1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
|
#***********************************************************************
# This file is part of OpenMolcas. *
# *
# OpenMolcas is free software; you can redistribute it and/or modify *
# it under the terms of the GNU Lesser General Public License, v. 2.1. *
# OpenMolcas is distributed in the hope that it will be useful, but it *
# is provided "as is" and without any express or implied warranties. *
# For more details see the full text of the license in the file *
# LICENSE or in <http://www.gnu.org/licenses/>. *
# *
# Copyright (C) 2018, Alessio Valentini *
# 2018, Luis Manuel Frutos *
# 2021,2022, Jonathan Richard Church *
# 2021,2022, Igor Schapiro *
#***********************************************************************
import numpy as np
import random
import argparse
import os
import sys
import math
def printDict(dictionary):
'''
pretty printer for dictionary
dictionary :: Dictionary
'''
for x in dictionary:
print('{} -> {}'.format(x,dictionary[x]))
def test_initial_things():
'''
This function returns a dictionary with test inputs instead of reading them
dictio :: Dictionary
These values can be used as a test. I need to set the seed and the results.
'''
dictio = {}
dictio['amu_to_kg'] = 1.66053892173E-27
dictio['joule_to_kcal'] = 1.439326E+20
dictio['bohr_to_m'] = 5.2917724900001E-11
dictio['degrN'] = 3
dictio['atomN'] = 3
dictio['T'] = 298.15
dictio['hbar'] = 1.0545718E-34
dictio['kb'] = 1.38064852E-23
dictio['beta'] = 1 / (dictio['T'] * 1.38064852E-23)
dictio['c'] = 299792458.00
dictio['cm_to_SI']=dictio['c'] * 100
dictio['NCMatx'] = np.array([
[[0.00,0.00,0.07],[0.00,-0.43,-0.56],[0.00,0.43,-0.56]],
[[0.00,0.00,0.05],[0.00,0.58,-0.40],[0.00,-0.58,-0.40]],
[[0.00,0.07,0.00],[0.00,-0.55,0.44],[0.00,-0.55,-0.44]]])
dictio['geom'] = np.array([
[0.000000, 0.000000, 0.119736],
[0.000000, 0.761603,-0.478944],
[0.000000,-0.761603,-0.478944]])
dictio['RedMass'] = np.array([1.0825,1.0453,1.0810])
dictio['AtMass'] = np.array([15.9994,1.00794,1.00794])
dictio['freq'] = np.array([1713.0153, 3727.3731,3849.4717])
dictio['debug'] = False
dictio['atomT'] = ['O','H','H']
return (dictio)
def gaus_dist(sigma):
'''
Generate a Gaussian distribution given a sigma
sigma :: Double
'''
u1 = random.uniform(0, 1)
u2 = random.uniform(0, 1)
#u1 = 0.5
#u2 = 0.8
z = np.sqrt(-2*np.log(u1))*np.sin(2*np.pi*u2)
return z*sigma
def normal_mode(dictio,label,method):
'''
Main driver for initial condition with normal mode sampling. Takes as input a dictionary of inputs.
