File: localisation.rst

package info (click to toggle)
openmolcas 25.02-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 170,204 kB
  • sloc: f90: 498,088; fortran: 139,779; python: 13,587; ansic: 5,745; sh: 745; javascript: 660; pascal: 460; perl: 325; makefile: 17
file content (623 lines) | stat: -rw-r--r-- 26,809 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
.. index::
   single: Program; LOCALISATION
   single: LOCALISATION

.. _UG\:sec\:localisation:

:program:`localisation`
=======================

.. only:: html

  .. contents::
     :local:
     :backlinks: none

.. _UG\:sec\:localisation_description:

Description
-----------

.. xmldoc:: <MODULE NAME="LOCALISATION">
            %%Description:
            <HELP>
            The LOCALISATION program of the molcas program system generates
            localised occupied orbitals according to one of the following procedures:
            Pipek-Mezey, Boys, Edmiston-Ruedenberg, or Cholesky.
            Orthonormal, linearly independent, local virtual orbitals may also be
            generated from projected atomic orbitals (Cholesky PAOs).
            </HELP>

The :program:`LOCALISATION` program of the |molcas| program system generates
localised occupied orbitals according to one of the following procedures:
Pipek--Mezey :cite:`Pipek:89`,
Boys :cite:`Boys:60,Foster:60`,
Edmiston--Ruedenberg :cite:`Edmiston:63`, or
Cholesky :cite:`Aquilante:06a`.
Orthonormal, linearly independent, local orbitals may also be
generated from projected atomic orbitals (Cholesky PAOs) :cite:`Aquilante:06a`.

.. compound::

  Orbital localisation makes use of the fact that a Hartree-Fock wave function
  is invariant under unitary transformations of the occupied orbitals,

  .. math:: \tilde{C}_{\mu i} = \sum_j C_{\mu j} \mat{U}_{ji} ,

  where :math:`\mat{U}` is unitary (i.e. orthogonal for real orbitals).
  The same is true for the inactive or active orbitals in a CASSCF wave function.
  Whereas the Pipek--Mezey :cite:`Pipek:89`,
  Boys :cite:`Boys:60,Foster:60`, and
  Edmiston--Ruedenberg :cite:`Edmiston:63` procedures define :math:`\mat{U}`
  through an iterative maximisation of a localisation functional,
  the Cholesky orbitals are simply defined through the Cholesky decomposition
  of the one-electron density, i.e.

  .. math:: \sum_i \tilde{C}_{\mu i}\tilde{C}_{\nu i} = P_{\mu\nu} = \sum_i C_{\mu i} C_{\mu i} .

  Cholesky orbitals are thus not optimum localised orbitals by any of the
  Pipek--Mezey, Boys, or Edmiston--Ruedenberg measures, but rather inherit locality
  from the density matrix, see :cite:`Aquilante:06a` for details.

Although these localisation schemes are mostly meant for localising occupied
orbitals (except for PAOs which are defined for the virtual orbitals), the
:program:`LOCALISATION` program will attempt to localise any set of orbitals
that the user specifies. This means that it is possible to mix
occupied and virtual orbitals and thereby break the Hartree--Fock
invariance. The default settings, however, do not break the invariance.

For Pipek--Mezey, Boys, and Edmiston--Ruedenberg localisations, iterative
optimisations are carried out. We use
the :math:`\eta`-steps of Subotnik *et al.* :cite:`Subotnik:04` for
Edmiston--Ruedenberg, whereas the traditional Jacobi sweeps (consecutive
two-by-two orbital rotations) :cite:`Pipek:89,Subotnik:04`
are employed for the Pipek--Mezey and Boys schemes.

.. _UG\:sec\:localisation_dependencies:

Dependencies
------------

The :program:`LOCALISATION` program requires the one-electron integral file
:file:`ONEINT` and the communications file :file:`RUNFILE`,
which contains, among other data, the
basis set specifications processed by :program:`GATEWAY` and :program:`SEWARD`.
In addition, the Edmiston--Ruedenberg procedure requires the presence
of Cholesky decomposed two-electron integrals produced by :program:`SEWARD`.

.. index::
   pair: Files; LOCALISATION

.. _UG\sec\:localisation_files:

Files
-----

Below is a list of the files that are used/created by the program
:program:`LOCALISATION`.

