File: mknemo.rst

package info (click to toggle)
openmolcas 25.02-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 170,204 kB
  • sloc: f90: 498,088; fortran: 139,779; python: 13,587; ansic: 5,745; sh: 745; javascript: 660; pascal: 460; perl: 325; makefile: 17
file content (684 lines) | stat: -rw-r--r-- 27,707 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
.. index::
   single: Program; MkNemo
   single: MkNemo

.. _UG\:sec\:mknemo:

:program:`mknemo` |extramark|
=============================

.. warning::

   This program is not available in |openmolcas|

.. only:: html

  .. contents::
     :local:
     :backlinks: none

.. xmldoc:: %%Description:
            This module generates intermolecular potential between two subsystems
            and saves all information in the NEMO file format.

The :program:`MkNemo` module generates intermolecular potential between two subsystems and saves all informations in the NEMO file format.

.. _UG\:sec\:mknemo_description:

Description
-----------

According to the NEMO model of interaction between two subsystems, the :program:`MkNemo` module splits super-system into two clusters: :math:`A` and :math:`B`. The subsystems :math:`A` and :math:`B` are defined in the main coordinate system, :math:`R`. Calculations of the interaction potential between two subsystems are performed for different configurations. At the first step one has to transform both subsystems to the first configuration. An identical transformation to the first configuration is only allowed for one of the subsystems if any coordinates of atoms in the A-subsystem are the same as any atom's coordinates of the B-subsystem. Generally, we define :math:`T_A` and :math:`T_B` as transformation operations of the first and second subsystem to the first configuration :math:`(R_A,R_B)` from the main coordinate system (:math:`R`):

.. math:: T_A: R \rightarrow R_A, \\
          T_B: R \rightarrow R_B.

.. VV 120918: this picture is missing. So, the call has been commented out.

   .. figure:: mknemo.*
      :scale: 60%
      :align: center

      The transformations of the subsystems from the main coordinate system, :math:`R`, to the first configuration (:math:`R_A,R_B`).

Any other configuration can be obtained by transformation, i.e., translation or rotation of one of the subsystems. For any configuration, one has to calculate the total energy of super-system, A-subsystem with the virtual orbitals of the B-subsystem, and the B-subsystem with virtual orbitals of the A-subsystem at first (unperturbed theory) and second (perturbation) level of theory.

The :program:`MkNemo` is written in such way that at first step user has to:

#. Define different molecules in global coordinate system, :math:`R` and the molecules can overlay.
#. Define the clusters, :math:`A` and :math:`B`, using translation and rotation operations applied for the molecules and for the clusters themselves.
#. Define all possible displacements of any cluster to obtain new configuration.

In the second step user has to provide any input of |molcas| module which is able to calculate the total energy of the super-system, A-subsystem, and B-subsystem on the first and second level of theory for a given configuration. After any calculation of total energy, one has to call proper block of :program:`MkNemo` module, GetE, to save energy in the MKNEMO.Conf file. Finally, in the third step, user has to generate new configuration, according to displacement transformations. All three steps are placed in the do-while loop.

.. _UG\:sec\:mknemo_files:

Files
-----

Standard input
..............

The :program:`MkNemo` obeys all rules for format of |molcas|'s input except order of :program:`MkNemo`'s blocks in an input. The input is always preceded by the dummy namelist reference
:kword:`&MkNemo &End` and ended by :kword:`End Of Input`.

Example: ::

  &MkNemo &End
    .................
  End of input

.. compound::

  The :program:`MkNemo` defines *transformation* as translation, :math:`T`, or rotation, :math:`R`, operation in a format: ::

    [ x y z angle]

  where the ``[x y z]`` is a 3D-vector of translation, or the ``[x,y  z]`` is a 3D-vector of rotation if the ``angle`` parameter is presented, and the ``angle`` is an optional parameter which is an angle of rotation around this vector in degrees. Generally, translation and rotation operation do not commute, since that the :program:`MkNemo` first applys transformation from left to right, i.e.: product :math:`T R` means that the :program:`MkNemo` will apply first rotation and then translation.

The input of :program:`MkNemo` module has been split into four groups of keywords:

* **Mole**\cules, **Clus**\ters, and **Disp**\lacement,
* **GetE**\energy,
* **Next**,
* **Test**.

All keywords can be provided in a full name but only first 4 characters (bold characters) are recognize by :program:`MkNemo`.

.. class:: keywordlist

:kword:`MOLE`, :kword:`CLUS`, and :kword:`DISP`
  The keywords must be provided in right order in the input file. And the blocks of keywords, MOLE, CLUS, and DISP, cannot be split between separated :program:`MkNemo` inputs.