dictio :: Dictionary <- inputs
label :: String <- project name
in this routine the Boltzmann distribution is calculated for a single initial condition
degrN :: Int <- number of degrees of freedom
atomN :: Int <- number of atoms
some dimensions
NCMatx :: (degrN, atomN, 3)
Pcart,vcart :: (atomN,3)
'''
# dictionary unpacking
c = dictio['c']
beta = dictio['beta']
freq = dictio['freq']
geom = dictio['geom']
atomN = dictio['atomN']
NCMatx = dictio['NCMatx']
AtMass = dictio['AtMass']
RedMass = dictio['RedMass']
degrN = dictio['degrN']
debug = dictio['debug']
atomT = dictio['atomT']
kb = dictio['kb']
hbar = dictio['hbar']
cm_to_SI = dictio['cm_to_SI']
amu_to_kg = dictio['amu_to_kg']
joule_to_kcal = dictio['joule_to_kcal']
bohr_to_m = dictio['bohr_to_m']
T=dictio['T']
##Generate mass matrix from atoms
mmatrix=mass_matrix(AtMass, atomN)*amu_to_kg
##Convert Coordinates to meters for calculations
xyz_save=geom*bohr_to_m
xyz_old=np.reshape(xyz_save, (1, 3*atomN))
##reshape eigenvector matricices
NCMatx=np.reshape(NCMatx, (degrN, 3*atomN))
##create blank matricies for soon to be created velocities and displacements
coord_samp=np.zeros((1, 3*atomN), dtype=float)
##need to add a test for linearity
coord_samp_save=np.zeros((degrN, 3*atomN), dtype=float)
velocity_samp=np.zeros((1, 3*atomN), dtype=float)
##This is a test to make sure there were no frequencies included in the hessian calculation from numerical error
##Count over normal modes with frequencies greater than 10cm-1 (assumed everything below that is error from the hessian calculation)
modes=len(freq[freq > 10])
##If the number of modes is equal to degrN then proceed assuming that there were no numerical errors, otherwise include all modes but only use those greater than 10cm-1
if (modes != degrN):
j=int((3*atomN)-modes)
COM_modes=j
else:
j=0
COM_modes=0
##set variables and begin loop for normal mode analysis or wigner distribution
Etot=0.0
i=0
while (j < degrN):
##Convert frequency to SI units
freqSI=float(freq[j])*cm_to_SI*np.pi*2.0
##Normal Mode Sampling for vibrational ground state using a classical boltzmann distribution of energies for each normal mode
if (method==2):
##Generate random number
rand1=random.uniform(0, 1)
##Generate Initial guess of Ei from the cumulative distribution function of normal mode i at temperature T
Ei=kb*T*(1-rand1)
Etot=Ei+Etot
##Convert Frequencies to joules and calculate Amplitude
A=np.power((2.0*Ei),0.5)/freqSI
#Calculate normal coordinate and normal momentum in SI units
x=A*np.cos(2.0*np.pi*rand1)
v=-freqSI*A*math.sin(2.0*np.pi*rand1)
##Wigner sampling for ground vibrational state
if (method==3):
sample=0
while (sample==0):
rand1=random.uniform(-1, 1)*np.sqrt(hbar/freqSI)
rand2=random.uniform(-1, 1)*np.sqrt(hbar*freqSI)
rand3=random.uniform(0, 1)
Ei=0.5*(np.power(freqSI*rand1,2)+np.power(rand2,2))
probability=1.0/(np.pi)*np.exp(-(2.0*Ei)/(hbar*freqSI))
if (probability > rand3/np.pi):
sample=sample+1
x=rand1
v=rand2
Etot=Etot+Ei
##Thermal Wigner sampling
if (method==4):
sample=0
while (sample==0):
alpha=np.tanh(hbar*freqSI/(2.0*kb*T))
rand1=random.uniform(-1, 1)*np.sqrt(hbar/(freqSI*alpha))
rand2=random.uniform(-1, 1)*np.sqrt(hbar*freqSI*(1.0/alpha))
rand3=random.uniform(0, 1)
Ei=0.5*(np.power(freqSI*rand1,2)+np.power(rand2,2))
probability=alpha/(np.pi)*np.exp(-2.0*alpha*(np.power(freqSI*rand1,2)+np.power(rand2,2))/(hbar*freqSI))
if (probability > rand3/(np.pi/alpha)):
sample=sample+1
x=rand1
v=rand2
Etot=Etot+Ei
##Generate displacements and velocities based on sampling method
coord_samp=coord_samp+x*NCMatx[j, :]/np.sqrt(mmatrix)
coord_samp_save[i, :]=x*NCMatx[j, :]/np.sqrt(mmatrix)
