1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
.. index::
single: Program; MkNemo
single: MkNemo
.. _UG\:sec\:mknemo:
:program:`mknemo` |extramark|
=============================
.. warning::
This program is not available in |openmolcas|
.. only:: html
.. contents::
:local:
:backlinks: none
.. xmldoc:: %%Description:
This module generates intermolecular potential between two subsystems
and saves all information in the NEMO file format.
The :program:`MkNemo` module generates intermolecular potential between two subsystems and saves all informations in the NEMO file format.
.. _UG\:sec\:mknemo_description:
Description
-----------
According to the NEMO model of interaction between two subsystems, the :program:`MkNemo` module splits super-system into two clusters: :math:`A` and :math:`B`. The subsystems :math:`A` and :math:`B` are defined in the main coordinate system, :math:`R`. Calculations of the interaction potential between two subsystems are performed for different configurations. At the first step one has to transform both subsystems to the first configuration. An identical transformation to the first configuration is only allowed for one of the subsystems if any coordinates of atoms in the A-subsystem are the same as any atom's coordinates of the B-subsystem. Generally, we define :math:`T_A` and :math:`T_B` as transformation operations of the first and second subsystem to the first configuration :math:`(R_A,R_B)` from the main coordinate system (:math:`R`):
.. math:: T_A: R \rightarrow R_A, \\
T_B: R \rightarrow R_B.
.. VV 120918: this picture is missing. So, the call has been commented out.
.. figure:: mknemo.*
:scale: 60%
:align: center
The transformations of the subsystems from the main coordinate system, :math:`R`, to the first configuration (:math:`R_A,R_B`).
Any other configuration can be obtained by transformation, i.e., translation or rotation of one of the subsystems. For any configuration, one has to calculate the total energy of super-system, A-subsystem with the virtual orbitals of the B-subsystem, and the B-subsystem with virtual orbitals of the A-subsystem at first (unperturbed theory) and second (perturbation) level of theory.
The :program:`MkNemo` is written in such way that at first step user has to:
#. Define different molecules in global coordinate system, :math:`R` and the molecules can overlay.
#. Define the clusters, :math:`A` and :math:`B`, using translation and rotation operations applied for the molecules and for the clusters themselves.
#. Define all possible displacements of any cluster to obtain new configuration.
In the second step user has to provide any input of |molcas| module which is able to calculate the total energy of the super-system, A-subsystem, and B-subsystem on the first and second level of theory for a given configuration. After any calculation of total energy, one has to call proper block of :program:`MkNemo` module, GetE, to save energy in the MKNEMO.Conf file. Finally, in the third step, user has to generate new configuration, according to displacement transformations. All three steps are placed in the do-while loop.
.. _UG\:sec\:mknemo_files:
Files
-----
Standard input
..............
The :program:`MkNemo` obeys all rules for format of |molcas|'s input except order of :program:`MkNemo`'s blocks in an input. The input is always preceded by the dummy namelist reference
:kword:`&MkNemo &End` and ended by :kword:`End Of Input`.
Example: ::
&MkNemo &End
.................
End of input
.. compound::
The :program:`MkNemo` defines *transformation* as translation, :math:`T`, or rotation, :math:`R`, operation in a format: ::
[ x y z angle]
where the ``[x y z]`` is a 3D-vector of translation, or the ``[x,y z]`` is a 3D-vector of rotation if the ``angle`` parameter is presented, and the ``angle`` is an optional parameter which is an angle of rotation around this vector in degrees. Generally, translation and rotation operation do not commute, since that the :program:`MkNemo` first applys transformation from left to right, i.e.: product :math:`T R` means that the :program:`MkNemo` will apply first rotation and then translation.
The input of :program:`MkNemo` module has been split into four groups of keywords:
* **Mole**\cules, **Clus**\ters, and **Disp**\lacement,
* **GetE**\energy,
* **Next**,
* **Test**.
All keywords can be provided in a full name but only first 4 characters (bold characters) are recognize by :program:`MkNemo`.
.. class:: keywordlist
:kword:`MOLE`, :kword:`CLUS`, and :kword:`DISP`
The keywords must be provided in right order in the input file. And the blocks of keywords, MOLE, CLUS, and DISP, cannot be split between separated :program:`MkNemo` inputs.
