File: dynamixtools.py

package info (click to toggle)
openmolcas 25.02-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 170,204 kB
  • sloc: f90: 498,088; fortran: 139,779; python: 13,587; ansic: 5,745; sh: 745; javascript: 660; pascal: 460; perl: 325; makefile: 17
file content (732 lines) | stat: -rwxr-xr-x 30,080 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
#***********************************************************************
# This file is part of OpenMolcas.                                     *
#                                                                      *
# OpenMolcas is free software; you can redistribute it and/or modify   *
# it under the terms of the GNU Lesser General Public License, v. 2.1. *
# OpenMolcas is distributed in the hope that it will be useful, but it *
# is provided "as is" and without any express or implied warranties.   *
# For more details see the full text of the license in the file        *
# LICENSE or in <http://www.gnu.org/licenses/>.                        *
#                                                                      *
# Copyright (C) 2018, Alessio Valentini                                *
#               2018, Luis Manuel Frutos                               *
#               2021,2022, Jonathan Richard Church                     *
#               2021,2022, Igor Schapiro                               *
#***********************************************************************

import numpy as np
import random
import argparse
import os
import sys
import math

def printDict(dictionary):
    '''
    pretty printer for dictionary
    dictionary :: Dictionary
    '''
    for x in dictionary:
        print('{} -> {}'.format(x,dictionary[x]))

def test_initial_things():
    '''
    This function returns a dictionary with test inputs instead of reading them
    dictio :: Dictionary
    These values can be used as a test. I need to set the seed and the results.
    '''
    dictio = {}
    dictio['amu_to_kg'] = 1.66053892173E-27
    dictio['joule_to_kcal'] = 1.439326E+20
    dictio['bohr_to_m'] = 5.2917724900001E-11
    dictio['degrN'] = 3
    dictio['atomN'] = 3
    dictio['T'] = 298.15
    dictio['hbar'] = 1.0545718E-34
    dictio['kb'] = 1.38064852E-23
    dictio['beta'] = 1 / (dictio['T'] * 1.38064852E-23)
    dictio['c'] = 299792458.00
    dictio['cm_to_SI']=dictio['c'] * 100
    dictio['NCMatx'] = np.array([
        [[0.00,0.00,0.07],[0.00,-0.43,-0.56],[0.00,0.43,-0.56]],
        [[0.00,0.00,0.05],[0.00,0.58,-0.40],[0.00,-0.58,-0.40]],
        [[0.00,0.07,0.00],[0.00,-0.55,0.44],[0.00,-0.55,-0.44]]])
    dictio['geom'] = np.array([
             [0.000000, 0.000000, 0.119736],
             [0.000000, 0.761603,-0.478944],
             [0.000000,-0.761603,-0.478944]])
    dictio['RedMass'] = np.array([1.0825,1.0453,1.0810])
    dictio['AtMass'] = np.array([15.9994,1.00794,1.00794])
    dictio['freq'] = np.array([1713.0153, 3727.3731,3849.4717])
    dictio['debug'] = False
    dictio['atomT'] = ['O','H','H']
    return (dictio)

def gaus_dist(sigma):
    '''
    Generate a Gaussian distribution given a sigma
    sigma :: Double
    '''
    u1 = random.uniform(0, 1)
    u2 = random.uniform(0, 1)
    #u1 = 0.5
    #u2 = 0.8
    z = np.sqrt(-2*np.log(u1))*np.sin(2*np.pi*u2)
    return z*sigma

def normal_mode(dictio,label,method):
    '''
    Main driver for initial condition with normal mode sampling. Takes as input a dictionary of inputs.
    dictio :: Dictionary <- inputs
    label :: String <- project name
    in this routine the Boltzmann distribution is calculated for a single initial condition

    degrN :: Int <- number of degrees of freedom
    atomN :: Int <- number of atoms

    some dimensions
    NCMatx :: (degrN, atomN, 3)
    Pcart,vcart :: (atomN,3)

    '''

