1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
|
.. index::
single: Program; LEVEL
single: LEVEL
.. _UG\:sec\:level:
:program:`level`
=================
.. only:: html
.. contents::
:local:
:backlinks: none
.. xmldoc:: <MODULE NAME="LEVEL">
%%Description:
<HELP>
This program computes the vibrational-rotational spectrum of a
diatomic molecule. In addition, spectroscopic constants are computed.
The program can also compute expectation values and Franck-Condon
factors.
</HELP>
The :program:`LEVEL` program is used to compute a vibration-rotation
spectrum for a diatomic molecule, using as input a potential
that is computed over a grid, or an analytic potential with its parameters
specified. The grid should be dense around equilibrium (recommended
spacing 0.05 au) and should extend to a large distance (say 50 au) if
dissociation energies are computed.
The ro-vibrational Schrödinger equation is solved numerically
(using Numerov's method). The ro-vibrational energies
are analyzed in terms of spectroscopic constants.
.. index::
pair: Dependencies; LEVEL
.. _UG\:sec\:level_dependencies:
Dependencies
------------
The :program:`LEVEL` program is free-standing and does not depend on any
other program.
.. index::
pair: Files; LEVEL
.. _UG\:sec\:level_files:
Files
-----
Input files
...........
The calculation of vibrational wavefunctions and spectroscopic
constants uses no input files (except for the standard input).
Output files
............
:program:`LEVEL` generates a standard output file which ends
with a summary of all levels found.
.. index::
pair: Input; LEVEL
.. _UG\:sec\:level_input:
Input
-----
This section describes the input to the :program:`LEVEL` program in the
|molcas| program system. The program name is ::
&LEVEL
.. index::
pair: Keywords; LEVEL
Keywords
........
The compulsory keywords are:
.. class:: keywordlist
:kword:`IAN1`
Integer Atomic Number of atom 1
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="IAN1" KIND="INT" LEVEL="BASIC">
%%Keyword: IAN1 <basic>
<HELP>
Read the integer atomic number of atom 1.
</HELP>
</KEYWORD>
:kword:`IMN1`
Integer Mass Number of atom 1
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="IMN1" KIND="INT" LEVEL="BASIC">
%%Keyword: IMN1 <basic>
<HELP>
Read the integer mass number of atom 1.
</HELP>
</KEYWORD>
:kword:`IAN2`
Integer Atomic Number of atom 2
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="IAN2" KIND="INT" LEVEL="BASIC">
%%Keyword: IAN2 <basic>
<HELP>
Read the integer atomic number of atom 2.
</HELP>
</KEYWORD>
:kword:`IMN2`
Integer Mass Number of atom 2
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="IMN2" KIND="INT" LEVEL="BASIC">
%%Keyword: IMN2 <basic>
<HELP>
Read the integer mass number of atom 2.
</HELP>
</KEYWORD>
:kword:`CHARge`
Charge of molecule
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="CHARGE" KIND="INT" LEVEL="BASIC">
%%Keyword: CHARge <basic>
<HELP>
Read the integer charge of the molecule.
</HELP>
</KEYWORD>
:kword:`NUMPot`
Number of potentials (1 for a single potential, 2 for two potentials and calculation of matrix elements coupling their levels).
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="NUMPOT" KIND="INT" LEVEL="BASIC">
%%Keyword: NUMPot <basic>
<HELP>
Number of potentials (1 for a single potential, 2 for two potentials and
calculation of matrix elements coupling their levels).
</HELP>
</KEYWORD>
:kword:`RH`
Step size, :math:`\Delta R` for the numerical solution of the differential equation. Calculations should be done with smaller and smaller values of this variable (with all other variables kept the same) until convergence with respect to this variable is achieved.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="RH" KIND="REAL" LEVEL="BASIC">
%%Keyword: RH <basic>
<HELP>
Read the real number value for the step size used for the numerical
solution of the differential equation.
</HELP>
</KEYWORD>
:kword:`RMIN`
Minimum value of :math:`R` for the numerical solution of the differential equation. Calculations should be done with smaller and smaller values of this variable (with all other variables kept the same) until convergence with respect to this variable is achieved.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="RMIN" KIND="REAL" LEVEL="BASIC">
%%Keyword: RMIN <basic>
<HELP>
Read the real number value for the minimum value of R for the
numerical solution of the differential equation.
</HELP>
</KEYWORD>
:kword:`pRV`
The :math:`p` value (power) for the "radial variable" used for numerically solving the differential equation
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="PRV" KIND="REAL" LEVEL="BASIC">
%%Keyword: pRV <basic>
<HELP>
Read the power p for the radial "variable" used for
numerically solving the differential equation.