velocity_samp=velocity_samp+v*NCMatx[j, :]/np.sqrt(mmatrix)
j=j+1
i=i+1
##Add displacement to optimized coordinates and generate cartesian velocities
vel_new=velocity_samp
xyz_new=xyz_old+coord_samp
vel_reshape=np.reshape(vel_new, (atomN, 3))
xyz_reshape=np.reshape(xyz_new, (atomN, 3))
##Check initial total energy based on harmonic oscillator hamiltonian
E=0.0
j=COM_modes
KE=np.power(mmatrix[:]*np.reshape(vel_reshape, (1, 3*atomN)), 2.0)/(2.0*mmatrix[:])
KE=np.sum(KE)
while (j < degrN):
Ei=np.power(float(freq[j])*cm_to_SI*2.0*np.pi, 2.0)*np.power(np.power(mmatrix[:], 0.5)*coord_samp_save[j-COM_modes, :], 2.0)/2.0
E=E+np.sum(Ei)
j=j+1
E=E+KE
#This can be uncommented for testing print("initial E, KE, Etot", E-KE, " ", KE, " " , Etot, '\n')
##Begin to removal any supurious COM translation or rotation in the molecule and then adjusting the velocities and displacements to conserve energy
accept=0.0
Mass=AtMass*amu_to_kg
while (accept==0):
##First calculate the cartesian coordinates with the COM at origin
com=CenterOfMass(Mass, vel_reshape, atomN)
com_xyz=CenterOfMass(Mass, xyz_reshape, atomN)
xyz_reshape_COM=xyz_reshape
xyz_reshape_COM[:, 0] -= com_xyz[0]
xyz_reshape_COM[:, 1] -= com_xyz[1]
xyz_reshape_COM[:, 2] -= com_xyz[2]
##Next generate angular momentum, inverse moment of interia matrix, and angular velocity
Ltot=angular_mo(Mass, xyz_reshape_COM, vel_reshape, atomN)
invI=inertia(xyz_reshape_COM, Mass, atomN)
ang_vel=np.dot(invI, Ltot)
xyz_reshaped=np.reshape(xyz_reshape_COM, (atomN, 3))
j=0
while (j < atomN):
##Remove spurious rotational velocity
x=xyz_reshaped[j,0]
y=xyz_reshaped[j,1]
z=xyz_reshaped[j,2]
xyz_corr=np.array([x, y, z])
ang_corr=angular_vel(Mass, xyz_corr, ang_vel, atomN)
vel_reshape[j, 0] -= ang_corr[0]
vel_reshape[j, 1] -= ang_corr[1]
vel_reshape[j, 2] -= ang_corr[2]
j=j+1
##Remove spurious COM velocity
com=CenterOfMass(Mass, vel_reshape, atomN)
vel_reshape[:, 0] -= com[0]
vel_reshape[:, 1] -= com[1]
vel_reshape[:, 2] -= com[2]
##Calculate harmonic energy and compare to original value
E=0.0
j=COM_modes
KE=np.power(mmatrix[:]*np.reshape(vel_reshape, (1, 3*atomN)), 2.0)/(2.0*mmatrix[:])
KE=np.sum(KE)
while (j < degrN):
Ei=np.power(float(freq[j])*cm_to_SI*2.0*np.pi, 2.0)*np.power(np.power(mmatrix[:], 0.5)*coord_samp_save[j-COM_modes, :], 2.0)/2.0
E=E+np.sum(Ei)
j=j+1
E=E+KE
#This can be uncommented for testing print("after error removal E, KE, Etot", E-KE, " ", KE, " " , Etot)
##If the value differs by less than 1 percent accept and move to next conndition, otherwise scale the displacements and velocities and try again
if (abs(E-Etot)/Etot*100 < 1):
accept=accept+1
vel_final=vel_reshape
coord_final=xyz_reshape
else :
vel_reshape=vel_reshape*np.power(Etot/E, 0.5)
xyz_reshape=np.reshape(xyz_old+(coord_samp)*np.power(Etot/E, 0.5), (atomN, 3))
coord_samp_save=(coord_samp_save)*np.power(Etot/E, 0.5)
##Prepare for final coordinate and velocity file writing
xyz_final=np.reshape(coord_final, (atomN, 3))
vel_final=np.reshape(vel_final, (atomN, 3))
##Convert coordinates to angstroms, velocities to bohr/au
xyz_final=xyz_final*1.0E10
vel_final=vel_final*4.57102844e-7
##Create final file name
geomName = label + '.xyz'
veloName = label + '.velocity.xyz'
#stringOUT = '\n{}\n{}\n{}\n{}'
#print(stringOUT.format(veloName, Qcart, geomName, newGeom))
np.savetxt(veloName,vel_final,fmt='%1.6f')
# add the atom name in the matrix
atom_type = np.array(atomT)[:, np.newaxis]
atom_t_and_geom = np.hstack((atom_type,xyz_final))
np.savetxt(geomName,atom_t_and_geom,header='{}\n'.format(atomN),comments='',fmt='%s %s %s %s')
def generate_one_boltz(dictio,label):
'''
Main driver for initial condition. Takes as input a dictionary of inputs.