.. compound::
The definition of a **Mole**\cule has format: ::
Mole : MoleculeName
AtomLabel x y z
......... .. .. ..
AtomLabel x y z
End
where the **Mole** is keyword which marks beginning of a molecule's block, the MoleculeName is an unique name of molecule, the AtomLabel is the label of atom, and x, y, and z are coordinates of atoms. The name of the molecule is case sensitive, but atom's label is not.
.. xmldoc:: %%Keyword: MOLE <basic>
The Mole block specifies a molecule, in the format:
Mole : MoleculeName
AtomLabel x y z
......... .. .. ..
AtomLabel x y z
End
where the Mole is keyword which marks begining of a molecule's block,
the MoleculeName is an unique name of molecule, the AtomLabel is the label
of atom, and x, y, and z are coordinates of atoms. The name of the molecule
is case sensitive, but atom's label is not.
.. compound::
In the **Clus**\ter's block, user defines a cluster in format: ::
Clus : ClusterName ClusterTransformation
MoleculeName MoleculeTransformation
............ ......................
MoleculeName
End
where the **Clus** keyword marks beginning of cluster's block, the ClusterName[MoleculeName] is an unique name of cluster[molecule], and the ClusterTransformation[MoleculeTransformation] is an optional argument which defines a transformation of the cluster[molecule]. The cluster and molecule names are case sensitive. The MoleculeName must be defined in a **Mole** block.
.. xmldoc:: %%Keyword: CLUS <basic>
In the Clus block, user defines a cluster in format:
Clus : ClusterName : ClusterTransformation
MoleculeName : MoleculeTransformation
............
MoleculeName
End
where the Clus keyword marks beginning of cluster's block,
the ClusterName[MoleculeName] is an unique name of cluster[molecule],
and the ClusterTransformation[MoleculeTransformation] is an optional
argument which definies a transformation of the cluster[molecule].
The cluster and molecule names are case sensitive. The MoleculeName
must be defined in a Mole block.
.. compound::
The **Disp** block contains information about transformations of one of the clusters in the format: ::
Disp
ClusterName NumberOfSteps Transformation
........... ............. ......... .....
ClusterName NumberOfSteps Transformation
End
where the ClusterName is a name of one of the clusters which has been defined in **Clus** block, the NumberOfSteps is a number of steps in which transformation will be reached, the Transformation is a translation or rotation. Any kind of transformations must be provided line by line in the **Disp**\lacement block and number of transformations is not limited. It means that any row of the DISPlacement block contains information about different transformations. Any new configuration is simply generated from the previous configuration. In this point we can construct final transformation, from the starting configuration to current configuration, as a product of all previous transformations for given subsystem. The :program:`MkNemo` will store final transformation in order :math:`TR`.
.. xmldoc:: %%Keyword: DISP <basic>
The Disp block contains information about transformations
of one of the clusters in the format:
Disp
ClusterName : NumberOfSteps Transformation
........... : ............. ......... .....
ClusterName : NumberOfSteps Transformation
End
where the ClusterName is a name one of the clusters which has been
defined in Clus block, the NumberOfSteps is a number of steps in which
transformation will be reached, and the Transformation is a translation
or rotation operation.
Any atomic coordinates and vectors of transformations must be provided in a.u. units. The coordinates of transformation vector can be separated by space or a comma. Moreover, the **Mole**\cule blocks must be provided first, then the **Clus**\ter blocks must appear, and finally **Disp**\lacement block. In a mixed order, the :program:`MkNemo` will not be able to recognize a label of molecule[cluster] defined below a block which is using it.
An execution of :program:`MkNemo` module within defined **Mole**, **Clus**, and **Disp** blocks in an input will generate a two coordinate files, named MKNEMO.Axyz and MNEMO.Bxyz. Those files contain coordinates of atoms for clusters :math:`B` and :math:`A` respectively, and can be used directly in the :program:`SEWARD` and :program:`GATEWAY` (see documentation of :program:`GATEWAY` for COORD keyword).
