1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
|
.. index::
single: Program; LOCALISATION
single: LOCALISATION
.. _UG\:sec\:localisation:
:program:`localisation`
=======================
.. only:: html
.. contents::
:local:
:backlinks: none
.. _UG\:sec\:localisation_description:
Description
-----------
.. xmldoc:: <MODULE NAME="LOCALISATION">
%%Description:
<HELP>
The LOCALISATION program of the molcas program system generates
localised occupied orbitals according to one of the following procedures:
Pipek-Mezey, Boys, Edmiston-Ruedenberg, or Cholesky.
Orthonormal, linearly independent, local virtual orbitals may also be
generated from projected atomic orbitals (Cholesky PAOs).
</HELP>
The :program:`LOCALISATION` program of the |molcas| program system generates
localised occupied orbitals according to one of the following procedures:
Pipek--Mezey :cite:`Pipek:89`,
Boys :cite:`Boys:60,Foster:60`,
Edmiston--Ruedenberg :cite:`Edmiston:63`, or
Cholesky :cite:`Aquilante:06a`.
Orthonormal, linearly independent, local orbitals may also be
generated from projected atomic orbitals (Cholesky PAOs) :cite:`Aquilante:06a`.
.. compound::
Orbital localisation makes use of the fact that a Hartree-Fock wave function
is invariant under unitary transformations of the occupied orbitals,
.. math:: \tilde{C}_{\mu i} = \sum_j C_{\mu j} \mat{U}_{ji} ,
where :math:`\mat{U}` is unitary (i.e. orthogonal for real orbitals).
The same is true for the inactive or active orbitals in a CASSCF wave function.
Whereas the Pipek--Mezey :cite:`Pipek:89`,
Boys :cite:`Boys:60,Foster:60`, and
Edmiston--Ruedenberg :cite:`Edmiston:63` procedures define :math:`\mat{U}`
through an iterative maximisation of a localisation functional,
the Cholesky orbitals are simply defined through the Cholesky decomposition
of the one-electron density, i.e.
.. math:: \sum_i \tilde{C}_{\mu i}\tilde{C}_{\nu i} = P_{\mu\nu} = \sum_i C_{\mu i} C_{\mu i} .
Cholesky orbitals are thus not optimum localised orbitals by any of the
Pipek--Mezey, Boys, or Edmiston--Ruedenberg measures, but rather inherit locality
from the density matrix, see :cite:`Aquilante:06a` for details.
Although these localisation schemes are mostly meant for localising occupied
orbitals (except for PAOs which are defined for the virtual orbitals), the
:program:`LOCALISATION` program will attempt to localise any set of orbitals
that the user specifies. This means that it is possible to mix
occupied and virtual orbitals and thereby break the Hartree--Fock
invariance. The default settings, however, do not break the invariance.
For Pipek--Mezey, Boys, and Edmiston--Ruedenberg localisations, iterative
optimisations are carried out. We use
the :math:`\eta`-steps of Subotnik *et al.* :cite:`Subotnik:04` for
Edmiston--Ruedenberg, whereas the traditional Jacobi sweeps (consecutive
two-by-two orbital rotations) :cite:`Pipek:89,Subotnik:04`
are employed for the Pipek--Mezey and Boys schemes.
.. _UG\:sec\:localisation_dependencies:
Dependencies
------------
The :program:`LOCALISATION` program requires the one-electron integral file
:file:`ONEINT` and the communications file :file:`RUNFILE`,
which contains, among other data, the
basis set specifications processed by :program:`GATEWAY` and :program:`SEWARD`.
In addition, the Edmiston--Ruedenberg procedure requires the presence
of Cholesky decomposed two-electron integrals produced by :program:`SEWARD`.
.. index::
pair: Files; LOCALISATION
.. _UG\sec\:localisation_files:
Files
-----
Below is a list of the files that are used/created by the program
:program:`LOCALISATION`.
Input files
...........
:program:`LOCALISATION` will use the following input
files: :file:`ONEINT`, :file:`RUNFILE`, :file:`INPORB`.
