)=F%DI(I)
  END DO
  DO T=1,NA
    FTOT(NI+T,NI+T)=F%DA(T)
  END DO
  DO A=1,NS
    FTOT(NI+NA+A,NI+NA+A)=F%DS(A)
  END DO

!#ifdef _DEBUG_
  DO P=1,NMO
    WRITE(*,'(1X,7(2X,F21.14))') FTOT(P,:)
  END DO
!#endif

  ! copy and transform the wavefunction accordingly
  CALL WFN_ORBROT(PSI,F%AA)
  CALL ORBINT_TRANSFORM(CMO,ONEINT,TWOINT,F%II,F%AA,F%SS)

  ! reconstruct density matrices
  CALL D1_ANN(PSI,D1)
  CALL D2_ANN(PSI,D2)

  WRITE(*,*) 'After inactive/active orbital rotation:'
  WRITE(*,*)
  CALL WFN_PRINT(PSI,0.0D0)
  CALL WFN_ENERGY(NI,NA,NS,D1,D2,ONEINT,TWOINT)

  ! first, set up PSI1 as a (sparse) full-CI wavefunction for which we will use
  ! projectors to handle the restriction of single-double replacement states
  CALL WFN_INIT(PSI1,NTOTEL,NMO,MULT)

  PSI1%COEF=0.0D0
  CALL WFN_COPY0(NI,PSI,PSI1)

#ifdef _DEBUG_
  WRITE(*,'(1X,A)') 'The 0th-order wavefunction in FCI space:'
  CALL WFN_PRINT(PSI1,1.0D-15)
#endif

  DEALLOCATE(D1)
  DEALLOCATE(D2)

  ! compute the CASSCF energy for the 0-th order wavefunction
  ALLOCATE(D1(NMO,NMO))
  ALLOCATE(D2(NMO,NMO,NMO,NMO))
  CALL D1_ANN(PSI1,D1)
  CALL D2_ANN(PSI1,D2)

  CALL WFN_ENERGY(0,NMO,0,D1,D2,ONEINT,TWOINT)

  CALL WFN_INIT(SGM,NTOTEL,NMO,MULT)
  CALL WFN_INIT(TAU,NTOTEL,NMO,MULT)
  CALL WFN_INIT(RHS,NTOTEL,NMO,MULT)

  ! set up the RHS -V0 with V0_i  = <i|Ĥ|0>

  ! First, compute the 0-th order energy and construct the right hand side
  ! vector -V0, which is computed for each |i> that is non-zero. This still
  ! leaves an overcomplete basis for the VSD space, but that is solved later by
  ! diagonalization of S0 and removal of any linear dependency before solving
  ! Ax=b.

  ! step 1: |TAU> = Ĥ|0>
  TAU%COEF=0.0D0
  SGM%COEF=0.0D0

  DETB=LEX_INIT(PSI%NELB,PSI%NORB)
  DO IB=1,PSI%NDETB
    TMPB=ISHFT(DETB,NI)+(2**NI-1)
    DETA=LEX_INIT(PSI%NELA,PSI%NORB)
    DO IA=1,PSI%NDETA
      TMPA=ISHFT(DETA,NI)+(2**NI-1)

      FACT=PSI%COEF(IA,IB)
      DO P=1,NMO
        DO Q=1,NMO
          ! h_pq, g_pqrs for TAU
          CALL DET_EX1(FACT*ONEINT(P,Q),P,Q,TMPA,TMPB,TAU)
          DO R=1,NMO
            DO S=1,NMO
              CALL DET_EX2(FACT*0.5D0*TWOINT(P,Q,R,S),P,Q,R,S,TMPA,TMPB,TAU)
            END DO
          END DO
        END DO
      END DO

      DETA=LEX_NEXT(DETA)
    END DO
    DETB=LEX_NEXT(DETB)
  END DO

#ifdef _DEBUG_
  WRITE(*,'(1X,A)') 'wavefunction Ĥ|0>'
  CALL WFN_PRINT(TAU,1.0D-6)
#endif