By default, the :program:`Seward` or :program:`Gateway` will apply symmetry, so **user must be aware that the displacement transformation can break symmetry of the system and the** :program:`MkNemo` **does not control it**. If you do not want use symmetry see documentation of :program:`Seward` or :program:`Gateway` for details.
Example: ::
&MkNemo&End
* Molecules definitions
Mole : H2o
H 1.43 0.0 1.07
H -1.43 0.0 1.07
O 0.00 0.0 0.00
End
Mole : Cm3+
Cm 0.0 0.0 0.0
End
* Clusters definitions
Clus : Cm3+H2o
H2o [0.0 0.0 -1.0] [0.0 1.0 0.0 180.0]
Cm3+
End
Clus : H2O [0.0 0.0 2.0]
H2o [0.0 0.0 1.0]
End
Disp
Cm3+H2o : 3 [0.0,0.0,3.0]
Cm3+H2o : 1 [0.0,3.0 0.0]
H2O : 2 [0.0 0.0,1.0 90.0]
End
End Of Input
In this example, we define two molecules, H2o and Cm3+. Then we define a Cm3+H2o cluster which has been build from H2o and Cm3+ molecule. The H2o molecule has been rotated around Y-axis by the 180 degree and translated along Z-axis by 2 a.u. The Cm3+ molecule stays unchanged. The second cluster, named H2O has been constructed from translated H2o molecule. The H2o molecule has been translated along Z-axis by 1 a.u. Then the H2O cluster has been translated along Z-direction by 2 a.u. In the **Disp** block Cm3+H2o subsystem is translated by vector [0,0,3] in the three steps. Then, in the second row we define translation of H2O cluster by vector [0,3,0] in one step. Finally we rotate H2O cluster by 90 degree around [0,0,1] vector in the two steps. The total number of different configurations is simply a sum of steps: 9=3+1+2+first configuration.
:kword:`GETE`
The **GetE**\nergy block is used to read total energy stored at RUNFILE, and to save it into the MKNEMO.Conf file. The argument of GetEnergy block must be present and it must be a label from the list below. Use
.. container:: list
**S1** to save the energy of super-system at the first level of theory,
**S2** to save the energy of super-system at the second level of theory,
**A1** to save the energy of the A-subsystem with virtual orbitals of B-subsystem at the first level of theory,
**A2** to save the energy of the A-subsystem with virtual orbitals of B-subsystem at the second level of theory,
**B1** to save the energy of the B-subsystem with virtual orbitals of A-subsystem at the first level of theory,
**B2** to save the energy of the B-subsystem with virtual orbitals of A-subsystem at the second level of theory.
Please note, that :program:`MkNemo` does not have any possibility to check what kind of total energy was computed in the previous step by any |molcas| module. The user has to pay attention on what kind of energy was computed in the previous step.
Example: ::
&MkNemo&End
GetE
A1
End Of Input
In this case the total energy which has been computed by a |molcas| module will be saved as energy of the A-subsystem with virtual orbitals of B-subsystem at the first level of theory.
.. xmldoc:: %%Keyword: GETE <basic>
The GETEnergy block is used to read total energy stored at RUNFILE,
and to save it into the MKNEMO.Conf file. The format of this block is
&MkNemo&End
GetE
Arg
End Of Input
where the Arg must be any label from the list below. Use
S1 -- to save the energy of super-system at the first level of theory,
S2 -- to save the energy of super-system at the second level of theory,
A1 -- to save the energy of the A-subsystem with virtual orbitals of
the B-subsystem at the first level of theory,
A2 -- to save the energy of the A-subsystem with virtual orbitals of
the B-subsystem at the second level of theory,
B1 -- to save the energy of the B-subsystem with virtual orbitals of
the A-subsystem at the first level of theory,
B2 -- to save the energy of the B-subsystem with virtual orbitals of
the A-subsystem at the second level of theory.
Please note, that MKNEMO does not have any possibility to check what
kind of total energy was computed in the previous step by called
MOLCAS module.