Input files
...........

:program:`LOCALISATION` will use the following input
files: :file:`ONEINT`, :file:`RUNFILE`, :file:`INPORB`.
For Edmiston--Ruedenberg localisation,
it also needs :file:`CHVEC`, :file:`CHRED` and :file:`CHORST` files
(for more information see :numref:`UG:sec:files_list`).

Output files
............

.. class:: filelist

:file:`LOCORB`
  Localised orthonormal orbital output file.
  Note that :file:`LOCORB` contains all orbitals (localised as well as non-localised
  according to the input specification).

:file:`DPAORB`
  Linearly dependent nonorthonormal projected atomic orbital output file
  (only produced for PAO runs).

:file:`IPAORB`
  Linearly independent nonorthonormal projected atomic orbital output file
  (only produced for PAO runs).

:file:`RUNFILE`
  Communication file for subsequent programs.

:file:`MD_LOC`
  Molden input file for molecular orbital analysis.

.. index::
   pair: Input; LOCALISATION

.. _UG\:sec\:localisation_input:

Input
-----

Below follows a description of the input to :program:`LOCALISATION`.
The :program:`LOCALISATION` program section of the |molcas| input is bracketed by
a preceding program reference ::

  &LOCALISATION

Optional general keywords
.........................

.. class:: keywordlist

:kword:`FILEorb`
  The next line specifies the filename containing the input orbitals that will
  be localised. By default a file named :file:`INPORB` will be used.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="FILE" APPEAR="Orbitals file" KIND="STRING" LEVEL="BASIC">
              %%Keyword: FileOrb <basic>
              <HELP>
              The next line specifies the filename containing the input orbitals that will
              be localised. By default a file named INPORB will be used.
              </HELP>
              </KEYWORD>

:kword:`NORBitals`
  The following line specifies the number of orbitals to localise in each
  irreducible representation. The default is to localise all occupied
  orbitals as specified in the :file:`INPORB` input file, except for PAO runs where
  all the virtual orbitals are treated by default.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="NORB" APPEAR="Number of orbitals" LEVEL="BASIC" KIND="INTS_LOOKUP" SIZE="NSYM">
              <HELP>
              Please, specify the number of orbitals to localise in each irrep.
              </HELP>
              %%Keyword: NORB <basic>
              The following line specifies the number of orbitals to localise in each
              irreducible representation. The default is to localise all occupied
              orbitals as specified in the INPORB input file, except for PAO runs where
              all the virtual orbitals are treated by default.
              </KEYWORD>

:kword:`NFROzen`
  The following line specifies the number of orbitals to freeze in each
  irreducible representation. The default is not to freeze any orbitals,
  except for the localisations of the virtual space (see keywords :kword:`PAO` and
  :kword:`VIRTual`) where the default is to freeze all occupied orbitals (occupation
  number different from zero, as reported in the :file:`INPORB` file).

  .. xmldoc:: <SELECT MODULE="LOCALISATION" NAME="ORBITAL_FREEZE" APPEAR="Frozen orbitals selection" CONTAINS="NFROZEN,FREEZE">

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="NFROZEN" APPEAR="Orbitals to freeze" LEVEL="BASIC" KIND="INTS_LOOKUP" SIZE="NSYM" EXCLUSIVE="FREEZE">
              <HELP>
              Please, specify the number of orbitals to freeze in each irrep.
              </HELP>
              %%Keyword: NFRO <basic>
              The following line specifies the number of orbitals to freeze in each
              irreducible representation. The default is not to freeze any orbitals,
              except for the localisations of the virtual space (see keywords PAO and
              VIRTual) where the default is to freeze all occupied orbitals (occupation
              number different from zero, as reported in the INPORB file).
              </KEYWORD>