  ! step 2: construct V0 = <i|TAU>, store the computed functions |i> in PSI1KET
  ! and PSI1BRA
  ALLOCATE(VPQRS(NMO,NMO,NMO,NMO))

  NSD=0
  VPQRS=0.0D0
  DO S=1,NMO
    DO R=1,NMO
      DO Q=1,NMO
        DO P=1,NMO

          ! determine |i> = E_pqrs |Psi0>
          SGM%COEF=0.0D0
          DETB=LEX_INIT(PSI%NELB,PSI%NORB)
          DO IB=1,PSI%NDETB
            TMPB=ISHFT(DETB,NI)+(2**NI-1)
            DETA=LEX_INIT(PSI%NELA,PSI%NORB)
            DO IA=1,PSI%NDETA
              TMPA=ISHFT(DETA,NI)+(2**NI-1)

              CALL DET_EX2(PSI%COEF(IA,IB),P,Q,R,S,TMPA,TMPB,SGM)

              DETA=LEX_NEXT(DETA)
            END DO
            DETB=LEX_NEXT(DETB)
          END DO

          PSI1%COEF=0.0D0
          CALL WFN_PSD(NI,NA,NS,SGM,PSI1)

          IF (DNRM2_(PSI1%NDET,PSI1%COEF,1).NE.0.0D0) THEN
            VPQRS(P,Q,R,S)=DDOT_(PSI1%NDET,PSI1%COEF,1,TAU%COEF,1)
            NSD=NSD+1
          END IF

        END DO
      END DO
    END DO
  END DO

  ALLOCATE(V0(NSD))

  ISD=0
  DO S=1,NMO
    DO R=1,NMO
      DO Q=1,NMO
        DO P=1,NMO
          IF (ABS(VPQRS(P,Q,R,S)).GT.0.0D0) THEN
            ISD=ISD+1
            V0(ISD)=VPQRS(P,Q,R,S)
          END IF
        END DO
      END DO
    END DO
  END DO

  DEALLOCATE(VPQRS)

  ALLOCATE(H0(NSD,NSD))
  ALLOCATE(S0(NSD,NSD))

  H0 = 0.0D0
  S0 = 0.0D0

  ! construct E_pqrs|0> in PSI1KET, PSI1BRA and

  ALLOCATE(PSI1BRA(NSD,PSI1%NDETA,PSI1%NDETB))
  ALLOCATE(PSI1KET(PSI1%NDETA,PSI1%NDETB,NSD))
  ALLOCATE(FOCKKET(PSI1%NDETA,PSI1%NDETB,NSD))

  ISD=0
  DO S=1,NMO
    DO R=1,NMO
      DO Q=1,NMO
        DO P=1,NMO

          SGM%COEF=0.0D0
          ! determine |i> = E_pqrs |0>
          DETB=LEX_INIT(PSI%NELB,PSI%NORB)
          DO IB=1,PSI%NDETB
            TMPB=ISHFT(DETB,NI)+(2**NI-1)
            DETA=LEX_INIT(PSI%NELA,PSI%NORB)
            DO IA=1,PSI%NDETA
              TMPA=ISHFT(DETA,NI)+(2**NI-1)

              CALL DET_EX2(PSI%COEF(IA,IB),P,Q,R,S,TMPA,TMPB,SGM)

              DETA=LEX_NEXT(DETA)
            END DO
            DETB=LEX_NEXT(DETB)
          END DO
          PSI1%COEF=0.0D0
          CALL WFN_PSD(NI,NA,NS,SGM,PSI1)

          IF (DNRM2_(PSI1%NDET,PSI1%COEF,1).NE.0.0D0) THEN
            ISD=ISD+1
            ! put |i> = E_pqrs |0> into PSI1BRA and PSI1KET
            PSI1BRA(ISD,:,:) = PSI1%COEF
            PSI1KET(:,:,ISD) = PSI1%COEF

            ! compute Ĥ_0|i> = Sum_pp f_pp Ê_pp |i>
            SGM%COEF=0.0D0
            DETB=LEX_INIT(PSI1%NELB,PSI1%NORB)
            DO IB=1,PSI1%NDETB
              DETA=LEX_INIT(PSI1%NELA,PSI1%NORB)
              DO IA=1,PSI1%NDETA

