1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
.. index::
single: Program; FALCON
single: FALCON
.. _UG\:sec\:falcon:
:program:`falcon` |extramark|
=============================
.. warning::
This program is not available in |openmolcas|
.. only:: html
.. contents::
:local:
:backlinks: none
.. _UG\:sec\:falcon_description:
Description
-----------
.. xmldoc:: <MODULE NAME="FALCON">
%%Description:
<HELP>
FALCON calculates total energy and orbitals of the large system
based on the fragment method.
</HELP>
.. compound::
:program:`FALCON` calculates total energy of the large system based on
the fragment approach.
Total energy of the whole system is calculated from total energies of
fragments as follows,
.. math:: E^{\text{whole}}=\sum C_i^{\text{fragment}} E_i^{\text{fragment}},
where :math:`E_i^{\text{fragment}}` is the total energy of fragment :math:`i`, and
:math:`C_i^{\text{fragment}}` is its coefficient.
.. compound::
In addition to the total energy, :program:`FALCON` can calculate orbitals
of the whole system.
Fock matrix and overlap matrix of the whole system are calculated from
ones of fragments using following equations,
.. math:: \mat{F}^{\text{whole}}=\sum C_i^{\text{fragment}} \mat{F}_i^{\text{fragment}},
and
.. math:: \mat{S}^{\text{whole}}=\sum C_i^{\text{fragment}} \mat{S}_i^{\text{fragment}},
where
:math:`F_i` and :math:`S_i` are the Fock matrix and overlap matrix,
respectively, of fragment :math:`i`.
.. compound::
Then
.. math:: \mat{F}\mat{C}=\mat{S}\mat{C}\mat{\varepsilon}
is solved to obtain the orbitals, :math:`\mat{C}`, and orbitals energies,
:math:`\mat{\varepsilon}`.
.. index::
pair: Input; FALCON
.. _UG\:sec\:falcon_inpfalcon:
Input
-----
Below follows a description of the input to :program:`FALCON`.
The input for each module is preceded by its name like: ::
&FALCON
Argument(s) to a keyword, either individual or composed by several entries,
can be placed in a separated line or in the same line separated by a semicolon.
If in the same line, the first argument requires an equal sign after the
name of the keyword.
Keywords
........
.. class:: keywordlist
:kword:`TITLe`
One-line title.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="TITLE" KIND="STRING" LEVEL="BASIC">
%%Keyword: Title <basic>
<HELP>
One line title.
</HELP>
</KEYWORD>
:kword:`FRAGment`
Takes one, two or three argument(s).
The first value (integer) defines the fragment number,
the second value (real) determines coefficient,
and the third value (integer) is the fragment number that is equivalent
to this fragment when translational symmetry is used.
A default for the second value is 1.0 where the first and third values have
no default.
Other keyword(s) specific to this fragment must follow this keyword.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="FRAGMENT" KIND="INT" LEVEL="BASIC">
%%Keyword: Fragment <basic> GUI:keyword
<HELP>
Takes one, two or three argument(s).
The first value defines the fragment number, the second value determines coefficient,
and the third value is the fragment number that is equivalent to this fragment
when translational symmetry is used.
Other keyword(s) specific to this fragment must follow this keyword.
</HELP>
</KEYWORD>
:kword:`OPERator`
A real value following this keyword represents a coefficient, :math:`C_i^{\text{fragment}}`,
of fragment :math:`i` (current fragment), where :math:`i` is a value specified by FRAGMENT keyword.
This keyword is equivalent with the second value of keyword, FRAGMENT.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="OPERATOR" KIND="REAL" LEVEL="BASIC">
%%Keyword: Operator <basic> GUI:keyword
<HELP>
An integer following this keyword specifies the number of fragments.
</HELP>
</KEYWORD>
:kword:`EQUIvalence`
An integer, :math:`j`, following this keyword declares that current fragment
is translationally equivalent with fragment :math:`j`, and information provided for
fragment :math:`j` are tranfered to current fragment.
This keyword is equivalent with the third value of keyword, FRAGMENT.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="EQUIVALENCE" KIND="INT" LEVEL="BASIC">
%%Keyword: Equivalence <basic> GUI:keyword
<HELP>
An integer following this keyword specifies the number of fragments.
</HELP>
</KEYWORD>
:kword:`TRANslate`
Three real numbers following this keyword specifies the translational
vector by which the current fragment is translated to give new coordinate.
A unit of either bohr or angstrom can follow. The default unit is angstrom.
This keyword takes effect only when the equivalent fragment is specified.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="TRANSLATE" KIND="REALS" SIZE="3" LEVEL="BASIC">
%%Keyword: Translate <basic> GUI:keyword
<HELP>
An integer following this keyword specifies the number of fragments.
</HELP>
</KEYWORD>
:kword:`RUNFile`
Following this keyword specifies the name of RunFile file for the
corresponding fragment.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="RUNFILE" KIND="STRING" LEVEL="BASIC">
%%Keyword: RunFile <basic> GUI:keyword
<HELP>
Following this keyword specifies the name of RunFile file for the
corresponding fragment.