:kword:`FREEze`
  Implicit frozen core option. The default is not to freeze any orbitals,
  except for the localisations of the virtual space (see keywords :kword:`PAO` and
  :kword:`VIRTual`) where the default is to freeze all occupied orbitals (occupation
  number different from zero, as reported in the :file:`INPORB` file).
  The definition of core orbitals is taken from program :program:`SEWARD`.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="FREEZE" APPEAR="Freeze core orbitals" LEVEL="BASIC" KIND="SINGLE" EXCLUSIVE="NFROZEN">
              <HELP>
              Freeze the core orbitals as defined by SEWARD.
              </HELP>
              %%Keyword: FREE <basic>
              Implicit frozen core option. The default is not to freeze any orbitals,
              except for the localisations of the virtual space (see keywords PAO and
              VIRTual) where the default is to freeze all occupied orbitals (occupation
              number different from zero, as reported in the INPORB file).
              </KEYWORD>

  .. xmldoc:: </SELECT>

:kword:`OCCUpied`
  Requests that the occupied orbitals should be localised. This is the default
  except for PAO where the default is virtual.

  .. xmldoc:: <SELECT MODULE="LOCALISATION" NAME="LOC_ORB" APPEAR="Orbitals to localise" CONTAINS="OCCU,VIRT,ALL">

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="OCCU" APPEAR="Localise occupied orbitals" LEVEL="BASIC" KIND="SINGLE" EXCLUSIVE="VIRT,ALL">
              %%Keyword: OCCU <basic>
              <HELP>
              Requests that the occupied orbitals should be localised.
              </HELP>
              This is the default except for PAO where the default is virtual.
              </KEYWORD>

:kword:`VIRTual`
  Requests that the virtual orbitals should be localised. The default is
  to localise the occupied orbitals, except for PAO where the default is
  virtual.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="VIRT" APPEAR="Localise virtual orbitals" LEVEL="BASIC" KIND="SINGLE" EXCLUSIVE="OCCU,ALL">
              %%Keyword: VIRT <basic>
              <HELP>
              Requests that the virtual orbitals should be localised.
              </HELP>
              The default is
              to localise the occupied orbitals, except for PAO where the default is
              virtual.
              </KEYWORD>

:kword:`ALL`
  Requests that all orbitals should be localised. The default is
  to localise the occupied orbitals, except for PAO where the default is
  virtual.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="ALL" APPEAR="Localise all orbitals" LEVEL="BASIC" KIND="SINGLE" EXCLUSIVE="OCCU,VIRT">
              %%Keyword: ALL <basic>
              <HELP>
              Requests that all orbitals should be localised.
              </HELP>
              The default is
              to localise the occupied orbitals, except for PAO where the default is
              virtual.
              </KEYWORD>

  .. xmldoc:: </SELECT>

:kword:`PIPEk-Mezey`
  Requests Pipek--Mezey localisation. This is the default.

  .. xmldoc:: <SELECT MODULE="LOCALISATION" NAME="LOC_METHODS" APPEAR="Localisation method" CONTAINS="PIPE,BOYS,EDMI,CHOL,PAO,SKIP">

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="PIPE" APPEAR="Pipek-Mezey" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="BOYS,EDMI,CHOL,PAO,SKIP">
              %%Keyword: PIPE <advanced>
              <HELP>
              Requests Pipek-Mezey localisation.
              </HELP>
              This is the default.
              </KEYWORD>

:kword:`BOYS`
  Requests Boys localisation. The default is Pipek--Mezey.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="BOYS" APPEAR="Boys-Forster" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="PIPE,EDMI,CHOL,PAO,SKIP">
              %%Keyword: BOYS <advanced>
              <HELP>
              Requests Boys localisation.
              </HELP>
              The default is Pipek-Mezey.
              </KEYWORD>

:kword:`EDMIston-Ruedenberg`
  Requests Edmiston--Ruedenberg localisation. The default is Pipek--Mezey.
  Note that this option requires that the Cholesky (or RI/DF) representation
  of the two-electron integrals has been produced by :program:`SEWARD`.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="EDMI" APPEAR="Edmiston-Ruedenberg" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="PIPE,BOYS,CHOL,PAO,SKIP">
              %%Keyword: EDMI <advanced>
              <HELP>
              Requests Edmiston-Ruedenberg localisation.
              </HELP>
              The default is Pipek-Mezey.
              Note that this option requires that the Cholesky (or RI/DF) representation
              of the two-electron integrals has been produced by SEWARD.
              </KEYWORD>