                DO I=1,NMO
                  ! accumulate F_ii Ê_ii |i>
                  CALL DET_EX1(PSI1%COEF(IA,IB)*FTOT(I,I),I,I,DETA,DETB,SGM)
                END DO

                DETA=LEX_NEXT(DETA)
              END DO
              DETB=LEX_NEXT(DETB)
            END DO
            ! put Ĥ_0|i> into FOCKKET
            FOCKKET(:,:,ISD) = SGM%COEF
          END IF

        END DO
      END DO
    END DO
  END DO

  CALL DGEMM_('N','N',NSD,NSD,PSI1%NDET,1.0D0, &
       & PSI1BRA,NSD,PSI1KET,PSI1%NDET, &
       & 0.0D0,S0,NSD)

  CALL DGEMM_('N','N',NSD,NSD,PSI1%NDET,1.0D0, &
       & PSI1BRA,NSD,FOCKKET,PSI1%NDET, &
       & 0.0D0,H0,NSD)

  ! preparation: determine T^T S T = 1, to remove linear dependencies by
  ! diagonalizing the overlap matrix, construct a transformation matrix to
  ! orthogonal basis, and transform X, S0, H0 and V0 accordingly

  ALLOCATE(U0(NSD,NSD))
  U0(:,:)=S0

  NWORK=NSD**2
  ALLOCATE(WORK(NWORK))
  ALLOCATE(EVAL(NSD))

  call dsyev_('V','U',NSD,U0,NSD,EVAL,WORK,NWORK,INFO)
  IF (INFO.NE.0) STOP 'CASPT2_UDL: diagonalization of S0 failed'

  ! go through columns of U0, keep non-zero eigenvalues
  MSD=0
  DO ISD=1,NSD
    IF (EVAL(ISD).GT.1.0D-6) THEN
      MSD=MSD+1
    END IF
  END DO
  WRITE(*,'(1X,A,I6)') '#non-zero overlap eigenvalues = ', MSD

  ALLOCATE(T0(NSD,MSD))
  ISD=0
  DO JSD=1,NSD
    IF (EVAL(JSD).GT.1.0D-6) THEN
      ISD=ISD+1
      T0(:,ISD) = U0(:,JSD)/SQRT(EVAL(JSD))
    END IF
  END DO

  DEALLOCATE(U0)

  ALLOCATE(X(NSD))
  X(:)=-V0

  ! compute RHS = Sum_i X_i |i>
  RHS%COEF=0.0D0
  DO ISD=1,NSD
    RHS%COEF(:,:)=RHS%COEF+X(ISD)*PSI1KET(:,:,ISD)
  END DO

  ! apply first series of operators exp(-Q_IA) exp(-Q_AS) exp(-Q_IS)

  ! exp(-Q_IS) = 1 - Sum_IS Q_IS E_IS + 0.5 ...
  SGM%COEF=0.0D0
  DO A=1,NS
    DO I=1,NI
      CALL WFN_EX1(-F%IS(I,A),I,NI+NA+A,RHS,SGM)
    END DO
  END DO
  PSI1%COEF(:,:)=SGM%COEF
  DO A=1,NS
    DO I=1,NI
      CALL WFN_EX1(-0.5D0*F%IS(I,A),I,NI+NA+A,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ! exp(-Q_AS) = 1 - Sum_AS Q_AS E_AS + ...
  SGM%COEF=0.0D0
  DO A=1,NS
    DO T=1,NA
      CALL WFN_EX1(-F%AS(T,A),NI+T,NI+NA+A,RHS,SGM)
    END DO
  END DO
  PSI1%COEF(:,:)=SGM%COEF
  DO A=1,NS
    DO T=1,NA
      CALL WFN_EX1(-0.5D0*F%AS(T,A),NI+T,NI+NA+A,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ! exp(-Q_IA) = 1 - Sum_IA Q_IA E_IA + ...
  SGM%COEF=0.0D0
  DO T=1,NA
    DO I=1,NI
      CALL WFN_EX1(-F%IA(I,T),I,NI+T,RHS,SGM)
    END DO
  END DO
  PSI1%COEF=0.0D0
  CALL WFN_PSD(NI,NA,NS,SGM,PSI1)
  !PSI1%COEF=SGM%COEF
  DO T=1,NA
    DO I=1,NI
      CALL WFN_EX1(-0.5D0*F%IA(I,T),I,NI+T,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ! contract into X_i = <i|exp(-Q_IA)|RHS> and
  ! transform to adapt for the overcomplete basis
  CALL DGEMV_('N',NSD,PSI1%NDET,1.0D0, &
       & PSI1BRA,NSD,RHS%COEF,1,0.0D0,X,1)
  ALLOCATE(TMPV(MSD))
  TMPV(:) = MATMUL(TRANSPOSE(T0),X)
  X(:) = MATMUL(T0,TMPV)