:kword:`NEXT`
The **Next** block is used to save all information about potential curve from previous step into the MKNEMO.Nemo file (the command Next will move data from MKNEMO.Conf file into MKNEMO. Nemo file and will delete MKNEMO.Conf file) and to continue or break an EMIL's loop. **This block cannot be used before Mole, Clus, and Disp blocks.**
Example: ::
&MkNemo&End
Next
End Of Input
.. xmldoc:: %%Keyword: NEXT <basic>
The NEXT block is used to generate new configuration according to displacements
provided in the DISPlacement block and to save all information about potential
curve from previous step into the MKNEMO.Nemo file. This block cannot be used
before Mole, Clus, and Disp blocks.
Format:
&MkNemo&End
Next
End Of Input
:kword:`TEST`
The **TEST** block CAN BE ONLY USED to save verification data for |molcas| command *verify*.
Example: ::
&MkNemo&End
Test
End Of Input
.. xmldoc:: %%Keyword: TEST <basic>
The TEST block CAN BE ONLY USED to save verification data for MOLCAS command verify.
Format:
&MkNemo&End
Test
End Of Input
Finally the structure of a standard input file for :program:`MkNemo` module has the following form: ::
* Loop over configurations
>>>>>>>>>>>>>>>>>>> Do While <<<<<<<<<<<<<<<<<<<<
&MkNemo&End
* Molecules definitions
Mole : MoleculeName
AtomLabel x y z
......... .. .. ..
AtomLabel x y z
End
....................
Mole : MoleculeName
AtomLabel x y z
......... .. .. ..
AtomLabel x y z
End
*
Clus : ClusterName ClusterTransformation
MoleculeName MoleculeTransformation
............ ......................
MoleculeName
MoleculeName
End
Clus : ClusterName ClusterTransformation
MoleculeName MoleculeTransformation
............
MoleculeName
End
Disp
ClusterName NumberOfSteps [x y z alpha]
ClusterName NumberOfSteps [x y z]
........... ............. .............
ClusterName NumberOfSteps [x y z alpha]
End
End Of Input
*************** SUPER-SYSTEM CALCULATION *********************
* Calculation of integrals
&Seward
coord=$Project.MkNemo.Axyz
coord=$Project.MkNemo.Bxyz
basis=........
................................
* Energy calculation on the first level of the theory
&Scf
...............................
* Save energy
&MkNemo
GetE=S1
* Energy calculation on the second level of the theory
&MBPT2
...............................
* Save energy
&MkNemo
GetE=S2
*************** A-SUBSYSTEM CALCULATION *********************
* Calculation of integrals
&Seward
coord=$Project.MkNemo.Axyz
coord=$Project.MkNemo.Bxyz
* the B-subsytem has charge equal to zero
BSSE=2
basis=........
................................
* Energy calculation on the first level of the theory
&Scf
...............................
* Save energy
&MkNemo&End
GetE=A1
* Energy calculation on the second level of the theory
&MBPT2
...............................
* Save energy
&MkNemo
GetE=A2
*************** B-SUBSYSTEM CALCULATION *********************
* Calculation of integrals
&Seward
coord=$Project.MkNemo.Axyz
coord=$Project.MkNemo.Bxyz
* the A-subsytem has charge equal to zero
BSSE=1
basis=........
................................
* Energy calculation on the first level of the theory
&Scf
...............................
* Save energy
&MkNemo
GetE=B1
* Energy calculation on the second level of the theory
&MBPT2
...............................
* Save energy and take next configuration
&MkNemo
GetE=B2; Next
>>>>>>>>>>>>>>>>>>> EndDo <<<<<<<<<<<<<<<<<<<<
Example: ::
*
* Loop over all configurations
*
>>>>>>>>>>>>>>>>>>> Do While <<<<<<<<<<<<<<<<<<<<
*
* H2O and H2O clusters
*
&MkNemo&End
* Molecules definitions
Mole : H2O
H 1.43 0.0 1.07
H -1.43 0.0 1.07
O 0.00 0.0 0.00
End
* Clusters definitions
Clus : H2O
H2O : [0.0 1.0 0.0 180.0]
End
Clus : h2o [ 0.0 0.0 2.0]
H2O
End
Disp
h2o : 10 [0.0 0.0, 5.0 ]
h2o : 10 [0.0, 0.0, 20.0 ]
h2o : 18 [0.0 0.0 1.0 180.0]
End
End Of Input
*************** SUPER-SYSTEM CALCULATION *********************
* Calculation of integrals
&Seward
NEMO
Title=Sypersystem
Douglas-Kroll
ANGM= 0.0 0.0 0.0; AMFI
COORD=$Project.MkNemo.Axyz;Coord=$Project.MkNemo.Bxyz
basis=H.ano-rcc...2s1p.,O.ano-rcc.Roos..4s3p2d1f.