For Edmiston--Ruedenberg localisation,
it also needs :file:`CHVEC`, :file:`CHRED` and :file:`CHORST` files
(for more information see :numref:`UG:sec:files_list`).
Output files
............
.. class:: filelist
:file:`LOCORB`
Localised orthonormal orbital output file.
Note that :file:`LOCORB` contains all orbitals (localised as well as non-localised
according to the input specification).
:file:`DPAORB`
Linearly dependent nonorthonormal projected atomic orbital output file
(only produced for PAO runs).
:file:`IPAORB`
Linearly independent nonorthonormal projected atomic orbital output file
(only produced for PAO runs).
:file:`RUNFILE`
Communication file for subsequent programs.
:file:`MD_LOC`
Molden input file for molecular orbital analysis.
.. index::
pair: Input; LOCALISATION
.. _UG\:sec\:localisation_input:
Input
-----
Below follows a description of the input to :program:`LOCALISATION`.
The :program:`LOCALISATION` program section of the |molcas| input is bracketed by
a preceding program reference ::
&LOCALISATION
Optional general keywords
.........................
.. class:: keywordlist
:kword:`FILEorb`
The next line specifies the filename containing the input orbitals that will
be localised. By default a file named :file:`INPORB` will be used.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="FILE" APPEAR="Orbitals file" KIND="STRING" LEVEL="BASIC">
%%Keyword: FileOrb <basic>
<HELP>
The next line specifies the filename containing the input orbitals that will
be localised. By default a file named INPORB will be used.
</HELP>
</KEYWORD>
:kword:`NORBitals`
The following line specifies the number of orbitals to localise in each
irreducible representation. The default is to localise all occupied
orbitals as specified in the :file:`INPORB` input file, except for PAO runs where
all the virtual orbitals are treated by default.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="NORB" APPEAR="Number of orbitals" LEVEL="BASIC" KIND="INTS_LOOKUP" SIZE="NSYM">
<HELP>
Please, specify the number of orbitals to localise in each irrep.
</HELP>
%%Keyword: NORB <basic>
The following line specifies the number of orbitals to localise in each
irreducible representation. The default is to localise all occupied
orbitals as specified in the INPORB input file, except for PAO runs where
all the virtual orbitals are treated by default.
</KEYWORD>
:kword:`NFROzen`
The following line specifies the number of orbitals to freeze in each
irreducible representation. The default is not to freeze any orbitals,
except for the localisations of the virtual space (see keywords :kword:`PAO` and
:kword:`VIRTual`) where the default is to freeze all occupied orbitals (occupation
number different from zero, as reported in the :file:`INPORB` file).
.. xmldoc:: <SELECT MODULE="LOCALISATION" NAME="ORBITAL_FREEZE" APPEAR="Frozen orbitals selection" CONTAINS="NFROZEN,FREEZE">
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="NFROZEN" APPEAR="Orbitals to freeze" LEVEL="BASIC" KIND="INTS_LOOKUP" SIZE="NSYM" EXCLUSIVE="FREEZE">
<HELP>
Please, specify the number of orbitals to freeze in each irrep.
</HELP>
%%Keyword: NFRO <basic>
The following line specifies the number of orbitals to freeze in each
irreducible representation. The default is not to freeze any orbitals,
except for the localisations of the virtual space (see keywords PAO and
VIRTual) where the default is to freeze all occupied orbitals (occupation
number different from zero, as reported in the INPORB file).
</KEYWORD>
:kword:`FREEze`
Implicit frozen core option. The default is not to freeze any orbitals,
except for the localisations of the virtual space (see keywords :kword:`PAO` and
:kword:`VIRTual`) where the default is to freeze all occupied orbitals (occupation
number different from zero, as reported in the :file:`INPORB` file).
The definition of core orbitals is taken from program :program:`SEWARD`.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="FREEZE" APPEAR="Freeze core orbitals" LEVEL="BASIC" KIND="SINGLE" EXCLUSIVE="NFROZEN">
<HELP>
Freeze the core orbitals as defined by SEWARD.