  ! apply diagonal inverse, e.g. solve H0' XNEW = XOLD

  ! transform equation system
  ALLOCATE(TMP(NSD,MSD))
  TMP(:,:) = MATMUL(H0,T0)
  H0(1:MSD,1:MSD) = MATMUL(TRANSPOSE(T0),TMP)
  DEALLOCATE(TMP)

  ! solution vector is already filled with RHS, just transform it
  TMPV(:) = MATMUL(TRANSPOSE(T0),X)
  X(1:MSD) = TMPV
  DEALLOCATE(TMPV)

  ALLOCATE(IPIV(NSD))

  call dgesv_(MSD,1,H0,NSD,IPIV,X,NSD,INFO)
  IF (INFO.NE.0) THEN
    WRITE(*,*) 'INFO = ', INFO
    STOP 'Failed to solve linear equation system'
  END IF

  DEALLOCATE(IPIV)

  ALLOCATE(TMPV(NSD))
  TMPV(:) = MATMUL(T0,X(1:MSD))
  X(:) = TMPV
  DEALLOCATE(TMPV)

  ! Now, continue with the transformation steps for L

  ! compute new RHS = Sum_i X_i |i>
  RHS%COEF=0.0D0
  DO ISD=1,NSD
    RHS%COEF(:,:)=RHS%COEF+X(ISD)*PSI1KET(:,:,ISD)
  END DO

  ! apply second series of operators exp(-Q_SI) exp(-Q_SA) exp(-Q_SI)

  ! exp(-Q_AI) = 1 - Sum_AI Q_AI E_AI
  SGM%COEF=0.0D0
  DO I=1,NI
    DO T=1,NA
      CALL WFN_EX1(-F%AI(T,I),NI+T,I,RHS,SGM)
    END DO
  END DO
  PSI1%COEF(:,:)=SGM%COEF
  DO I=1,NI
    DO T=1,NA
      CALL WFN_EX1(-0.5D0*F%AI(T,I),NI+T,I,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ! exp(-Q_SA) = 1 - Sum_SA Q_SA E_SA + ...
  SGM%COEF=0.0D0
  DO T=1,NA
    DO A=1,NS
      CALL WFN_EX1(-F%SA(A,T),NI+NA+A,NI+T,RHS,SGM)
    END DO
  END DO
  PSI1%COEF(:,:)=SGM%COEF
  DO T=1,NA
    DO A=1,NS
      CALL WFN_EX1(-0.5D0*F%SA(A,T),NI+NA+A,NI+T,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ! exp(-Q_SI) = 1 - Sum_SI Q_SI E_SI + ...
  SGM%COEF=0.0D0
  DO I=1,NI
    DO A=1,NS
      CALL WFN_EX1(-F%SI(A,I),NI+NA+A,I,RHS,SGM)
    END DO
  END DO
  PSI1%COEF(:,:)=SGM%COEF
  DO I=1,NI
    DO A=1,NS
      CALL WFN_EX1(-0.5D0*F%SI(A,I),NI+NA+A,I,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ! contract into X_i = <i|exp(-Q_IA)|RHS> and
  ! transform to adapt for the overcomplete basis
  CALL DGEMV_('N',NSD,PSI1%NDET,1.0D0, &
       & PSI1BRA,NSD,RHS%COEF,1,0.0D0,X,1)
  ALLOCATE(TMPV(MSD))
  TMPV(:) = MATMUL(TRANSPOSE(T0),X)
  X(:) = MATMUL(T0,TMPV)
  DEALLOCATE(TMPV)