* Energy calculation on the first level of the theory
&Scf
Title=Supersystem; Occupied=10; Iterations=30; Disk=1 0
* Save energy
&MkNemo
GetE=S1
* Energy calculation on the second level of the theory
&MBPT2
Title=Sypersystem; Threshold=1.0d-14 1.0d-14 1.0d-14
* Save energy
&MkNemo
GetE=S2
*************** A-SUBSYSTEM CALCULATION *********************
* Calculation of integrals
&Seward
NEMO
Title=A-system
Douglas-Kroll
ANGM= 0.0 0.0 0.0; AMFI
COORD=$Project.MkNemo.Axyz;Coord=$Project.MkNemo.Bxyz
basis=H.ano-rcc...2s1p.,O.ano-rcc.Roos..4s3p2d1f.
BSSE=2
* Energy calculation on the first level of the theory
&Scf
Title=A-subsystem; Occupied=5; Iterations=30; Disk=1 0
* Save energy
&MkNemo
GetE=A1
* Energy calculation on the second level of the theory
&MBPT2
Title=A-subsystem; Threshold=1.0d-14 1.0d-14 1.0d-14
* Save energy
&MkNemo
GetE=A2
*************** B-SUBSYSTEM CALCULATION *********************
* Calculation of integrals
&Seward
NEMO
Title=A-system
Douglas-Kroll
ANGM= 0.0 0.0 0.0; AMFI
COORD=$Project.MkNemo.Axyz;Coord=$Project.MkNemo.Bxyz
basis=H.ano-rcc...2s1p.,O.ano-rcc.Roos..4s3p2d1f.
BSSE=1
* Energy calculation on the first level of the theory
&Scf
Title=B-subsystem; Occupied=5; Iterations=30; Disk=1 0
* Save energy
&MkNemo
GetE=B1
* Energy calculation on the second level of the theory
&MBPT2
Title=B-subsytem; Threshold= 1.0d-14 1.0d-14 1.0d-14
* Save energy and take next configuration
&MkNemo
GetE=B2; Next
>>>>>>>>>>>>>>>>>>> EndDo <<<<<<<<<<<<<<<<<<<<
In this example we calculate potential energy curve for interaction between two water clusters. The A-cluster, H2O, was rotated around Y-axis about 180 degrees. The B-subsystem, h2o,has been translated along Z-axis by 2 a.u.. In the **Disp** block we have defined 20 translation operations for h2o cluster and 18 rotation operations for H2O cluster. For energy calculations of super-system, A-subsystem, and B-subsystem, at first level of theory we used SCF module, and MBPT2 at second level of theory, respectively. After a calculation of energy we save calculated results using keyword **GetE** with proper argument in the MKNEMO.Conf file of :program:`MkNemo` module. Finally, by calling block **Next** of :program:`MkNemo`, we save all informations about potential for given configuration and we generate new configuration. This procedure will be repeated for all translations and rotations defined in the Displacement block.
Input files
...........
Apart from the standard input unit :program:`MkNemo` will use the following input files.
.. class:: filelist
:file:`MKNEMO.Input`
A :program:`MkNemo`'s input file contains the latest preprocessed input.
:file:`MKNEMO.Restart`
The MKNEMO.Restart is a restart file, which will be generated by :program:`MkNemo` at the first run if the file does not exist. Any call of **group of command: Mole, Clus, and Disp** will be updated and the restart file is saved in user's $CurrDir. If :program:`MkNemo` calculation crashes, one can fix a reason of crash, copy restart and MKNEMO.Nemo files to $WorkDir, and run the calculation again. The :program:`MkNemo` will restart calculation from the last point which has been finished successfully. If the MKNEMO.Nemo file will not be copied the :program:`MkNemo` will generate a new one and will overwrite the file in your $CurrDirr if any exist. Beware of it.