dictio :: Dictionary <- inputs
label :: String <- project name
in this routine the Boltzmann distribution is calculated for a single initial condition
degrN :: Int <- number of degrees of freedom
atomN :: Int <- number of atoms
some dimensions
NCMatx :: (degrN, atomN, 3)
Pcart,vcart :: (atomN,3)
'''
# dictionary unpacking
c = dictio['c']
beta = dictio['beta']
freq = dictio['freq']
geom = dictio['geom']
atomN = dictio['atomN']
NCMatx = dictio['NCMatx']
AtMass = dictio['AtMass']
RedMass = dictio['RedMass']
degrN = dictio['degrN']
debug = dictio['debug']
atomT = dictio['atomT']
kb = dictio['kb']
hbar = dictio['hbar']
cm_to_SI = dictio['cm_to_SI']
amu_to_kg = dictio['amu_to_kg']
joule_to_kcal = dictio['joule_to_kcal']
bohr_to_m = dictio['bohr_to_m']
# DEBUG TIME
if debug:
printDict(dictio)
import pickle
with open('debug_dictionary_file.pkl', 'wb') as f:
pickle.dump(dictio, f, pickle.HIGHEST_PROTOCOL)
# this is lambda :: (degrN)
lamb = 4 * (np.pi**2) * (freq*100)**2 * c**2
sigmaP = np.sqrt(RedMass * 1.660537E-27 / beta)
# change of dimensions
Pint = (np.array([ gaus_dist(x) for x in sigmaP ]))*6.02214086E21
# I want to multiply on first axis, both for Pcart and vcart
# this is why I create and tile the new pint_broadcasted vector
# it is ugly, there must be a broadcast numpy rule that works better and more efficient
# but since the degrees of freedom are never gonna be 30.000.000, this loop here is
# still efficient enough.
pint_broadcasted = np.empty((degrN,atomN,3))
for i in range(degrN):
pint_broadcasted[i] = np.ones((atomN,3)) * Pint[i]
to_be_summed = NCMatx * pint_broadcasted
Pcart = np.sum(to_be_summed, axis=0)
# same multiplication on first axis as with pint
AtMass_broadcasted = np.empty((atomN,3))
for i in range(atomN):
AtMass_broadcasted[i] = np.ones(3) * AtMass[i]
vcart = Pcart / AtMass_broadcasted
sigma_q = 1/np.sqrt(beta*lamb)
# change of dimensions
Qint = (np.array([ gaus_dist(x) for x in sigma_q ]))*2.4540051E23
# same multiplication on first axis as with pint and AtMass
qint_broadcasted = np.empty((degrN,atomN,3))
for i in range(degrN):
qint_broadcasted[i] = np.ones((atomN,3)) * Qint[i]
to_be_summed = NCMatx * qint_broadcasted
Qcart_temp = np.sum(to_be_summed, axis=0)
atmass_squared = np.sqrt(AtMass_broadcasted)