    # dictionary unpacking
    c = dictio['c']
    beta = dictio['beta']
    freq = dictio['freq']
    geom = dictio['geom']
    atomN = dictio['atomN']
    NCMatx = dictio['NCMatx']
    AtMass = dictio['AtMass']
    RedMass = dictio['RedMass']
    degrN = dictio['degrN']
    debug = dictio['debug']
    atomT = dictio['atomT']
    kb = dictio['kb']
    hbar = dictio['hbar']
    cm_to_SI = dictio['cm_to_SI']
    amu_to_kg = dictio['amu_to_kg']
    joule_to_kcal = dictio['joule_to_kcal']
    bohr_to_m = dictio['bohr_to_m']
    T=dictio['T']
    ##Generate mass matrix from atoms
    mmatrix=mass_matrix(AtMass, atomN)*amu_to_kg
    ##Convert Coordinates to meters for calculations
    xyz_save=geom*bohr_to_m
    xyz_old=np.reshape(xyz_save, (1, 3*atomN))
    ##reshape eigenvector matricices
    NCMatx=np.reshape(NCMatx, (degrN, 3*atomN))
    ##create blank matricies for soon to be created velocities and displacements
    coord_samp=np.zeros((1, 3*atomN), dtype=float)
    ##need to add a test for linearity
    coord_samp_save=np.zeros((degrN, 3*atomN), dtype=float)
    velocity_samp=np.zeros((1, 3*atomN), dtype=float)
    ##This is a test to make sure there were no frequencies included in the hessian calculation from numerical error
    ##Count over normal modes with frequencies greater than 10cm-1 (assumed everything below that is error from the hessian calculation)
    modes=len(freq[freq > 10])
    ##If the number of modes is equal to degrN then proceed assuming that there were no numerical errors, otherwise include all modes but only use those greater than 10cm-1
    if (modes != degrN):
        j=int((3*atomN)-modes)
        COM_modes=j
    else:
        j=0
        COM_modes=0
    ##set variables and begin loop for normal mode analysis or wigner distribution
    Etot=0.0
    i=0
    while (j < degrN):
        ##Convert frequency to SI units
        freqSI=float(freq[j])*cm_to_SI*np.pi*2.0
        ##Normal Mode Sampling for vibrational ground state using a classical boltzmann distribution of energies for each normal mode
        if (method==2):
            ##Generate random number
            rand1=random.uniform(0, 1)
            ##Generate Initial guess of Ei from the cumulative distribution function of normal mode i at temperature T
            Ei=kb*T*(1-rand1)
            Etot=Ei+Etot
            ##Convert Frequencies to joules and calculate Amplitude
            A=np.power((2.0*Ei),0.5)/freqSI
            #Calculate normal coordinate and normal momentum in SI units
            x=A*np.cos(2.0*np.pi*rand1)
            v=-freqSI*A*math.sin(2.0*np.pi*rand1)
        ##Wigner sampling for ground vibrational state
        if (method==3):
            sample=0
            while (sample==0):
                rand1=random.uniform(-1, 1)*np.sqrt(hbar/freqSI)
                rand2=random.uniform(-1, 1)*np.sqrt(hbar*freqSI)
                rand3=random.uniform(0, 1)
                Ei=0.5*(np.power(freqSI*rand1,2)+np.power(rand2,2))
                probability=1.0/(np.pi)*np.exp(-(2.0*Ei)/(hbar*freqSI))
                if (probability > rand3/np.pi):
                    sample=sample+1
                    x=rand1
                    v=rand2
                    Etot=Etot+Ei
        ##Thermal Wigner sampling
        if (method==4):
            sample=0
            while (sample==0):
                alpha=np.tanh(hbar*freqSI/(2.0*kb*T))
                rand1=random.uniform(-1, 1)*np.sqrt(hbar/(freqSI*alpha))
                rand2=random.uniform(-1, 1)*np.sqrt(hbar*freqSI*(1.0/alpha))
                rand3=random.uniform(0, 1)
                Ei=0.5*(np.power(freqSI*rand1,2)+np.power(rand2,2))
                probability=alpha/(np.pi)*np.exp(-2.0*alpha*(np.power(freqSI*rand1,2)+np.power(rand2,2))/(hbar*freqSI))
                if (probability > rand3/(np.pi/alpha)):
                    sample=sample+1
                    x=rand1
                    v=rand2
                    Etot=Etot+Ei
        ##Generate displacements and velocities based on sampling method
        coord_samp=coord_samp+x*NCMatx[j, :]/np.sqrt(mmatrix)
        coord_samp_save[i, :]=x*NCMatx[j, :]/np.sqrt(mmatrix)
        velocity_samp=velocity_samp+v*NCMatx[j, :]/np.sqrt(mmatrix)