</HELP>
%%Keyword: FREE <basic>
Implicit frozen core option. The default is not to freeze any orbitals,
except for the localisations of the virtual space (see keywords PAO and
VIRTual) where the default is to freeze all occupied orbitals (occupation
number different from zero, as reported in the INPORB file).
</KEYWORD>
.. xmldoc:: </SELECT>
:kword:`OCCUpied`
Requests that the occupied orbitals should be localised. This is the default
except for PAO where the default is virtual.
.. xmldoc:: <SELECT MODULE="LOCALISATION" NAME="LOC_ORB" APPEAR="Orbitals to localise" CONTAINS="OCCU,VIRT,ALL">
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="OCCU" APPEAR="Localise occupied orbitals" LEVEL="BASIC" KIND="SINGLE" EXCLUSIVE="VIRT,ALL">
%%Keyword: OCCU <basic>
<HELP>
Requests that the occupied orbitals should be localised.
</HELP>
This is the default except for PAO where the default is virtual.
</KEYWORD>
:kword:`VIRTual`
Requests that the virtual orbitals should be localised. The default is
to localise the occupied orbitals, except for PAO where the default is
virtual.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="VIRT" APPEAR="Localise virtual orbitals" LEVEL="BASIC" KIND="SINGLE" EXCLUSIVE="OCCU,ALL">
%%Keyword: VIRT <basic>
<HELP>
Requests that the virtual orbitals should be localised.
</HELP>
The default is
to localise the occupied orbitals, except for PAO where the default is
virtual.
</KEYWORD>
:kword:`ALL`
Requests that all orbitals should be localised. The default is
to localise the occupied orbitals, except for PAO where the default is
virtual.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="ALL" APPEAR="Localise all orbitals" LEVEL="BASIC" KIND="SINGLE" EXCLUSIVE="OCCU,VIRT">
%%Keyword: ALL <basic>
<HELP>
Requests that all orbitals should be localised.
</HELP>
The default is
to localise the occupied orbitals, except for PAO where the default is
virtual.
</KEYWORD>
.. xmldoc:: </SELECT>
:kword:`PIPEk-Mezey`
Requests Pipek--Mezey localisation. This is the default.
.. xmldoc:: <SELECT MODULE="LOCALISATION" NAME="LOC_METHODS" APPEAR="Localisation method" CONTAINS="PIPE,BOYS,EDMI,CHOL,PAO,SKIP">
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="PIPE" APPEAR="Pipek-Mezey" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="BOYS,EDMI,CHOL,PAO,SKIP">
%%Keyword: PIPE <advanced>
<HELP>
Requests Pipek-Mezey localisation.
</HELP>
This is the default.
</KEYWORD>
:kword:`BOYS`
Requests Boys localisation. The default is Pipek--Mezey.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="BOYS" APPEAR="Boys-Forster" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="PIPE,EDMI,CHOL,PAO,SKIP">
%%Keyword: BOYS <advanced>
<HELP>
Requests Boys localisation.
</HELP>
The default is Pipek-Mezey.
</KEYWORD>
:kword:`EDMIston-Ruedenberg`
Requests Edmiston--Ruedenberg localisation. The default is Pipek--Mezey.
Note that this option requires that the Cholesky (or RI/DF) representation
of the two-electron integrals has been produced by :program:`SEWARD`.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="EDMI" APPEAR="Edmiston-Ruedenberg" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="PIPE,BOYS,CHOL,PAO,SKIP">
%%Keyword: EDMI <advanced>
<HELP>
Requests Edmiston-Ruedenberg localisation.
</HELP>
The default is Pipek-Mezey.
Note that this option requires that the Cholesky (or RI/DF) representation
of the two-electron integrals has been produced by SEWARD.
</KEYWORD>
:kword:`CHOLesky`
Requests Cholesky localisation (non-iterative). The default is Pipek--Mezey.
This and PAO are the only options that can handle point group symmetry.