Qcart = Qcart_temp/atmass_squared
# Pcart is the displacement, added to the main geometry
# Transformed into ANGSTROM !!
# in Jan 2019, Dynamix takes geometries in angstrom but velocities in bohr
newGeom = (Pcart + geom) * 0.529177249
geomName = label + '.xyz'
veloName = label + '.velocity.xyz'
#stringOUT = '\n{}\n{}\n{}\n{}'
#print(stringOUT.format(veloName, Qcart, geomName, newGeom))
np.savetxt(veloName,Qcart,fmt='%1.6f')
# add the atom name in the matrix
atom_type = np.array(atomT)[:, np.newaxis]
atom_t_and_geom = np.hstack((atom_type,newGeom))
np.savetxt(geomName,atom_t_and_geom,header='{}\n'.format(atomN),comments='',fmt='%s %s %s %s')
def parseCL():
d = '''
This tools is intended to be used as a support to launch molecular dynamics'
usage example:
python3 $MOLCAS/Tools/dynamixtools/dynamixtools.py -t 273 -c 100 -m 1 -i ${Project}.freq.molden
'''
parser = argparse.ArgumentParser(description=d, formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("-s", "--seed",
dest="seed",
required=False,
type=int,
help="indicate the SEED to use for the generation of randoms")
parser.add_argument("-l", "--label",
dest="label",
required=False,
type=str,
help="label for your project (default is \"geom\")")
parser.add_argument("-i", "--input",
dest="i",
required=False,
type=str,
help="path of the frequency h5 or molden file")
parser.add_argument("-c", "--condition",
dest="condition",
required=False,
type=int,
help="number of initial conditions (default 1)")
parser.add_argument("-t", "--temperature",
dest="temp",
required=False,
type=float,
help="temperature in kelvin for the initial conditions")
parser.add_argument("-v", "--verbose",
dest="debug",
required=False,
action='store_true',
help="more verbose output")
parser.add_argument("-T", "--TEST",
dest="test",
required=False,
action='store_true',
help="keyword use to test the routines")
parser.add_argument("-D", "--DIGIT",
dest="digits",
required=False,
action='store_true',
help="keyword to suppress the counter in the filename (needed for debug)")
parser.add_argument("-m", "--method",
dest="method",
required=False,
type=int,
help=('''\
Keyword to specify the sampling method:
1 Initial conditions based on the molecular vibrational frequencies and energies sampled from a Boltzmann distribution (Default).
2 Thermal normal mode sampling where the cumulitative distribution function for a classical boltzmann distribution at temperature T is used to approximate the energy of each mode.
3 Wigner distribution for the ground vibrational state, n=0.
4 Thermal Wigner distribution for temperature T based on the analytical solution for a canonical ensemble of harmonic oscillators.'''))
args = parser.parse_args()
return args
def parseMoldenFreq(fn):
'''
This function is the parser for molden freq files.