        j=j+1
        i=i+1
    ##Add displacement to optimized coordinates and generate cartesian velocities
    vel_new=velocity_samp
    xyz_new=xyz_old+coord_samp
    vel_reshape=np.reshape(vel_new, (atomN, 3))
    xyz_reshape=np.reshape(xyz_new, (atomN, 3))
    ##Check initial total energy based on harmonic oscillator hamiltonian
    E=0.0
    j=COM_modes
    KE=np.power(mmatrix[:]*np.reshape(vel_reshape, (1, 3*atomN)), 2.0)/(2.0*mmatrix[:])
    KE=np.sum(KE)
    while (j < degrN):
        Ei=np.power(float(freq[j])*cm_to_SI*2.0*np.pi, 2.0)*np.power(np.power(mmatrix[:], 0.5)*coord_samp_save[j-COM_modes, :], 2.0)/2.0
        E=E+np.sum(Ei)
        j=j+1
    E=E+KE  
    #This can be uncommented for testing print("initial E, KE, Etot", E-KE, " ", KE, " " , Etot, '\n')
    ##Begin to removal any supurious COM translation or rotation in the molecule and then adjusting the velocities and displacements to conserve energy
    accept=0.0
    Mass=AtMass*amu_to_kg
    while (accept==0):
        ##First calculate the cartesian coordinates with the COM at origin
        com=CenterOfMass(Mass, vel_reshape, atomN)
        com_xyz=CenterOfMass(Mass, xyz_reshape, atomN)
        xyz_reshape_COM=xyz_reshape
        xyz_reshape_COM[:, 0] -= com_xyz[0]
        xyz_reshape_COM[:, 1] -= com_xyz[1]
        xyz_reshape_COM[:, 2] -= com_xyz[2]
        ##Next generate angular momentum, inverse moment of interia matrix, and angular velocity
        Ltot=angular_mo(Mass, xyz_reshape_COM, vel_reshape, atomN)
        invI=inertia(xyz_reshape_COM, Mass, atomN)
        ang_vel=np.dot(invI, Ltot)
        xyz_reshaped=np.reshape(xyz_reshape_COM, (atomN, 3))
        j=0
        while (j < atomN):
            ##Remove spurious rotational velocity
            x=xyz_reshaped[j,0]
            y=xyz_reshaped[j,1]
            z=xyz_reshaped[j,2]
            xyz_corr=np.array([x, y, z])
            ang_corr=angular_vel(Mass, xyz_corr, ang_vel, atomN)
            vel_reshape[j, 0] -= ang_corr[0]
            vel_reshape[j, 1] -= ang_corr[1]
            vel_reshape[j, 2] -= ang_corr[2]
            j=j+1
        ##Remove spurious COM velocity
        com=CenterOfMass(Mass, vel_reshape, atomN)
        vel_reshape[:, 0] -= com[0]
        vel_reshape[:, 1] -= com[1]
        vel_reshape[:, 2] -= com[2]
        ##Calculate harmonic energy and compare to original value
        E=0.0
        j=COM_modes
        KE=np.power(mmatrix[:]*np.reshape(vel_reshape, (1, 3*atomN)), 2.0)/(2.0*mmatrix[:])
        KE=np.sum(KE)
        while (j < degrN):
            Ei=np.power(float(freq[j])*cm_to_SI*2.0*np.pi, 2.0)*np.power(np.power(mmatrix[:], 0.5)*coord_samp_save[j-COM_modes, :], 2.0)/2.0
            E=E+np.sum(Ei)
            j=j+1
        E=E+KE
        #This can be uncommented for testing print("after error removal E, KE, Etot", E-KE, " ", KE, " " , Etot)
        ##If the  value differs by less than 1 percent accept and move to next conndition, otherwise scale the displacements and velocities and try again
        if (abs(E-Etot)/Etot*100 < 1):
            accept=accept+1
            vel_final=vel_reshape
            coord_final=xyz_reshape
        else :
            vel_reshape=vel_reshape*np.power(Etot/E, 0.5)
            xyz_reshape=np.reshape(xyz_old+(coord_samp)*np.power(Etot/E, 0.5), (atomN, 3))
            coord_samp_save=(coord_samp_save)*np.power(Etot/E, 0.5)
    ##Prepare for final coordinate and velocity file writing
    xyz_final=np.reshape(coord_final, (atomN, 3))
    vel_final=np.reshape(vel_final, (atomN, 3))
    ##Convert coordinates to angstroms, velocities to bohr/au
    xyz_final=xyz_final*1.0E10
    vel_final=vel_final*4.57102844e-7
    ##Create final file name
    geomName = label + '.xyz'
    veloName = label + '.velocity.xyz'
    #stringOUT = '\n{}\n{}\n{}\n{}'
    #print(stringOUT.format(veloName, Qcart, geomName, newGeom))
    np.savetxt(veloName,vel_final,fmt='%1.6f')
    # add the atom name in the matrix
    atom_type = np.array(atomT)[:, np.newaxis]
    atom_t_and_geom = np.hstack((atom_type,xyz_final))
    np.savetxt(geomName,atom_t_and_geom,header='{}\n'.format(atomN),comments='',fmt='%s %s %s %s')