The decomposition threshold is by default 1.0d-8 but may be changed
through the :kword:`THREshold` keyword.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="CHOL" APPEAR="Cholesky" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="PIPE,BOYS,EDMI,PAO,SKIP">
%%Keyword: CHOL <advanced>
<HELP>
Requests Cholesky localisation.
</HELP>
The default is Pipek-Mezey.
</KEYWORD>
:kword:`PAO`
Requests PAO localisation (non-iterative) using Cholesky decomposition
to remove linear dependence.
The default is Pipek--Mezey.
This and Cholesky are the only options that can handle point group symmetry.
The decomposition threshold is by default 1.0d-8 but may be changed
through the :kword:`THREshold` keyword.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="PAO" APPEAR="PAO" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="PIPE,BOYS,EDMI,CHOL,SKIP">
%%Keyword: PAO <advanced>
<HELP>
Requests PAO localisation.
</HELP>
The default is Pipek-Mezey.
</KEYWORD>
:kword:`SKIP`
Leaves the input orbitals unchanged. It is turned off by default.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="SKIP" APPEAR="None" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="PIPE,BOYS,EDMI,CHOL,PAO">
%%Keyword: SKIP <advanced>
<HELP>
Leaves the input orbitals unchanged.
</HELP>
</KEYWORD>
.. xmldoc:: </SELECT>
:kword:`ITERations`
The following line specifies the maximum number of iterations to be
used by the iterative localisation procedures. The default is 300.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="ITER" APPEAR="Iterations" LEVEL="ADVANCED" KIND="INT">
<HELP>
Please, specify the maximum number of iterations to be
used by the iterative localisation procedures. The default is 300.
</HELP>
%%Keyword: ITER <advanced>
The following line specifies the maximum number of iterations to be
used by the iterative localisation procedures. The default is 100.
</KEYWORD>
:kword:`THREshold`
The following line specifies the convergence threshold used for
changes in the localisation functional. The default is 1.0d-6.
For Cholesky and PAO methods, it is the decomposition threshold and
the default is 1.0d-8.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="THRE" APPEAR="Functional threshold" LEVEL="ADVANCED" KIND="REAL">
<HELP>
Please, specify the convergence threshold used for
changes in the localisation functional (default: 1.0d-6)
or the decomposition threshold (default: 1.0d-8).
</HELP>
%%Keyword: THRE <advanced>
The following line specifies the convergence threshold used for
changes in the localisation functional. The default is 1.0d-6.
For Cholesky and PAO methods, it is the decomposition threshold and
the default is 1.0d-8.
</KEYWORD>
:kword:`THRGradient`
The following line specifies the convergence threshold used for
the gradient of the localisation functional. The default is 1.0d-2.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="THRG" APPEAR="Gradient threshold" LEVEL="ADVANCED" KIND="REAL">
<HELP>
Please, specify the convergence threshold used for
changes in the gradient of the localisation functional. The default is 1.0d-2.
</HELP>
%%Keyword: THRG <advanced>
The following line specifies the convergence threshold used for
the gradient of the localisation functional. The default is 1.0d-2.
</KEYWORD>
:kword:`THRRotations`
The following line specifies the screening threshold used in
the Jacobi sweep optimisation algorithm. The default is 1.0d-10.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="THRR" APPEAR="Screening threshold" LEVEL="ADVANCED" KIND="REAL">
<HELP>
Please, specify the convergence threshold used in
the Jacobi sweep optimisation algorithm. The default is 1.0d-10.
</HELP>
%%Keyword: THRR <advanced>
The following line specifies the screening threshold used in
the Jacobi sweep optimisation algorithm. The default is 1.0d-10.
</KEYWORD>
:kword:`CHOStart`
Requests that iterative localisation procedures use Cholesky orbitals
as initial orbitals. The default is to use the orbitals from
:file:`INPORB` directly.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="CHOS" APPEAR="Cholesky guess" LEVEL="ADVANCED" KIND="SINGLE">
%%Keyword: CHOS <advanced>
<HELP>
Requests that the localisation procedure uses Cholesky orbitals
as initial orbitals.