'''
inp = {}
with open(fn) as f:
first = f.readline()
# parse n_freq
second = f.readline()
if second.strip() == '[N_FREQ]':
degrN = int(f.readline().strip())
inp['degrN'] = degrN
else:
sys.exit('This molden format is not recognized N_FREQ')
# parse frequencies (they should be second)
freqLabel = f.readline()
if freqLabel.strip() == '[FREQ]':
freq = np.empty(degrN)
for i in range(degrN):
freq_this_line = f.readline()
freq[i] = float(freq_this_line.strip())
inp['freq'] = freq
else:
sys.exit('This molden format is not recognized FREQ')
# parse INT (they should be third)
intLabel = f.readline()
if intLabel.strip() == '[INT]':
intL = np.empty(degrN)
for i in range(degrN):
intL_this_line = f.readline()
intL[i] = float(intL_this_line.strip())
inp['intL'] = intL
else:
sys.exit('This molden format is not recognized INT')
# parse NATOM
natomLabel = f.readline()
if natomLabel.strip() == '[NATOM]':
atomN = int(f.readline().strip())
inp['atomN'] = atomN
else:
sys.exit('This molden format is not recognized NATOM')
# parse FR-COORD (they should be fifth field)
coordLabel = f.readline()
if coordLabel.strip() == '[FR-COORD]':
atomT = []
coordL = np.empty((atomN,3))
for i in range(atomN):
geom_this_line = f.readline()
# H 1.9 1.3 -4.5
lol = filter(None, geom_this_line.strip('\n').split(' '))
a,x,y,z = list(lol)
atomT.append(a)
coordL[i] = [float(x),float(y),float(z)]
inp['atomT'] = atomT
inp['geom'] = coordL
else:
sys.exit('This molden format is not recognized FR-COORD')
# parse FR-NORM-COORD (they should be sixth field)
norm_coord_Label = f.readline()
if norm_coord_Label.strip() == '[FR-NORM-COORD]':
NCMatx = np.empty((degrN,atomN,3))
for j in range(degrN):
vibration_line = f.readline()
for i in range(atomN):
geom_this_line = f.readline()
evecs = filter(None, geom_this_line.strip('\n').split(' '))
x,y,z = list(evecs)
NCMatx[j,i] = [float(x),float(y),float(z)]
inp['NCMatx'] = NCMatx
else:
sys.exit('This molden format is not recognized FR-NORM-COORD')
# parse RMASS (they should be third)
rmass_Label = f.readline()
if rmass_Label.strip() == '[RMASS]':
rmassL = np.empty(degrN)
for i in range(degrN):
rmassL_this_line = f.readline()
rmassL[i] = float(rmassL_this_line.strip())
inp['RedMass'] = rmassL
else:
sys.exit('This molden format is not recognized RMASS')
# molden file finished, passing the dictionary back
return(inp)
def parseh5Freq(fn):
inp = {}
sys.exit('This feature is still not available')
return(inp)
def massOf(elem):
'''
You get the mass of an element from the label string
elem :: String
'''
dictMass = {'X': 0, 'Ac': 227.028, 'Al': 26.981539, 'Am': 243, 'Sb': 121.757, 'Ar':
39.948, 'As': 74.92159, 'At': 210, 'Ba': 137.327, 'Bk': 247, 'Be':
9.012182, 'Bi': 208.98037, 'Bh': 262, 'B': 10.811, 'Br': 79.904,
'Cd': 112.411, 'Ca': 40.078, 'Cf': 251, 'C': 12.011, 'Ce': 140.115,
'Cs': 132.90543, 'Cl': 35.4527, 'Cr': 51.9961, 'Co': 58.9332, 'Cu':
63.546, 'Cm': 247, 'Db': 262, 'Dy': 162.5, 'Es': 252, 'Er': 167.26,
'Eu': 151.965, 'Fm': 257, 'F': 18.9984032, 'Fr': 223, 'Gd': 157.25,