def generate_one_boltz(dictio,label):
    '''
    Main driver for initial condition. Takes as input a dictionary of inputs.
    dictio :: Dictionary <- inputs
    label :: String <- project name
    in this routine the Boltzmann distribution is calculated for a single initial condition

    degrN :: Int <- number of degrees of freedom
    atomN :: Int <- number of atoms

    some dimensions
    NCMatx :: (degrN, atomN, 3)
    Pcart,vcart :: (atomN,3)

    '''

    # dictionary unpacking
    c = dictio['c']
    beta = dictio['beta']
    freq = dictio['freq']
    geom = dictio['geom']
    atomN = dictio['atomN']
    NCMatx = dictio['NCMatx']
    AtMass = dictio['AtMass']
    RedMass = dictio['RedMass']
    degrN = dictio['degrN']
    debug = dictio['debug']
    atomT = dictio['atomT']
    kb = dictio['kb']
    hbar = dictio['hbar']
    cm_to_SI = dictio['cm_to_SI']
    amu_to_kg = dictio['amu_to_kg']
    joule_to_kcal = dictio['joule_to_kcal']
    bohr_to_m = dictio['bohr_to_m']
    # DEBUG TIME
    if debug:
        printDict(dictio)
        import pickle
        with open('debug_dictionary_file.pkl', 'wb') as f:
            pickle.dump(dictio, f, pickle.HIGHEST_PROTOCOL)
    # this is lambda :: (degrN)
    lamb = 4 * (np.pi**2) * (freq*100)**2 * c**2
    sigmaP = np.sqrt(RedMass * 1.660537E-27 / beta)
    # change of dimensions
    Pint = (np.array([ gaus_dist(x) for x in sigmaP ]))*6.02214086E21
    # I want to multiply on first axis, both for Pcart and vcart
    # this is why I create and tile the new pint_broadcasted vector
    # it is ugly, there must be a broadcast numpy rule that works better and more efficient
    # but since the degrees of freedom are never gonna be 30.000.000, this loop here is
    # still efficient enough.
    pint_broadcasted = np.empty((degrN,atomN,3))
    for i in range(degrN):
        pint_broadcasted[i] = np.ones((atomN,3)) * Pint[i]
    to_be_summed = NCMatx * pint_broadcasted
    Pcart = np.sum(to_be_summed, axis=0)
    # same multiplication on first axis as with pint
    AtMass_broadcasted = np.empty((atomN,3))
    for i in range(atomN):
        AtMass_broadcasted[i] = np.ones(3) * AtMass[i]
    vcart = Pcart / AtMass_broadcasted
    sigma_q = 1/np.sqrt(beta*lamb)
    # change of dimensions
    Qint = (np.array([ gaus_dist(x) for x in sigma_q ]))*2.4540051E23
    # same multiplication on first axis as with pint and AtMass
    qint_broadcasted = np.empty((degrN,atomN,3))
    for i in range(degrN):
        qint_broadcasted[i] = np.ones((atomN,3)) * Qint[i]
    to_be_summed = NCMatx * qint_broadcasted
    Qcart_temp = np.sum(to_be_summed, axis=0)
    atmass_squared = np.sqrt(AtMass_broadcasted)
    Qcart = Qcart_temp/atmass_squared
    # Pcart is the displacement, added to the main geometry
    # Transformed into ANGSTROM !!
    # in Jan 2019, Dynamix takes geometries in angstrom but velocities in bohr
    newGeom = (Pcart + geom) * 0.529177249
    geomName = label + '.xyz'
    veloName = label + '.velocity.xyz'
    #stringOUT = '\n{}\n{}\n{}\n{}'
    #print(stringOUT.format(veloName, Qcart, geomName, newGeom))
    np.savetxt(veloName,Qcart,fmt='%1.6f')
    # add the atom name in the matrix
    atom_type = np.array(atomT)[:, np.newaxis]
    atom_t_and_geom = np.hstack((atom_type,newGeom))
    np.savetxt(geomName,atom_t_and_geom,header='{}\n'.format(atomN),comments='',fmt='%s %s %s %s')