</HELP>
</KEYWORD>
:kword:`aRV`
The real number :math:`R` value around which the "radial variable" used for numerically solving the differential equation, is centered.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="ARV" KIND="REAL" LEVEL="BASIC">
%%Keyword: aRV <basic>
<HELP>
Read the real number R value around which the radial "variable"
used for numerically solving the differential equation, is
centered.
</HELP>
</KEYWORD>
:kword:`EPS`
The real number :math:`\epsilon` value indicating the convergence tolerance when numerically solving the differential equation.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="EPS" KIND="REAL" LEVEL="BASIC">
%%Keyword: EPS <basic>
<HELP>
Read the real number epsilon value indicating the convergence
tolerance when numerically solving the differential equation.
</HELP>
</KEYWORD>
:kword:`NTP`
The integer indicating the number of turning points when providing a pointwise potential in the input file.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="NTP" KIND="INT" LEVEL="BASIC">
%%Keyword: NTP <basic>
<HELP>
Read the integer indicating the number of turning points when
providing a pointwise potential in the input file.
</HELP>
</KEYWORD>
:kword:`LPPOt`
The integer indicating how often to print the potential and its first two derivatives (they will all be printed to the output file at every :kword:`LPPOT`\ th point if :kword:`LPPOT` > 0, and only the potential will be printed in condensed format to file 8 at every \|\ :kword:`LPPOT`\ \|th point if :kword:`LPPOT` < 0).
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="LPPOT" KIND="INT" LEVEL="BASIC">
%%Keyword: LPPOt <basic>
<HELP>
Read the integer indicating how often to print the potential
and its first two derivatives.
</HELP>
</KEYWORD>
:kword:`IOMEg1`
The integer angular momentum quantum number :math:`\Omega`.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="IOMEG1" KIND="INT" LEVEL="BASIC">
%%Keyword: IOMEg <basic>
<HELP>
Read the integer angular momentum quantum number Omega.
</HELP>
</KEYWORD>
:kword:`VLIM`
The real number indicating the limit of the potential :math:`V(R)` as :math:`R\rightarrow \infty`.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="VLIM" KIND="REAL" LEVEL="BASIC">
%%Keyword: VLIM <basic>
<HELP>
Read the real number indicating the limit of the potential
V(R) as R -> infinity.
</HELP>
</KEYWORD>
:kword:`IPOTl`
The integer indicating the form of the analytic potential. Choose :kword:`IPOTL` = 1 for a Lennard--Jones potential, :kword:`IPOTL` = 3 for an EMO (extended Morse oscillator), :kword:`IPOTL` = 4 for the MLR (Morse/Long-range) potential.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="IPOTL" KIND="CHOICE" LIST="1:Lennard-Jones,3:extended Morse oscillator,4:Morse/Long-range" LEVEL="BASIC">
%%Keyword: IPOTl <basic>
<HELP>
Read the integer indicating the form of the analytic potential
being used.
</HELP>
</KEYWORD>
:kword:`PPAR`
The integer power :math:`p` used in an MLR potential.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="PPAR" KIND="INT" LEVEL="BASIC">
%%Keyword: PPAR <basic>
<HELP>
Read the integer power p used in an MLR potential
</HELP>
</KEYWORD>
:kword:`QPAR`
The integer power :math:`q` used in an MLR potential.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="QPAR" KIND="INT" LEVEL="BASIC">
%%Keyword: QPAR <basic>
<HELP>
Read the integer power q used in an MLR potential
</HELP>
</KEYWORD>
:kword:`NSR`
The integer order of the polynomial function in an MLR potential's exponent, for the short-range (SR) part of the potential.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="NSR" KIND="INT" LEVEL="BASIC">
%%Keyword: NSR <basic>
<HELP>
Read the integer order of the polynomial function in an MLR
potential's exponent, for the short-range (SR) part of the potential.
</HELP>
</KEYWORD>
:kword:`NLR`
The integer order of the polynomial function in an MLR potential's exponent, for the long-range (LR) part of the potential.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="NLR" KIND="INT" LEVEL="BASIC">
%%Keyword: NLR <basic>
<HELP>
Read the integer order of the polynomial function in an MLR
potential's exponent, for the long-range (LR) part of the potential.
</HELP>
</KEYWORD>
:kword:`IBOB`
The integer flag specifying whether or not to include (:kword:`IBOB` > 0) or exclude (:kword:`IBOB` <= 0) Born--Oppenheimer Breakdown functions.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="IBOB" KIND="INT" LEVEL="BASIC">
%%Keyword: IBOB <basic>
<HELP>
Read the integer flag specifying whether or not to include (IBOB > 0)
or exclude (IBOB <= 0) Born-Oppenheimer Breakdown functions.