'Ga': 69.723, 'Ge': 72.61, 'Au': 196.96654, 'Hf': 178.49, 'Hs':
265, 'He': 4.002602, 'Ho': 164.93032, 'H': 1.00794, 'In': 114.82,
'I': 126.90447, 'Ir': 192.22, 'Fe': 55.847, 'Kr': 83.8, 'La':
138.9055, 'Lr': 262, 'Pb': 207.2, 'Li': 6.941, 'Lu': 174.967, 'Mg':
24.305, 'Mn': 54.93805, 'Mt': 266, 'Md': 258, 'Hg': 200.59, 'Mo': 95.94,
'Nd': 144.24, 'Ne': 20.1797, 'Np': 237.048, 'Ni': 58.6934, 'Nb': 92.90638,
'N': 14.00674, 'No': 259, 'Os': 190.2, 'O': 15.9994, 'Pd': 106.42, 'P':
30.973762, 'Pt': 195.08, 'Pu': 244, 'Po': 209, 'K': 39.0983, 'Pr':
140.90765, 'Pm': 145, 'Pa': 231.0359, 'Ra': 226.025, 'Rn': 222,
'Re': 186.207, 'Rh': 102.9055, 'Rb': 85.4678, 'Ru': 101.07, 'Rf':
261, 'Sm': 150.36, 'Sc': 44.95591, 'Sg': 263, 'Se': 78.96, 'Si':
28.0855, 'Ag': 107.8682, 'Na': 22.989768, 'Sr': 87.62, 'S': 32.066,
'Ta': 180.9479, 'Tc': 98, 'Te': 127.6, 'Tb': 158.92534, 'Tl':
204.3833, 'Th': 232.0381, 'Tm': 168.93421, 'Sn': 118.71, 'Ti':
47.88, 'W': 183.85, 'U': 238.0289, 'V': 50.9415, 'Xe': 131.29,
'Yb': 173.04, 'Y': 88.90585, 'Zn': 65.39, 'Zr': 91.224}
return(dictMass[elem])
def atomic_masses(atomtype_list):
'''
this function takes an atomtype list and return a numpy array with
atomic masses
atomtype_list :: [String] <- ['H', 'H', 'O']
'''
at_mass = [ massOf(x) for x in atomtype_list ]
return np.array(at_mass)
def mass_matrix(AtMass, atomN):
mass=np.zeros((atomN, 1), dtype=float)
mass_matrix=np.zeros((atomN, 3), dtype=float)
i=0
while (i < atomN):
mass_matrix[i, 0]=AtMass[i]
mass_matrix[i, 1]=AtMass[i]
mass_matrix[i, 2]=AtMass[i]
i=i+1
mass_matrix=np.reshape(mass_matrix, (1, 3*atomN))
return mass_matrix
def inertia (xyz,mass,atomN):
##I'm not in love with this function and if anyone can do it better please do.
j=0
lxx=0
lyy=0
lzz=0
lxy=0
lxz=0
lyx=0
lzx=0
lyz=0
lzy=0
while (j < 3):
i=0
while (i < 3):
h=0
while (h < atomN):
stringm=float(mass[h])
stringx=float(xyz[h, 0])
stringy=float(xyz[h, 1])
stringz=float(xyz[h, 2])
if (i==j) and (i==0) and (j==0):
lxx=lxx+stringm*(math.pow(stringy, 2)+math.pow(stringz, 2))
elif (i==j) and (i==1) and (j==1):
lyy=lyy+stringm*(math.pow(stringx, 2)+math.pow(stringz, 2))
elif (i==j) and (i==2) and (j==2):
lzz=lzz+stringm*(math.pow(stringx, 2)+math.pow(stringy, 2))
elif (i!=j) and (j==0) and (i==1):
lxy=lxy+(-stringm*stringx*stringy)
elif (i!=j) and (j==0) and (i==2):
lxz=lxz+(-stringm*stringx*stringz)
elif (i!=j) and (j==1) and (i==0):
lyx=lyx+(-stringm*stringy*stringx)
elif (i!=j) and (j==1) and (i==2):
lyz=lyz+(-stringm*stringy*stringz)
elif (i!=j) and (j==2) and (i==0):
lzx=lzx+(-stringm*stringz*stringx)
elif (i!=j) and (j==2) and (i==1):
lzy=lzy+(-stringm*stringz*stringy)
h=h+1
i=i+1
j=j+1
data1=np.array([[lxx, lxy, lxz], [lyx, lyy, lyz], [lzx, lzy, lzz]])
invI=np.linalg.inv(data1)
return invI
def CenterOfMass(mass, vel, atomN):
h=0
stringcomx=0
stringcomy=0
stringcomz=0
stringmtot=np.sum(mass[:])
while (h < atomN):
stringcomx=stringcomx+float(vel[h, 0])*float(mass[h])
stringcomy=stringcomy+float(vel[h, 1])*float(mass[h])
stringcomz=stringcomz+float(vel[h, 2])*float(mass[h])