def parseCL():
    d = '''
This tools is intended to be used as a support to launch molecular dynamics'

usage example:

python3 $MOLCAS/Tools/dynamixtools/dynamixtools.py -t 273 -c 100 -m 1 -i ${Project}.freq.molden

'''
    parser = argparse.ArgumentParser(description=d, formatter_class=argparse.RawTextHelpFormatter)
    parser.add_argument("-s", "--seed",
                        dest="seed",
                        required=False,
                        type=int,
                        help="indicate the SEED to use for the generation of randoms")
    parser.add_argument("-l", "--label",
                        dest="label",
                        required=False,
                        type=str,
                        help="label for your project (default is \"geom\")")
    parser.add_argument("-i", "--input",
                        dest="i",
                        required=False,
                        type=str,
                        help="path of the frequency h5 or molden file")
    parser.add_argument("-c", "--condition",
                        dest="condition",
                        required=False,
                        type=int,
                        help="number of initial conditions (default 1)")
    parser.add_argument("-t", "--temperature",
                        dest="temp",
                        required=False,
                        type=float,
                        help="temperature in kelvin for the initial conditions")
    parser.add_argument("-v", "--verbose",
                        dest="debug",
                        required=False,
                        action='store_true',
                        help="more verbose output")
    parser.add_argument("-T", "--TEST",
                        dest="test",
                        required=False,
                        action='store_true',
                        help="keyword use to test the routines")
    parser.add_argument("-D", "--DIGIT",
                        dest="digits",
                        required=False,
                        action='store_true',
                        help="keyword to suppress the counter in the filename (needed for debug)")
    parser.add_argument("-m", "--method",
                        dest="method",
                        required=False,
                        type=int,
                        help=('''\
Keyword to specify the sampling method:
1 Initial conditions based on the molecular vibrational frequencies and energies sampled from a Boltzmann distribution (Default).
2 Thermal normal mode sampling where the cumulitative distribution function for a classical boltzmann distribution at temperature T is used to approximate the energy of each mode.
3 Wigner distribution for the ground vibrational state, n=0.
4 Thermal Wigner distribution for temperature T based on the analytical solution for a canonical ensemble of harmonic oscillators.'''))
    args = parser.parse_args()
    return args