:kword:`CHOLesky`
  Requests Cholesky localisation (non-iterative). The default is Pipek--Mezey.
  This and PAO are the only options that can handle point group symmetry.
  The decomposition threshold is by default 1.0d-8 but may be changed
  through the :kword:`THREshold` keyword.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="CHOL" APPEAR="Cholesky" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="PIPE,BOYS,EDMI,PAO,SKIP">
              %%Keyword: CHOL <advanced>
              <HELP>
              Requests Cholesky localisation.
              </HELP>
              The default is Pipek-Mezey.
              </KEYWORD>

:kword:`PAO`
  Requests PAO localisation (non-iterative) using Cholesky decomposition
  to remove linear dependence.
  The default is Pipek--Mezey.
  This and Cholesky are the only options that can handle point group symmetry.
  The decomposition threshold is by default 1.0d-8 but may be changed
  through the :kword:`THREshold` keyword.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="PAO" APPEAR="PAO" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="PIPE,BOYS,EDMI,CHOL,SKIP">
              %%Keyword: PAO <advanced>
              <HELP>
              Requests PAO localisation.
              </HELP>
              The default is Pipek-Mezey.
              </KEYWORD>

:kword:`SKIP`
  Leaves the input orbitals unchanged. It is turned off by default.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="SKIP" APPEAR="None" LEVEL="ADVANCED" KIND="SINGLE" EXCLUSIVE="PIPE,BOYS,EDMI,CHOL,PAO">
              %%Keyword: SKIP <advanced>
              <HELP>
              Leaves the input orbitals unchanged.
              </HELP>
              </KEYWORD>

  .. xmldoc:: </SELECT>

:kword:`ITERations`
  The following line specifies the maximum number of iterations to be
  used by the iterative localisation procedures. The default is 300.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="ITER" APPEAR="Iterations" LEVEL="ADVANCED" KIND="INT">
              <HELP>
              Please, specify the maximum number of iterations to be
              used by the iterative localisation procedures. The default is 300.
              </HELP>
              %%Keyword: ITER <advanced>
              The following line specifies the maximum number of iterations to be
              used by the iterative localisation procedures. The default is 100.
              </KEYWORD>

:kword:`THREshold`
  The following line specifies the convergence threshold used for
  changes in the localisation functional. The default is 1.0d-6.
  For Cholesky and PAO methods, it is the decomposition threshold and
  the default is 1.0d-8.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="THRE" APPEAR="Functional threshold" LEVEL="ADVANCED" KIND="REAL">
              <HELP>
              Please, specify the convergence threshold used for
              changes in the localisation functional (default: 1.0d-6)
              or the decomposition threshold (default: 1.0d-8).
              </HELP>
              %%Keyword: THRE <advanced>
              The following line specifies the convergence threshold used for
              changes in the localisation functional. The default is 1.0d-6.
              For Cholesky and PAO methods, it is the decomposition threshold and
              the default is 1.0d-8.
              </KEYWORD>

:kword:`THRGradient`
  The following line specifies the convergence threshold used for
  the gradient of the localisation functional. The default is 1.0d-2.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="THRG" APPEAR="Gradient threshold" LEVEL="ADVANCED" KIND="REAL">
              <HELP>
              Please, specify the convergence threshold used for
              changes in the gradient of the localisation functional. The default is 1.0d-2.
              </HELP>
              %%Keyword: THRG <advanced>
              The following line specifies the convergence threshold used for
              the gradient of the localisation functional. The default is 1.0d-2.
              </KEYWORD>

:kword:`THRRotations`
  The following line specifies the screening threshold used in
  the Jacobi sweep optimisation algorithm. The default is 1.0d-10.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="THRR" APPEAR="Screening threshold" LEVEL="ADVANCED" KIND="REAL">
              <HELP>
              Please, specify the convergence threshold used in
              the Jacobi sweep optimisation algorithm. The default is 1.0d-10.
              </HELP>
              %%Keyword: THRR <advanced>
              The following line specifies the screening threshold used in
              the Jacobi sweep optimisation algorithm. The default is 1.0d-10.
              </KEYWORD>

:kword:`CHOStart`
  Requests that iterative localisation procedures use Cholesky orbitals
  as initial orbitals. The default is to use the orbitals from
  :file:`INPORB` directly.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="CHOS" APPEAR="Cholesky guess" LEVEL="ADVANCED" KIND="SINGLE">
              %%Keyword: CHOS <advanced>
              <HELP>
              Requests that the localisation procedure uses Cholesky orbitals
              as initial orbitals.
              </HELP>
              The default is not to use Cholesky orbitals.
              </KEYWORD>