</HELP>
</KEYWORD>
:kword:`ONEInt`
Following this keyword specifies the name of OneInt file for the
corresponding fragment.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="ONEINT" KIND="STRING" LEVEL="BASIC">
%%Keyword: OneInt <basic> GUI:keyword
<HELP>
Following this keyword specifies the name of OneInt file for the
corresponding fragment.
</HELP>
</KEYWORD>
:kword:`NFRAgment`
An integer following this keyword specifies the number of fragments.
If this keyword is not given, the largest fragment number given by
FRAGMENT keyword is set to be the number of fragment.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="NFRAGMENT" KIND="INT" LEVEL="BASIC">
%%Keyword: nFragment <basic> GUI:keyword
<HELP>
An integer following this keyword specifies the number of fragments.
</HELP>
</KEYWORD>
:kword:`NIRRep`
An integer following this keyword specifies the number of irreducible
representation of point group symmetry.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="NIRREP" KIND="INT" LEVEL="BASIC">
%%Keyword: nIrrep <basic> GUI:keyword
<HELP>
An integer following this keyword specifies the number of irreducible
representation of point group symmetry.
</HELP>
</KEYWORD>
:kword:`OCCUpation`
A list of integer(s) following this keyword specifies the number of
occupied orbitals in each symmetry representation in the unfragmented
system.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="OCCUPATION" KIND="INTS_LOOKUP" SIZE="NSYM" LEVEL="BASIC">
%%Keyword: Occupation <basic> GUI:keyword
<HELP>
A list of integer(s) following this keyword specifies the number of
occupied orbitals in each symmetry representation.
</HELP>
</KEYWORD>
:kword:`DISTance`
A real number following this keyword specifies the distance
of two atoms that are equivalent to each other, followed by a unit that
is eather angstrom or bohr.
Default is angstrom.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="DISTANCE" KIND="REAL" LEVEL="BASIC">
%%Keyword: Distance <basic> GUI:keyword
<HELP>
A real number following this keyword specifies the distance
of two atoms that are equivalent to each other.
</HELP>
</KEYWORD>
:kword:`NEAR`
A real number following this keyword specifies the distance
of two atoms within which atoms are considered to be too close each other.
An unit that is eather angstrom or bohr can follow.
Default is angstrom.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="NEAR" KIND="REAL" LEVEL="BASIC">
%%Keyword: Near <basic> GUI:keyword
<HELP>
A real number following this keyword specifies the distance
of two atoms within which atoms are considered to be too close each other.
</HELP>
</KEYWORD>
:kword:`PRINt`
An integer following this keyword specifies the format of orbital print out.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="PRINT" KIND="INT" LEVEL="BASIC">
%%Keyword: Print <basic> GUI:keyword
<HELP>
An integer following this keyword specifies the format of orbital
print out.
</HELP>
</KEYWORD>
:kword:`ORBEne`
A real number follwing this keyword stands for the threshold for orbital print
out.
The orbitals with orbital energy below this value are print out.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="ORBENE" KIND="REAL" LEVEL="BASIC">
%%Keyword: OrbEne <basic> GUI:keyword
<HELP>
An integer following this keyword specifies the format of orbital
print out.
</HELP>
</KEYWORD>
:kword:`ORBOcc`
A real number follwing this keyword stands for the threshold for orbital print
out.
The orbitals with occupation number above this value are print out.
.. xmldoc:: <KEYWORD MODULE="FALCON" NAME="ORBOCC" KIND="REAL" LEVEL="BASIC">
%%Keyword: OrbOcc <basic> GUI:keyword
<HELP>
An integer following this keyword specifies the format of orbital
print out.
</HELP>
</KEYWORD>
Input examples
..............
.. compound::
Below shows an example of input file for the three fragment system of which
energy, :math:`E^{\text{whole}}`, is written as
.. math:: E^{\text{whole}}= E_1^{\text{fragment}} + E_2^{\text{fragment}} - E_3^{\text{fragment}},
by fragment energies, :math:`E_1^{\text{fragment}}`, :math:`E_2^{\text{fragment}}`, and :math:`E_3^{\text{fragment}}`. ::
&FALCON
Fragment=1, 1.0
Fragment=2, 1.0
Fragment=3, -1.0
which can be simplified as, ::
&FALCON
Fragment=3, -1.0
The next example is a two fragment system in which fragment 1 and fragment 2
are equivalent except for their positons.
When their difference in position is described by a vector, (1.0, 1.0, -1.0),
a translational symmetry can be used and the input becomes as follows, ::
&FALCON
Fragment=2, 1.0, 1
Translate=1.0, 1.0, -1.0
.. compound::
If the total energy of the whole system is given by the sum of total energies
of three fragment,
.. math:: E^{\text{whole}}= E_1^{\text{fragment}} + E_2^{\text{fragment}} + E_3^{\text{fragment}},
input is simplly as follows, ::
&FALCON
nFragment=3
.. xmldoc:: </MODULE>
|