def parseMoldenFreq(fn):
    '''
    This function is the parser for molden freq files.
    '''
    inp = {}
    with open(fn) as f:
        first = f.readline()
        # parse n_freq
        second = f.readline()
        if second.strip() == '[N_FREQ]':
            degrN = int(f.readline().strip())
            inp['degrN'] = degrN
        else:
            sys.exit('This molden format is not recognized N_FREQ')
        # parse frequencies (they should be second)
        freqLabel = f.readline()
        if freqLabel.strip() == '[FREQ]':
            freq = np.empty(degrN)
            for i in range(degrN):
                freq_this_line = f.readline()
                freq[i] = float(freq_this_line.strip())
            inp['freq'] = freq
        else:
            sys.exit('This molden format is not recognized FREQ')
        # parse INT (they should be third)
        intLabel = f.readline()
        if intLabel.strip() == '[INT]':
            intL = np.empty(degrN)
            for i in range(degrN):
                intL_this_line = f.readline()
                intL[i] = float(intL_this_line.strip())
            inp['intL'] = intL
        else:
            sys.exit('This molden format is not recognized INT')
        # parse NATOM
        natomLabel = f.readline()
        if natomLabel.strip() == '[NATOM]':
            atomN = int(f.readline().strip())
            inp['atomN'] = atomN
        else:
            sys.exit('This molden format is not recognized NATOM')
        # parse FR-COORD (they should be fifth field)
        coordLabel = f.readline()
        if coordLabel.strip() == '[FR-COORD]':
            atomT = []
            coordL = np.empty((atomN,3))
            for i in range(atomN):
                geom_this_line = f.readline()
                # H 1.9 1.3 -4.5
                lol = filter(None, geom_this_line.strip('\n').split(' '))
                a,x,y,z = list(lol)
                atomT.append(a)
                coordL[i] = [float(x),float(y),float(z)]
            inp['atomT'] = atomT
            inp['geom'] = coordL
        else:
            sys.exit('This molden format is not recognized FR-COORD')
        # parse FR-NORM-COORD (they should be sixth field)
        norm_coord_Label = f.readline()
        if norm_coord_Label.strip() == '[FR-NORM-COORD]':
            NCMatx = np.empty((degrN,atomN,3))
            for j in range(degrN):
                vibration_line = f.readline()
                for i in range(atomN):
                    geom_this_line = f.readline()
                    evecs = filter(None, geom_this_line.strip('\n').split(' '))
                    x,y,z = list(evecs)
                    NCMatx[j,i] = [float(x),float(y),float(z)]
            inp['NCMatx'] = NCMatx
        else:
            sys.exit('This molden format is not recognized FR-NORM-COORD')
        # parse RMASS (they should be third)
        rmass_Label = f.readline()
        if rmass_Label.strip() == '[RMASS]':
            rmassL = np.empty(degrN)
            for i in range(degrN):
                rmassL_this_line = f.readline()
                rmassL[i] = float(rmassL_this_line.strip())
            inp['RedMass'] = rmassL
        else:
            sys.exit('This molden format is not recognized RMASS')
    # molden file finished, passing the dictionary back
    return(inp)

def parseh5Freq(fn):
    inp = {}
    sys.exit('This feature is still not available')
    return(inp)

def massOf(elem):
    '''
    You get the mass of an element from the label string
    elem :: String
    '''
    dictMass = {'X': 0, 'Ac': 227.028, 'Al': 26.981539, 'Am': 243, 'Sb': 121.757, 'Ar':
            39.948, 'As': 74.92159, 'At': 210, 'Ba': 137.327, 'Bk': 247, 'Be':
            9.012182, 'Bi': 208.98037, 'Bh': 262, 'B': 10.811, 'Br': 79.904,
            'Cd': 112.411, 'Ca': 40.078, 'Cf': 251, 'C': 12.011, 'Ce': 140.115,
            'Cs': 132.90543, 'Cl': 35.4527, 'Cr': 51.9961, 'Co': 58.9332, 'Cu':
            63.546, 'Cm': 247, 'Db': 262, 'Dy': 162.5, 'Es': 252, 'Er': 167.26,
            'Eu': 151.965, 'Fm': 257, 'F': 18.9984032, 'Fr': 223, 'Gd': 157.25,
            'Ga': 69.723, 'Ge': 72.61, 'Au': 196.96654, 'Hf': 178.49, 'Hs':
            265, 'He': 4.002602, 'Ho': 164.93032, 'H': 1.00794, 'In': 114.82,
            'I': 126.90447, 'Ir': 192.22, 'Fe': 55.847, 'Kr': 83.8, 'La':
            138.9055, 'Lr': 262, 'Pb': 207.2, 'Li': 6.941, 'Lu': 174.967, 'Mg':
            24.305, 'Mn': 54.93805, 'Mt': 266, 'Md': 258, 'Hg': 200.59, 'Mo': 95.94,
            'Nd': 144.24, 'Ne': 20.1797, 'Np': 237.048, 'Ni': 58.6934, 'Nb': 92.90638,
            'N': 14.00674, 'No': 259, 'Os': 190.2, 'O': 15.9994, 'Pd': 106.42, 'P':
            30.973762, 'Pt': 195.08, 'Pu': 244, 'Po': 209, 'K': 39.0983, 'Pr':
            140.90765, 'Pm': 145, 'Pa': 231.0359, 'Ra': 226.025, 'Rn': 222,
            'Re': 186.207, 'Rh': 102.9055, 'Rb': 85.4678, 'Ru': 101.07, 'Rf':
            261, 'Sm': 150.36, 'Sc': 44.95591, 'Sg': 263, 'Se': 78.96, 'Si':
            28.0855, 'Ag': 107.8682, 'Na': 22.989768, 'Sr': 87.62, 'S': 32.066,
            'Ta': 180.9479, 'Tc': 98, 'Te': 127.6, 'Tb': 158.92534, 'Tl':
            204.3833, 'Th': 232.0381, 'Tm': 168.93421, 'Sn': 118.71, 'Ti':
            47.88, 'W': 183.85, 'U': 238.0289, 'V': 50.9415, 'Xe': 131.29,
            'Yb': 173.04, 'Y': 88.90585, 'Zn': 65.39, 'Zr': 91.224}
    return(dictMass[elem])