h=h+1
comx=stringcomx/stringmtot
comy=stringcomy/stringmtot
comz=stringcomz/stringmtot
com=np.array([comx, comy, comz])
return com
def angular_mo (mass, xyz, vel, atomN):
Lxtot=0
Lytot=0
Lztot=0
h=0
xyz=np.reshape(xyz, (atomN, 3))
while (h < atomN):
px=float(vel[h, 0])*float(mass[h])
py=float(vel[h, 1])*float(mass[h])
pz=float(vel[h, 2])*float(mass[h])
Lx=float(xyz[h, 1])*pz-float(xyz[h, 2])*py
Ly=float(xyz[h, 2])*px-float(xyz[h, 0])*pz
Lz=float(xyz[h, 0])*py-float(xyz[h, 1])*px
Lxtot=Lxtot+Lx
Lytot=Lytot+Ly
Lztot=Lztot+Lz
h=h+1
Ltot=np.array([Lxtot, Lytot, Lztot])
return Ltot
def angular_vel (mass, xyz, vel, atomN):
px=float(vel[0])
py=float(vel[1])
pz=float(vel[2])
wx=-float(xyz[1])*pz+float(xyz[2])*py
wy=-float(xyz[2])*px+float(xyz[0])*pz
wz=-float(xyz[0])*py+float(xyz[1])*px
wtot=np.array([wx, wy, wz])
return wtot
def main():
print('')
args = parseCL()
if args.test:
inputs = test_initial_things()
seedI = 123456789
random.seed(seedI)
complete_label = 'test_bolz'
generate_one_boltz(inputs,complete_label)
print(inputs)
else:
# i is input file from command line
if args.i:
fn=args.i
else:
# I do not like this termination here, but I still have to figure out how
# to properly do mutually exclusive argparse keywords.
# I will keep this exit code here in the meanwhile...
sys.exit('-i input freq file is a required keyword, --help for help')
if args.seed:
seedI = args.seed
print('seed set to: {}'.format(seedI))
random.seed(seedI)
if args.label:
label = args.label
print('Project label set to: {}'.format(label))
else:
label = 'geom'
if args.condition:
number_of_ic = args.condition
else:
number_of_ic = 1
if args.method:
method = args.method
else:
method = 1
# check if is is molden or h5
name, ext = os.path.splitext(fn)
if ext == '.molden':
inputs = parseMoldenFreq(fn)
elif ext == '.h5':
inputs = parseh5Freq(fn)
else:
print('You must use freq.molden or .h5 files')
if args.debug:
inputs['debug'] = True
else:
inputs['debug'] = False
if args.temp == None:
print('\nSetting default temperature to 300 K. Use the -t keyword to set a custom temperature.\n')
inputs['T'] = 300
else:
inputs['T'] = args.temp
##Conversion Factors and constants
inputs['kb'] = 1.38064852E-23
inputs['h'] = 6.62607004E-34
inputs['hbar'] = 1.0545718E-34
inputs['beta'] = 1 / (inputs['T'] * inputs['kb'])
inputs['c'] = 299792458.00
inputs['cm_to_SI'] = inputs['c'] * 100
inputs['amu_to_kg'] = 1.66053892173E-27
inputs['joule_to_kcal'] = 1.439326E+20
inputs['bohr_to_m'] = 5.2917724900001E-11
inputs['AtMass'] = atomic_masses(inputs['atomT'])
for counter in range(number_of_ic):
if args.digits:
complete_label = '{}'.format(label)
else:
complete_label = '{}{:04}'.format(label,counter)
if (method==1):
generate_one_boltz(inputs,complete_label)
elif (method==2 or method==3 or method==4):
normal_mode(inputs,complete_label,method)
print('\nThis routine generates geometries in angstrom and velocities in bohr (the format that Molcas requires for a Semiclassical Molecular Dynamics)\n')
if __name__ == "__main__":
main()
|