</HELP>
</KEYWORD>
:kword:`DSCM`
The real number indicating the :math:`\mathfrak{D}_e` value (the "depth at equilibrium" for the potential).
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="DSCM" KIND="REAL" LEVEL="BASIC">
%%Keyword: DSCM <basic>
<HELP>
Read the real number indicating the D_e value (the "depth at
equilibrium" for the potential).
</HELP>
</KEYWORD>
:kword:`REQ`
The real number indicating the :math:`R_e` value (the equilibrium internuclear distance)
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="REQ" KIND="REAL" LEVEL="BASIC">
%%Keyword: REQ <basic>
<HELP>
The real number indicating the R_e value (the equilibrium internuclear
distance).
</HELP>
</KEYWORD>
:kword:`RREF`
The real number indicating the :math:`R_ref` value (the reference distance for the MLR model).
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="RREF" KIND="REAL" LEVEL="BASIC">
%%Keyword: RREF <basic>
<HELP>
Read the real number indicating the "reference distance" around which
the MLR model is "centered".
</HELP>
</KEYWORD>
:kword:`NCMM`
Integer indicating the number of long-range terms used in the MLR model (e.g. if using C6, C8, C10, then :kword:`NCMM` = 3).
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="NCMM" KIND="INT" LEVEL="BASIC">
%%Keyword: NCMM <basic>
<HELP>
Read the integer indicating how many long-range terms to include
in the MLR potential.
</HELP>
</KEYWORD>
:kword:`IVSR`
Integer indicating the power used in the damping function for the MLR model.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="IVSR" KIND="INT" LEVEL="BASIC">
%%Keyword: IVSR <basic>
<HELP>
Read the integer indicating the power used in the damping
function for the MLR model.
</HELP>
</KEYWORD>
:kword:`IDSTt`
Integer indicating the type of damping function used. Choose :kword:`IDSTT` = 1 for the Douketis--Scoles-type (DS) function, and :kword:`IDSTT` = 2 for the Tang--Toonies (TS) function.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="IDSTT" KIND="CHOICE" LIST="1:Douketis-Scoles,2:Tang-Toonies" LEVEL="BASIC">
%%Keyword: IDSTt <basic>
<HELP>
Read the integer indicating which type of damping function to use in
the MLR model.
</HELP>
</KEYWORD>
:kword:`RHOAb`
Real number indicating the :math:`\rho_{AB}` parameter for the damping function in an MLR model.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="RHOAB" KIND="REAL" LEVEL="BASIC">
%%Keyword: RHOAb <basic>
<HELP>
Read the real number indicating the value of the rho_AB damping function
parameter for an MLR model.
</HELP>
</KEYWORD>
:kword:`MMLR`
Integer array containing NCMM elements, which indicate the inverse powers of the long-range terms in the MLR model. For example, if using C6, C8, C10, then :kword:`MMLR` = 6 8 10. If using C4, C6, C8 (for example, for the potential between a neutral atom and an ion) then use :kword:`MMLR` = 4 6 8.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="MMLR" KIND="INTS" SIZE="3" LEVEL="BASIC">
%%Keyword: MMLR <basic>
<HELP>
Read the integer array indicating the values of the inverse-powers for
the long-range tail of an MLR model.
</HELP>
</KEYWORD>
:kword:`CMM`
Real number array containing NCMM elements, which indicate the coefficients of the inverse powers of the long-range terms in the MLR model. For example, if using C6, C8, C10, then :kword:`CMM` = C6 C8 C10. If using C4, C6, C8 (for example, for the potential between a neutral atom and an ion) then use :kword:`CMM` = C4 C6 C8.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="CMM" KIND="REALS" SIZE="3" LEVEL="BASIC">
%%Keyword: CMM <basic>
<HELP>
Read the real number array indicating the values of the coefficients of
the inverse-powers for the long-range tail of an MLR model.
</HELP>
</KEYWORD>
:kword:`PARM`
Real number array containing :kword:`NLR`\ +1 elements, which indicate the exponent expansion coefficients for the MLR model.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="PARM" KIND="REALS" SIZE="4" LEVEL="BASIC">
%%Keyword: PARM <BASIC>
<HELP>
Read the real number array indicating the values of the exponent
expansion coefficients for the MLR model.
</HELP>
</KEYWORD>
:kword:`NLEV1`
Integer indicating the number of rovibrational levels to seek. If negative, the program will try to automatically find all levels from :math:`v=0` to `v=-|\textrm{NLEV1}|`.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="NLEV1" KIND="INT" LEVEL="BASIC">
%%Keyword: NLEV1 <BASIC>
<HELP>
Read the integer indicating the number of rovibrational levels
to find.