def atomic_masses(atomtype_list):
    '''
    this function takes an atomtype list and return a numpy array with
    atomic masses
    atomtype_list :: [String] <- ['H', 'H', 'O']
    '''
    at_mass = [ massOf(x) for x in atomtype_list ]
    return np.array(at_mass)

def mass_matrix(AtMass, atomN):
    mass=np.zeros((atomN, 1), dtype=float)
    mass_matrix=np.zeros((atomN, 3), dtype=float)
    i=0
    while (i < atomN):
        mass_matrix[i, 0]=AtMass[i]
        mass_matrix[i, 1]=AtMass[i]
        mass_matrix[i, 2]=AtMass[i]
        i=i+1
    mass_matrix=np.reshape(mass_matrix, (1, 3*atomN))
    return mass_matrix

def inertia (xyz,mass,atomN):
    ##I'm not in love with this function and if anyone can do it better please do.
    j=0
    lxx=0
    lyy=0
    lzz=0
    lxy=0
    lxz=0
    lyx=0
    lzx=0
    lyz=0
    lzy=0
    while (j < 3):
        i=0
        while (i < 3):
            h=0
            while (h < atomN):
                stringm=float(mass[h])
                stringx=float(xyz[h, 0])
                stringy=float(xyz[h, 1])
                stringz=float(xyz[h, 2])
                if (i==j) and (i==0) and (j==0):
                    lxx=lxx+stringm*(math.pow(stringy, 2)+math.pow(stringz, 2))
                elif (i==j) and (i==1) and (j==1):
                    lyy=lyy+stringm*(math.pow(stringx, 2)+math.pow(stringz, 2))
                elif (i==j) and (i==2) and (j==2):
                    lzz=lzz+stringm*(math.pow(stringx, 2)+math.pow(stringy, 2))
                elif (i!=j) and (j==0) and (i==1):
                    lxy=lxy+(-stringm*stringx*stringy)
                elif (i!=j) and (j==0) and (i==2):
                    lxz=lxz+(-stringm*stringx*stringz)
                elif (i!=j) and (j==1) and (i==0):
                    lyx=lyx+(-stringm*stringy*stringx)
                elif (i!=j) and (j==1) and (i==2):
                    lyz=lyz+(-stringm*stringy*stringz)
                elif (i!=j) and (j==2) and (i==0):
                    lzx=lzx+(-stringm*stringz*stringx)
                elif (i!=j) and (j==2) and (i==1):
                    lzy=lzy+(-stringm*stringz*stringy)
        
                h=h+1
            i=i+1
        j=j+1
    data1=np.array([[lxx, lxy, lxz], [lyx, lyy, lyz], [lzx, lzy, lzz]])
    invI=np.linalg.inv(data1)
    return invI

def CenterOfMass(mass, vel, atomN):
    h=0
    stringcomx=0
    stringcomy=0
    stringcomz=0
    stringmtot=np.sum(mass[:])
    while (h < atomN):
        stringcomx=stringcomx+float(vel[h, 0])*float(mass[h])
        stringcomy=stringcomy+float(vel[h, 1])*float(mass[h])
        stringcomz=stringcomz+float(vel[h, 2])*float(mass[h])
        h=h+1
    comx=stringcomx/stringmtot
    comy=stringcomy/stringmtot
    comz=stringcomz/stringmtot
    com=np.array([comx, comy, comz])
    return com