  ! compute the energy

  ! method 1: E2 = <V0|X>
  E2 = DDOT_(NSD,V0,1,X,1)
  WRITE(*,'(1X,A32,F21.14)') 'E2 as <V0|X> = ', E2

  ! method 2: E2 = <0|Ĥ|Psi1>
  ! first, form the first-order wavefunction |Psi1>
  PSI1%COEF=0.0D0
  DO ISD=1,NSD
    PSI1%COEF(:,:)=PSI1%COEF+X(ISD)*PSI1KET(:,:,ISD)
  END DO

  !WRITE(*,*) 'Final first-order wavefunction from UDL method:'
  !CALL WFN_PRINT(PSI1,1.0D-8)

  ! TAU still contains Ĥ|0>, so contract with |Psi1>
  E2 = DDOT_(PSI1%NDET,PSI1%COEF,1,TAU%COEF,1)
  WRITE(*,'(1X,A32,F21.14)') 'E2 as <Psi1|H|0> = ', E2

  DEALLOCATE(H0)
  DEALLOCATE(S0)
  DEALLOCATE(T0)
  DEALLOCATE(V0)
  DEALLOCATE(X)
  DEALLOCATE(PSI1BRA)
  DEALLOCATE(PSI1KET)
  DEALLOCATE(FOCKKET)



  ! Same UDL decomposition procedure, but in a determinant basis instead of an
  ! excitation parameter space. This has the advantage of being simpler, faster,
  ! and the fact that there is an orthonormal basis in place already.

  ! step 1: |TAU> = Ĥ|0>
  TAU%COEF=0.0D0
  SGM%COEF=0.0D0
  RHS%COEF=0.0D0

  DETB=LEX_INIT(PSI%NELB,PSI%NORB)
  DO IB=1,PSI%NDETB
    TMPB=ISHFT(DETB,NI)+(2**NI-1)
    DETA=LEX_INIT(PSI%NELA,PSI%NORB)
    DO IA=1,PSI%NDETA
      TMPA=ISHFT(DETA,NI)+(2**NI-1)

      FACT=PSI%COEF(IA,IB)
      DO P=1,NMO
        DO Q=1,NMO
          ! h_pq, g_pqrs for TAU
          CALL DET_EX1(FACT*ONEINT(P,Q),P,Q,TMPA,TMPB,TAU)
          DO R=1,NMO
            DO S=1,NMO
              CALL DET_EX2(FACT*0.5D0*TWOINT(P,Q,R,S),P,Q,R,S,TMPA,TMPB,TAU)
            END DO
          END DO
        END DO
      END DO

      DETA=LEX_NEXT(DETA)
    END DO
    DETB=LEX_NEXT(DETB)
  END DO

  ! project out the non-SD determinants from H|0>
  CALL WFN_PSD(NI,NA,NS,TAU,RHS)

#ifdef _DEBUG_
  WRITE(*,'(1X,A)') 'wavefunction Ĥ|0>'
  CALL WFN_PRINT(TAU,1.0D-6)
#endif

  ! construct PSI1 = Sum_i |i>, store valid indices in separate index tables
  PSI1%COEF=0.0D0
  SGM%COEF=1.0D0
  CALL WFN_PSD(NI,NA,NS,SGM,PSI1)

  NSD=0
  DO IB=1,PSI1%NDETB
    DO IA=1,PSI1%NDETA
      IF (PSI1%COEF(IA,IB).NE.0.0D0) NSD=NSD+1
    END DO
  END DO

  WRITE(*,'(1X,A32,I6)') '#SD determinants in Psi1 = ', NSD

  ! store indices and determinants of non-zero Psi1 contributions in separate
  ! arrays
  ALLOCATE(IDXA(NSD))
  ALLOCATE(IDXB(NSD))
  ALLOCATE(ADET(NSD))
  ALLOCATE(BDET(NSD))