</HELP>
</KEYWORD>
:kword:`AUTO1`
Integer indicating whether or not to automatically generate trial energies for each vibrational level. If :kword:`AUTO1` > 0, the trial energies are generated, wheras if :kword:`AUTO1` <= 0, then the user can provide trial energies manually.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="AUTO1" KIND="INT" LEVEL="BASIC">
%%Keyword: AUTO1 <basic>
<HELP>
Read the integer indicating whether or not to automatically
generate trial energies for each vibrational level sought.
</HELP>
</KEYWORD>
:kword:`LCDC`
Integer indicating whether or not to calculate inertial rotational constants: :math:`B_v`, and the first six centrifugal distortion constants: :math:`-D_v`, :math:`H_v`, :math:`L_v`, :math:`M_v`, :math:`N_v`, :math:`O_v`. If :kword:`LCDC` > 0, then these are calculated, and otherwise they are not.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="LCDC" KIND="INT" LEVEL="BASIC">
%%Keyword: LCDC <basic>
<HELP>
Integer indicating whether or not to calculate Bv, -Dv, Hv, Lv, Mv, Nv, Ov.
</HELP>
</KEYWORD>
:kword:`LXPCt`
Integer indicating whether or not to calculate expectation values or matrix elements using the ro-vibrational wavefunctions obtained from solving the Schrödinger equation. If :kword:`LXPCT` = 0, no expectation values or matrix elements are calculated, and otherwise they are.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="LXPCT" KIND="INT" LEVEL="BASIC">
%%Keyword: LXPCt <basic>
<HELP>
Read the integer indicating whether or not to print expectation values
or matrix elements.
</HELP>
</KEYWORD>
:kword:`NJM`
Integer indicating how many rotational levels (and expectation values, if :kword:`LXPCT` > 0) to find for each vibrational level found.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="NJM" KIND="INT" LEVEL="BASIC">
%%Keyword: NJM <basic>
<HELP>
Read the integer indicating how many rotational levels to find for
each vibrational level found.
</HELP>
</KEYWORD>
:kword:`JDJR`
Integer indicating a step size for increasing of :math:`J` when we ask for a calculation of rotational (J) eigenvalues from IJ(i) to :kword:`NJM` for each vibrational level :math:`i`. If :kword:`JDJR` = 1, then you are asking the program to automatically determine all possible rotational levels between IJ(i) to :kword:`NJM`.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="JDJR" KIND="INT" LEVEL="BASIC">
%%Keyword: JDJR <basic>
<HELP>
Read the integer indicating the step size for determining which
rotational (J) levels to find, for each vibrational level.
</HELP>
</KEYWORD>
:kword:`LPRWf`
Integer indicating whether or not to print the ro-vibrational wavefunction levels at every :kword:`LPRWF`\ th mesh point. If :kword:`LPRWF` = 0, no wavefunction is printed.
.. xmldoc:: <KEYWORD MODULE="LEVEL" NAME="LPRWF" KIND="INT" LEVEL="BASIC">
%%Keyword: LPRWf <basic>
<HELP>
Read the ineger indicating whether or not to print the wavefunction.
</HELP>
</KEYWORD>
Input example
.............
::
&LEVEL
IAN1 = 3
IMN1 = 6
IAN2 = 3
IMN2 = 6
CHARGE = 0
NUMPOT = 1
RH = 0.0005
RMIN = 0.125
PRV = 1
ARV = 5.0d0
EPS = 2.d-10
NTP = -1
LPPOT = 0
IOMEG1 = 0
VLIM = 0.0d0
IPOTL = 4
PPAR = 5
QPAR = 3
NSR = 3
NLR = 3
IBOB = -1
DSCM = 3.337678701485D+02
REQ = 4.170010583477D+00
RREF = 8.0d0
NCMM = 3
IVSR = -2
TDSTT = 1
RHOAB = 0.54d0
MMLR = 6 8 10
CMM = 6.719000000d+06 1.126350000d+08 2.786940000d+09
PARM = -5.156803528943D-01 -9.585070416286D-02 1.170797201140D-01 -2.282814434665D-02
NLEV1 = -999
AUTO1 = 1
LCDC = 2
LXPCT = 0
NJM = 0
JDJR = 1
LPRWF = 0
**Comments**: The vibrational-rotation spectrum for the :math:`1^3\Sigma_u(a)` state of :math:`^{(6,6)}\ce{Li2}` will be computed using the MLR potential given in the input.
.. xmldoc:: </MODULE>
|