</HELP>
The default is not to use Cholesky orbitals.
</KEYWORD>
:kword:`ORDEr`
Requests that the localised orbitals are ordered in the same way
as the Cholesky orbitals would be. This is mainly useful when
comparing orbitals from different localisation schemes. The
ordering is done according to maximum overlap with the
Cholesky orbitals. The default is not to order.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="ORDE" APPEAR="Orbital reordering" LEVEL="ADVANCED" KIND="SINGLE">
%%Keyword: ORDE <advanced>
<HELP>
Requests that the localised orbitals are ordered in the same way
as the Cholesky orbitals would be.
</HELP>
The default is not to order.
</KEYWORD>
:kword:`DOMAin`
Requests orbital domains and pair domains are set up and analysed.
The default is not to set up domains.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="DOMA" APPEAR="Orbital and pair domains analysis" LEVEL="ADVANCED" KIND="SINGLE">
%%Keyword: DOMA <advanced>
<HELP>
Requests orbital domains and pair domains are set up and analysed.
</HELP>
The default is not to set up domains.
</KEYWORD>
:kword:`THRDomain`
The following line specifies two thresholds to be used in defining
orbital domains. The first is the Mulliken population threshold
such that atoms are included in the domain until the population
(divided by 2) is larger than this number (default: 9.0d-1).
The second threshold is used for the Pulay completeness check of
the domain (default: 2.0d-2).
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="THRD" APPEAR="Domain thresholds" LEVEL="ADVANCED" KIND="REALS" SIZE="2" REQUIRE="DOMA">
<HELP>
Please, specify two thresholds:
The first is the Mulliken population threshold
such that atoms are included in the domain (default: 9.0d-1).
The second threshold is used for the Pulay completeness check of
the domain (default: 2.0d-2).
</HELP>
%%Keyword: THRD <advanced>
The following line specifies two thresholds to be used in defining
orbital domains. The first is the Mulliken population threshold
such that atoms are included in the domain until the population
(divided by 2) is larger than this number (default: 9.0d-1).
The second threshold is used for the Pulay completeness check of
the domain (default: 2.0d-2).
</KEYWORD>
:kword:`THRPairdomain`
The following line specifies three thresholds to be used for
classifying pair domains: R1, R2, and R3. (Defaults: 1.0d-10,
1.0d1, and 1.5d1.)
If R is the smallest distance
between two atoms in the pair domain (union of the individual orbital
domains), then pair domains are classified according to:
R :math:`\leq` R1: strong pair,
R1 :math:`<` R :math:`\leq` R2: weak pair,
R2 :math:`<` R :math:`\leq` R3: distant pair, and
R3 :math:`<` R: very distant pair.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="THRP" APPEAR="Pair domain threshold" LEVEL="ADVANCED" KIND="REALS" SIZE="3" REQUIRE="DOMA">
<HELP>
Please, specify three thresholds to be used for
classifying pair domains: R1, R2, and R3. (Defaults: 1.0d-10,
1.0d1, and 1.5d1.)
</HELP>
%%Keyword: THRP <advanced>
The following line specifies three thresholds to be used for
classifying pair domains: R1, R2, and R3. (Defaults: 1.0d-10,
1.0d1, and 1.5d1.)
</KEYWORD>
:kword:`LOCNatural orbitals`
This keyword is used to select atoms for defining the localised natural
orbitals (LNOs), thus a set of localised orbitals with well-defined occupation numbers.
All other options specified in the :program:`LOCALISATION` program input apply (e.g., input orbitals,
localisation method, etc.).
On the next line give the number of atoms that identify the region of interest
and the threshold used to select the localised orbitals belonging to this region
(recommended values > 0.2 and < 1).
An additional line gives the names of the (symmetry unique) atoms as defined in the :program:`SEWARD` input.
The keyword :kword:`LOCN` is used to define suitable occupation numbers for RASSCF active orbitals
that have been localised. It has proven useful in Effective Bond Order (EBO) analysis.