:kword:`ORDEr`
  Requests that the localised orbitals are ordered in the same way
  as the Cholesky orbitals would be. This is mainly useful when
  comparing orbitals from different localisation schemes. The
  ordering is done according to maximum overlap with the
  Cholesky orbitals. The default is not to order.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="ORDE" APPEAR="Orbital reordering" LEVEL="ADVANCED" KIND="SINGLE">
              %%Keyword: ORDE <advanced>
              <HELP>
              Requests that the localised orbitals are ordered in the same way
              as the Cholesky orbitals would be.
              </HELP>
              The default is not to order.
              </KEYWORD>

:kword:`DOMAin`
  Requests orbital domains and pair domains are set up and analysed.
  The default is not to set up domains.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="DOMA" APPEAR="Orbital and pair domains analysis" LEVEL="ADVANCED" KIND="SINGLE">
              %%Keyword: DOMA <advanced>
              <HELP>
              Requests orbital domains and pair domains are set up and analysed.
              </HELP>
              The default is not to set up domains.
              </KEYWORD>

:kword:`THRDomain`
  The following line specifies two thresholds to be used in defining
  orbital domains. The first is the Mulliken population threshold
  such that atoms are included in the domain until the population
  (divided by 2) is larger than this number (default: 9.0d-1).
  The second threshold is used for the Pulay completeness check of
  the domain (default: 2.0d-2).

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="THRD" APPEAR="Domain thresholds" LEVEL="ADVANCED" KIND="REALS" SIZE="2" REQUIRE="DOMA">
              <HELP>
              Please, specify two thresholds:
              The first is the Mulliken population threshold
              such that atoms are included in the domain (default: 9.0d-1).
              The second threshold is used for the Pulay completeness check of
              the domain (default: 2.0d-2).
              </HELP>
              %%Keyword: THRD <advanced>
              The following line specifies two thresholds to be used in defining
              orbital domains. The first is the Mulliken population threshold
              such that atoms are included in the domain until the population
              (divided by 2) is larger than this number (default: 9.0d-1).
              The second threshold is used for the Pulay completeness check of
              the domain (default: 2.0d-2).
              </KEYWORD>

:kword:`THRPairdomain`
  The following line specifies three thresholds to be used for
  classifying pair domains: R1, R2, and R3. (Defaults: 1.0d-10,
  1.0d1, and 1.5d1.)
  If R is the smallest distance
  between two atoms in the pair domain (union of the individual orbital
  domains), then pair domains are classified according to:
  R :math:`\leq` R1: strong pair,
  R1 :math:`<` R :math:`\leq` R2: weak pair,
  R2 :math:`<` R :math:`\leq` R3: distant pair, and
  R3 :math:`<` R: very distant pair.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="THRP" APPEAR="Pair domain threshold" LEVEL="ADVANCED" KIND="REALS" SIZE="3" REQUIRE="DOMA">
              <HELP>
              Please, specify three thresholds to be used for
              classifying pair domains: R1, R2, and R3. (Defaults: 1.0d-10,
              1.0d1, and 1.5d1.)
              </HELP>
              %%Keyword: THRP <advanced>
              The following line specifies three thresholds to be used for
              classifying pair domains: R1, R2, and R3. (Defaults: 1.0d-10,
              1.0d1, and 1.5d1.)
              </KEYWORD>

:kword:`LOCNatural orbitals`
  This keyword is used to select atoms for defining the localised natural
  orbitals (LNOs), thus a set of localised orbitals with well-defined occupation numbers.
  All other options specified in the :program:`LOCALISATION` program input apply (e.g., input orbitals,
  localisation method, etc.).
  On the next line give the number of atoms that identify the region of interest
  and the threshold used to select the localised orbitals belonging to this region
  (recommended values > 0.2 and < 1).
  An additional line gives the names of the (symmetry unique) atoms as defined in the :program:`SEWARD` input.
  The keyword :kword:`LOCN` is used to define suitable occupation numbers for RASSCF active orbitals
  that have been localised. It has proven useful in Effective Bond Order (EBO) analysis.
  Here is a sample input for a complex containing an iron-iron multiple bond. ::