  ISD=0
  TMPB=LEX_INIT(PSI1%NELB,PSI1%NORB)
  DO IB=1,PSI1%NDETB
    TMPA=LEX_INIT(PSI1%NELA,PSI1%NORB)
    DO IA=1,PSI1%NDETA
      IF (PSI1%COEF(IA,IB).NE.0.0D0) THEN
        ISD=ISD+1
        IDXA(ISD)=IA
        IDXB(ISD)=IB
        ADET(ISD)=TMPA
        BDET(ISD)=TMPB
      END IF
      TMPA=LEX_NEXT(TMPA)
    END DO
    TMPB=LEX_NEXT(TMPB)
  END DO

  ! step 2: construct V0, V0_i = <i|H|0>

  ALLOCATE(V0(NSD))

  DO ISD=1,NSD
    IA=IDXA(ISD)
    IB=IDXB(ISD)
    V0(ISD)=RHS%COEF(IA,IB)
  END DO

  ALLOCATE(H0(NSD,NSD))
  ALLOCATE(S0(NSD,NSD))

  H0 = 0.0D0
  S0 = 0.0D0

  ! construct elements <i|H_0|j>
  DO JSD=1,NSD
    TMPA=ADET(JSD)
    TMPB=BDET(JSD)
    SGM%COEF=0.0D0
    DO I=1,NMO
      ! accumulate Sum_i F_ii Ê_ii |j>
      CALL DET_EX1(FTOT(I,I),I,I,TMPA,TMPB,SGM)
    END DO
    DO ISD=1,NSD
      IA=IDXA(ISD)
      IB=IDXB(ISD)
      H0(ISD,JSD)=SGM%COEF(IA,IB)
    END DO
  END DO

  ! set RHS to -<i|H|0>
  RHS%COEF(:,:)=-RHS%COEF

  ! series of deexcitation operators exp(-Q_IA) exp(-Q_AS) exp(-Q_IS)

  ! exp(-Q_IS) = 1 - Sum_IS Q_IS E_IS + 0.5 ...
  SGM%COEF=0.0D0
  DO A=1,NS
    DO I=1,NI
      CALL WFN_EX1(-F%IS(I,A),I,NI+NA+A,RHS,SGM)
    END DO
  END DO
  PSI1%COEF(:,:)=SGM%COEF
  DO A=1,NS
    DO I=1,NI
      CALL WFN_EX1(-0.5D0*F%IS(I,A),I,NI+NA+A,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ! exp(-Q_AS) = 1 - Sum_AS Q_AS E_AS + ...
  SGM%COEF=0.0D0
  DO A=1,NS
    DO T=1,NA
      CALL WFN_EX1(-F%AS(T,A),NI+T,NI+NA+A,RHS,SGM)
    END DO
  END DO
  PSI1%COEF(:,:)=SGM%COEF
  DO A=1,NS
    DO T=1,NA
      CALL WFN_EX1(-0.5D0*F%AS(T,A),NI+T,NI+NA+A,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ! exp(-Q_IA) = 1 - Sum_IA Q_IA E_IA + ...
  SGM%COEF=0.0D0
  DO T=1,NA
    DO I=1,NI
      CALL WFN_EX1(-F%IA(I,T),I,NI+T,RHS,SGM)
    END DO
  END DO
  PSI1%COEF(:,:)=SGM%COEF
  DO T=1,NA
    DO I=1,NI
      CALL WFN_EX1(-0.5D0*F%IA(I,T),I,NI+T,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ALLOCATE(X(NSD))

  ! contract into X_i = <i|exp(-Q_IA)|RHS>
  DO ISD=1,NSD
    IA=IDXA(ISD)
    IB=IDXB(ISD)
    X(ISD)=RHS%COEF(IA,IB)
  END DO

  ! diagonal resolvent step

  ! method 1: invert H0 and multiply

  !ALLOCATE(U0(NSD,NSD))
  !U0=H0

  !NWORK=NSD**2
  !ALLOCATE(WORK(NWORK))
  !ALLOCATE(EVAL(NSD))

  !call dsyev_('V','U',NSD,U0,NSD,EVAL,WORK,NWORK,INFO)
  !IF (INFO.NE.0) STOP 'CASPT2_UDL: diagonalization of S0 failed'