Here is a sample input for a complex containing an iron-iron multiple bond. ::
LOCN
2 0.3
Fe1 Fe2
In this example, the (localised) orbitals constructed by the :program:`LOCALISATION` program
are subdivided in two groups: those having less than 0.3 total Mulliken population on
the two iron atoms, and the remaining orbitals, obviously localised on the iron-iron region. The resulting
density matrices for the two subsets of orbitals are then diagonalised separately
and the corresponding (localised) natural orbitals written to :file:`LOCORB` with the proper occupation
numbers. Note that the two sets of LNOs are mutually non-orthogonal.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="LOCN" APPEAR="Localised natural orbitals" LEVEL="BASIC" KIND="CUSTOM">
<HELP>
Specify the number of atoms in the region and the threshold.
Then the names of the symmetry unique atoms.
</HELP>
%%Keyword: LOCN <basic>
This keyword is used to select atoms for defining the localised natural
orbitals (LNOs), thus a set of localised orbitals with well-defined occupation numbers.
All other options specified in the localisation input apply (e.g., input orbitals,
localisation method, etc.).
On the next line give the number of (symmetry unique) atoms that identify the region of interest
and the threshold used to select the localised orbitals belonging to this region.
An additional line gives the names of the atoms as defined in the SEWARD input.
This keyword is used to define occupation numbers when localising active orbitals
from RASSCF calculations. Particularly useful in Effective Bond Order (EBO) analysis.
</KEYWORD>
:kword:`LOCCanonical orbitals`
This keyword is used to select atoms for defining the localised canonical
orbitals (LCOs), thus a set of localised orbitals with well-defined orbital energies
(eigenvalues of a local Fock matrix).
Please, refer to the analogous keyword :kword:`LOCN` in this manual for more details and input examples.
.. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="LOCC" APPEAR="Localised canonical orbitals" LEVEL="BASIC" KIND="CUSTOM">
<HELP>
Specify the number of atoms in the region and the threshold.
Then the names of the symmetry unique atoms.
</HELP>
%%Keyword: LOCC <basic>
This keyword is used to select atoms for defining the localised canonical
orbitals (LCOs), thus a set of localised orbitals with well-defined orbital energies.
All other options specified in the localisation input apply (e.g., input orbitals,
localisation method, etc.).
On the next line give the number of (symmetry unique) atoms that identify the region of interest
and the threshold used to select the localised orbitals belonging to this region.
An additional line gives the names of the atoms as defined in the SEWARD input.
</KEYWORD>
Limitations
...........
The limitations on the number of basis functions are the same as specified
for :program:`SEWARD`.
Input examples
..............
This input is an example of the Boys localisation of the CO molecule. Note that no
symmetry should not be used in any calculation of localised orbitals except for
Cholesky and PAO orbitals.
.. extractfile:: ug/localisation.Boys.input
&GATEWAY
Coord = $MOLCAS/Coord/CO.xyz
Basis = STO-3G
Group = C1
&SEWARD ; &SCF
&LOCALISATION
Boys
This input is an example of the Projected Atomic Orbital localisation of the
virtual orbitals of the CO molecule. The threshold for the Cholesky
decomposition that removes linear dependence is set to 1.0d-14.
.. extractfile:: ug/localisation.PAO.input
&GATEWAY
Coord = $MOLCAS/Coord/CO.xyz
Basis = STO-3G
Group = C1
&SEWARD ; &SCF
&LOCALISATION
PAO
Threshold = 1.0d-14
This input is an example of the Cholesky localisation (using default 1.0d-8 as
threshold for the decomposition) of the
valence occupied orbitals of the CO molecule.
Orbital domains are set up and analysed.
.. extractfile:: ug/localisation.Cholesky.input
&GATEWAY
Coord = $MOLCAS/Coord/CO.xyz
Basis = STO-3G
Group = C1
&SEWARD ; &SCF
&LOCALISATION
Cholesky
Freeze
Domain
.. xmldoc:: </MODULE>
|