    LOCN
    2  0.3
    Fe1  Fe2

  In this example, the (localised) orbitals constructed by the :program:`LOCALISATION` program
  are subdivided in two groups: those having less than 0.3 total Mulliken population on
  the two iron atoms, and the remaining orbitals, obviously localised on the iron-iron region. The resulting
  density matrices for the two subsets of orbitals are then diagonalised separately
  and the corresponding (localised) natural orbitals written to :file:`LOCORB` with the proper occupation
  numbers. Note that the two sets of LNOs are mutually non-orthogonal.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="LOCN" APPEAR="Localised natural orbitals" LEVEL="BASIC" KIND="CUSTOM">
              <HELP>
              Specify the number of atoms in the region and the threshold.
              Then the names of the symmetry unique atoms.
              </HELP>
              %%Keyword: LOCN <basic>
              This keyword is used to select atoms for defining the localised natural
              orbitals (LNOs), thus a set of localised orbitals with well-defined occupation numbers.
              All other options specified in the localisation input apply (e.g., input orbitals,
              localisation method, etc.).
              On the next line give the number of (symmetry unique) atoms that identify the region of interest
              and the threshold used to select the localised orbitals belonging to this region.
              An additional line gives the names of the atoms as defined in the SEWARD input.
              This keyword is used to define occupation numbers when localising active orbitals
              from RASSCF calculations. Particularly useful in Effective Bond Order (EBO) analysis.
              </KEYWORD>

:kword:`LOCCanonical orbitals`
  This keyword is used to select atoms for defining the localised canonical
  orbitals (LCOs), thus a set of localised orbitals with well-defined orbital energies
  (eigenvalues of a local Fock matrix).
  Please, refer to the analogous keyword :kword:`LOCN` in this manual for more details and input examples.

  .. xmldoc:: <KEYWORD MODULE="LOCALISATION" NAME="LOCC" APPEAR="Localised canonical orbitals" LEVEL="BASIC" KIND="CUSTOM">
              <HELP>
              Specify the number of atoms in the region and the threshold.
              Then the names of the symmetry unique atoms.
              </HELP>
              %%Keyword: LOCC <basic>
              This keyword is used to select atoms for defining the localised canonical
              orbitals (LCOs), thus a set of localised orbitals with well-defined orbital energies.
              All other options specified in the localisation input apply (e.g., input orbitals,
              localisation method, etc.).
              On the next line give the number of (symmetry unique) atoms that identify the region of interest
              and the threshold used to select the localised orbitals belonging to this region.
              An additional line gives the names of the atoms as defined in the SEWARD input.
              </KEYWORD>

Limitations
...........

The limitations on the number of basis functions are the same as specified
for :program:`SEWARD`.

Input examples
..............

This input is an example of the Boys localisation of the CO molecule. Note that no
symmetry should not be used in any calculation of localised orbitals except for
Cholesky and PAO orbitals.

.. extractfile:: ug/localisation.Boys.input

  &GATEWAY
  Coord = $MOLCAS/Coord/CO.xyz
  Basis = STO-3G
  Group = C1

  &SEWARD ; &SCF

  &LOCALISATION
  Boys

This input is an example of the Projected Atomic Orbital localisation of the
virtual orbitals of the CO molecule. The threshold for the Cholesky
decomposition that removes linear dependence is set to 1.0d-14.

.. extractfile:: ug/localisation.PAO.input

  &GATEWAY
  Coord = $MOLCAS/Coord/CO.xyz
  Basis = STO-3G
  Group = C1

  &SEWARD ; &SCF

  &LOCALISATION
  PAO
  Threshold = 1.0d-14

This input is an example of the Cholesky localisation (using default 1.0d-8 as
threshold for the decomposition) of the
valence occupied orbitals of the CO molecule.
Orbital domains are set up and analysed.

.. extractfile:: ug/localisation.Cholesky.input

  &GATEWAY
  Coord = $MOLCAS/Coord/CO.xyz
  Basis = STO-3G
  Group = C1

  &SEWARD ; &SCF

  &LOCALISATION
  Cholesky
  Freeze
  Domain

.. xmldoc:: </MODULE>