.. compound::
The restart file is formated: ::
<Restart> RowInDisp Step'sNum LoopControl</Restart>
where the RowInDisp is the index of currently used row in the **Disp** block and the Step'sNum is the current number of step for a given displacement's row. Ex. If a displacement row, RowInDisp, is 3, which corresponds to a displacement row, H2O 4 [0,4,0], and Step'sNum is equal to 2 then it means that current displacement vector is [0,2,0]. The LoopControl parameter is a return code. The command **Next** will read this value and use it to continue looping or breaking a loop.
:file:`MKNEMO.Conf`
.. compound::
The MKNEMO.Conf is a file which stores block **Mole**, **Clus**, and **Energies** in similar format like it is define in the input of the:program:`MkNemo`, but within XML format. The propose of this file is to share definition of molecules, clusters, and energies between different blocks of namelist, :kword:`&MkNemo`. A format of this file is: ::
* Configuration definition - contains informations
* about configuration
<Configuration>
* Definition of molecule
<Molecule Name=''Name of molecule''>
labelOfAtom x y z
........... .. .. ..
labelOfAtom x y z
</Molecule>
....................................
<Molecule Name=''Name of molecule''>
labelOfAtom x y z
........... .. .. ..
labelOfAtom x y z
</Molecule>
* Definition of cluster
<Cluster Name=''Name of cluster A'' Transformation=''x y z q0 q1 q2 q3''>
labelOfMolecule x' y' z' q0' q1' q2' a3'
............... .. .. .. .. .. .. ..
labelOfMolecule x' y' z' q0' q1' q2' a3'
</Cluster>
<Cluster Name=''Name of cluster B'' Transformation=''x y z q0 q1 q2 q3''>
labelOfMolecule x' y' z' q0' q1' q2' a3'
............... .. .. .. .. .. .. ..
labelOfMolecule x' y' z' q0' q1' q2' a3'
</Cluster>
* Enerigies definition
<Energies>
EnegyLabel MethodLabel Energy
.......... ........... ......
EnegyLabel MethodLabel Energy
</Energies>
</Configuration>
where the EnergyLabel is one of labels defined in the {\bf GetE} block, the MethodLabel is a name of method which has been used to calculate energy, and Energy is a vector of eigenvalues. The **Next** command will save energy information into a MKNEMO.Nemo file, and will clear this file. Hacking hint: If you want to use :program:`Rassi` then do not use call of command **GetE** but postprocess output and print eigenvalues to the MKNEMO.Conf file in the right format (use ! in user input to execute shell command for postprocessing of output)
Files of the :program:`SEWARD`, :program:`SCF`, :program:`RASSCF`, :program:`MBPT2`, :program:`MOTRA`, :program:`CCSDT`, and :program:`CASPT2` modules are needed to get total energy on each level of theory for subsystems and super-system.
Output files
............
In addition to the standard output unit :program:`MkNemo` will generate the following files.
.. class:: filelist
:file:`MKNEMO.Axyz`, :file:`MKNEMO.Bxyz`
.. compound::
The MKNEMO.*xyz file is a file of coordinates in format: ::
NumberOfAtoms
AdditionalLine
AtomLabel x y z
......... .. .. ..
AtomLabel x y z
where the NumberOfAtoms is a number of atoms in the file, the AdditionalLine is a line where one can provide unit of coordinate (currently :program:`MkNemo` supports only a.u.), the AtomLabel is a label of atom, and x, y, z is a vector of coordinates.
:file:`RUNFILE`
A file with informations needed by the block of |molcas|.
:file:`MKNEMO.Nemo`
.. compound::
On this file :program:`MkNemo` will store all information about intermolecular potential in the NEMO file format. This format is used by :program:`NEMO` to fit intermolecular potential to the NEMO model. The format of this file is defined as follows: ::
<Nemo>
* Definition of configuration
<Configuration>
.............................
</Configuration>
.............................
<Configuration>
.............................
</Configuration>
</Nemo>
where configuration block is defined like in the MKNEMO.Conf.
.. _UG\:sec\:mknemo_dependencies:
Dependencies
------------
The :program:`MkNemo` depends on the modules of |molcas| program, which calculate the total energy of the system.
|