  !S0=0.0D0
  !DO ISD=1,NSD
  !  S0(ISD,ISD)=1/EVAL(ISD)
  !END DO
  !H0=MATMUL(MATMUL(U0,S0),TRANSPOSE(U0))
  !X=MATMUL(H0,X)

  ! method 2: solve linear system H0 C = X

  ALLOCATE(IPIV(NSD))
  call dgesv_(NSD,1,H0,NSD,IPIV,X,NSD,INFO)
  IF (INFO.NE.0) THEN
    WRITE(*,*) 'INFO = ', INFO
    STOP 'Failed to solve linear equation system'
  END IF

  ! Now, continue with the transformation steps for L

  ! compute new RHS = Sum_i X_i |i>
  RHS%COEF=0.0D0
  DO ISD=1,NSD
    IA=IDXA(ISD)
    IB=IDXB(ISD)
    RHS%COEF(IA,IB)=X(ISD)
  END DO

  ! apply second series of operators exp(-Q_SI) exp(-Q_SA) exp(-Q_SI)

  ! exp(-Q_AI) = 1 - Sum_AI Q_AI E_AI
  SGM%COEF=0.0D0
  DO I=1,NI
    DO T=1,NA
      CALL WFN_EX1(-F%AI(T,I),NI+T,I,RHS,SGM)
    END DO
  END DO
  PSI1%COEF(:,:)=SGM%COEF
  DO I=1,NI
    DO T=1,NA
      CALL WFN_EX1(-0.5D0*F%AI(T,I),NI+T,I,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ! exp(-Q_SA) = 1 - Sum_SA Q_SA E_SA + ...
  SGM%COEF=0.0D0
  DO T=1,NA
    DO A=1,NS
      CALL WFN_EX1(-F%SA(A,T),NI+NA+A,NI+T,RHS,SGM)
    END DO
  END DO
  PSI1%COEF(:,:)=SGM%COEF
  DO T=1,NA
    DO A=1,NS
      CALL WFN_EX1(-0.5D0*F%SA(A,T),NI+NA+A,NI+T,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ! exp(-Q_SI) = 1 - Sum_SI Q_SI E_SI + ...
  SGM%COEF=0.0D0
  DO I=1,NI
    DO A=1,NS
      CALL WFN_EX1(-F%SI(A,I),NI+NA+A,I,RHS,SGM)
    END DO
  END DO
  PSI1%COEF(:,:)=SGM%COEF
  DO I=1,NI
    DO A=1,NS
      CALL WFN_EX1(-0.5D0*F%SI(A,I),NI+NA+A,I,PSI1,SGM)
    END DO
  END DO
  RHS%COEF(:,:)=RHS%COEF+SGM%COEF

  ! contract into X_i = <i|exp(-Q_IA)|RHS> and
  ! transform to adapt for the overcomplete basis
  DO ISD=1,NSD
    IA=IDXA(ISD)
    IB=IDXB(ISD)
    X(ISD)=RHS%COEF(IA,IB)
  END DO


  ! compute the energy

  ! method 1: E2 = <V0|X>
  E2 = DDOT_(NSD,V0,1,X,1)
  WRITE(*,'(1X,A32,F21.14)') 'E2 as <V0|X> = ', E2

  ! method 2: E2 = <0|Ĥ|Psi1>
  ! first, form the first-order wavefunction |Psi1>
  PSI1%COEF=0.0D0
  DO ISD=1,NSD
    IA=IDXA(ISD)
    IB=IDXB(ISD)
    PSI1%COEF(IA,IB)=X(ISD)
  END DO

  !WRITE(*,*) 'Final first-order wavefunction from UDL method:'
  !CALL WFN_PRINT(PSI1,1.0D-8)

  ! TAU still contains Ĥ|0>, so contract with |Psi1>
  E2 = DDOT_(PSI1%NDET,PSI1%COEF,1,TAU%COEF,1)
  WRITE(*,'(1X,A32,F21.14)') 'E2 as <Psi1|H|0> = ', E2

END SUBROUTINE CASPT2_UDL