def angular_mo (mass, xyz, vel, atomN):
    Lxtot=0
    Lytot=0
    Lztot=0
    h=0
    xyz=np.reshape(xyz, (atomN, 3))
    while (h < atomN):
        px=float(vel[h, 0])*float(mass[h])
        py=float(vel[h, 1])*float(mass[h])
        pz=float(vel[h, 2])*float(mass[h])
        Lx=float(xyz[h, 1])*pz-float(xyz[h, 2])*py
        Ly=float(xyz[h, 2])*px-float(xyz[h, 0])*pz
        Lz=float(xyz[h, 0])*py-float(xyz[h, 1])*px
        Lxtot=Lxtot+Lx
        Lytot=Lytot+Ly
        Lztot=Lztot+Lz
        h=h+1
    Ltot=np.array([Lxtot, Lytot, Lztot])
    return Ltot

def angular_vel (mass, xyz, vel, atomN):
    px=float(vel[0])
    py=float(vel[1])
    pz=float(vel[2])
    wx=-float(xyz[1])*pz+float(xyz[2])*py
    wy=-float(xyz[2])*px+float(xyz[0])*pz
    wz=-float(xyz[0])*py+float(xyz[1])*px
    wtot=np.array([wx, wy, wz])
    return wtot

def main():
    print('')
    args = parseCL()

    if args.test:
        inputs = test_initial_things()
        seedI = 123456789
        random.seed(seedI)
        complete_label = 'test_bolz'
        generate_one_boltz(inputs,complete_label)
        print(inputs)
    else:
        # i is input file from command line
        if args.i:
            fn=args.i
        else:
            # I do not like this termination here, but I still have to figure out how
            # to properly do mutually exclusive argparse keywords.
            # I will keep this exit code here in the meanwhile...
            sys.exit('-i input freq file is a required keyword, --help for help')
        if args.seed:
            seedI = args.seed
            print('seed set to: {}'.format(seedI))
            random.seed(seedI)
        if args.label:
            label = args.label
            print('Project label set to: {}'.format(label))
        else:
            label = 'geom'
        if args.condition:
            number_of_ic = args.condition
        else:
            number_of_ic = 1
        if args.method:
            method = args.method
        else:
            method = 1
        # check if is is molden or h5
        name, ext = os.path.splitext(fn)
        if ext == '.molden':
            inputs = parseMoldenFreq(fn)
        elif ext == '.h5':
            inputs = parseh5Freq(fn)
        else:
            print('You must use freq.molden or .h5 files')
        if args.debug:
            inputs['debug'] = True
        else:
            inputs['debug'] = False
        if args.temp == None:
            print('\nSetting default temperature to 300 K. Use the -t keyword to set a custom temperature.\n')
            inputs['T'] = 300
        else:
            inputs['T'] = args.temp
        ##Conversion Factors and constants
        inputs['kb'] = 1.38064852E-23
        inputs['h'] = 6.62607004E-34
        inputs['hbar'] = 1.0545718E-34
        inputs['beta'] = 1 / (inputs['T'] * inputs['kb'])
        inputs['c'] = 299792458.00
        inputs['cm_to_SI'] = inputs['c'] * 100
        inputs['amu_to_kg'] = 1.66053892173E-27
        inputs['joule_to_kcal'] = 1.439326E+20
        inputs['bohr_to_m'] = 5.2917724900001E-11
        inputs['AtMass'] = atomic_masses(inputs['atomT'])
        for counter in range(number_of_ic):
            if args.digits:
                complete_label = '{}'.format(label)
            else:
                complete_label = '{}{:04}'.format(label,counter)
            if (method==1):
                    generate_one_boltz(inputs,complete_label)
            elif (method==2 or method==3 or method==4):
                    normal_mode(inputs,complete_label,method)
        print('\nThis routine generates geometries in angstrom and velocities in bohr (the format that Molcas requires for a Semiclassical Molecular Dynamics)\n')

if __name__ == "__main__":
    main()