  .. compound::

    The definition of a **Mole**\cule has format: ::

      Mole : MoleculeName
        AtomLabel  x  y  z
        .........  .. .. ..
        AtomLabel  x  y  z
      End

    where the **Mole** is keyword which marks beginning of a molecule's block, the MoleculeName is an unique name of molecule, the AtomLabel is the label of atom, and x, y, and z are coordinates of atoms. The name of the molecule is case sensitive, but atom's label is not.

  .. xmldoc:: %%Keyword: MOLE <basic>
              The Mole block specifies a molecule, in the format:

                Mole : MoleculeName
                  AtomLabel  x  y  z
                  .........  .. .. ..
                  AtomLabel  x  y  z
                End

              where the Mole is keyword which marks begining of a molecule's block,
              the MoleculeName is an unique name of molecule, the AtomLabel is the label
              of atom, and x, y, and z are coordinates of atoms. The name of the molecule
              is case sensitive, but atom's label is not.

  .. compound::

    In the **Clus**\ter's block, user defines a cluster in format: ::

      Clus : ClusterName  ClusterTransformation
        MoleculeName  MoleculeTransformation
        ............  ......................
        MoleculeName
      End

    where the **Clus** keyword marks beginning of cluster's block, the ClusterName[MoleculeName] is an unique name of cluster[molecule], and the ClusterTransformation[MoleculeTransformation] is an optional argument which defines a transformation of the cluster[molecule]. The cluster and molecule names are case sensitive. The MoleculeName must be defined in a **Mole** block.

  .. xmldoc:: %%Keyword: CLUS <basic>
              In the Clus block, user defines a cluster in format:

                Clus : ClusterName : ClusterTransformation
                  MoleculeName : MoleculeTransformation
                  ............
                  MoleculeName
                End

              where the Clus keyword marks beginning of cluster's block,
              the ClusterName[MoleculeName] is an unique name of cluster[molecule],
              and the ClusterTransformation[MoleculeTransformation] is an optional
              argument which definies a transformation of the cluster[molecule].
              The cluster and molecule names are case sensitive. The MoleculeName
              must be defined in a Mole block.

  .. compound::

    The **Disp** block contains information about transformations of one of the clusters in the format: ::

      Disp
        ClusterName  NumberOfSteps Transformation
        ...........  ............. ......... .....
        ClusterName  NumberOfSteps Transformation
      End

    where the ClusterName is a name of one of the clusters which has been defined in **Clus** block, the NumberOfSteps is a number of steps in which transformation will be reached, the Transformation is a translation or rotation. Any kind of transformations must be provided line by line in the **Disp**\lacement block and number of transformations is not limited. It means that any row of the DISPlacement block contains information about different transformations. Any new configuration is simply generated from the previous configuration. In this point we can construct final transformation, from the starting configuration to current configuration, as a product of all previous transformations for given subsystem. The :program:`MkNemo` will store final transformation in order :math:`TR`.

  .. xmldoc:: %%Keyword: DISP <basic>
              The Disp block contains information about transformations
              of one of the clusters in the format:

                Disp
                  ClusterName : NumberOfSteps Transformation
                  ........... : ............. ......... .....
                  ClusterName : NumberOfSteps Transformation
                End

              where the ClusterName is a name one of the clusters which has been
              defined in Clus block, the NumberOfSteps is a number of steps in which
              transformation will be reached, and the Transformation is a translation
              or rotation operation.

  Any atomic coordinates and vectors of transformations must be provided in a.u. units. The coordinates of transformation vector can be separated by space or a comma. Moreover, the **Mole**\cule blocks must be provided first, then the **Clus**\ter blocks must appear, and finally **Disp**\lacement block. In a mixed order, the :program:`MkNemo` will not be able to recognize a label of molecule[cluster] defined below a block which is using it.

  An execution of :program:`MkNemo` module within defined **Mole**, **Clus**, and **Disp** blocks in an input will generate a two coordinate files, named MKNEMO.Axyz and MNEMO.Bxyz. Those files contain coordinates of atoms for clusters :math:`B` and :math:`A` respectively, and can be used directly in the :program:`SEWARD` and :program:`GATEWAY` (see documentation of :program:`GATEWAY` for COORD keyword).

  By default, the :program:`Seward` or :program:`Gateway` will apply symmetry, so **user must be aware that the displacement transformation can break symmetry of the system and the** :program:`MkNemo` **does not control it**. If you do not want use symmetry see documentation of :program:`Seward` or :program:`Gateway` for details.

  Example: ::

    &MkNemo&End

      * Molecules definitions

      Mole : H2o
       H   1.43  0.0  1.07
       H  -1.43  0.0  1.07
       O   0.00  0.0  0.00
      End

      Mole : Cm3+
       Cm  0.0 0.0 0.0
      End

      * Clusters definitions

      Clus : Cm3+H2o
       H2o  [0.0 0.0 -1.0] [0.0 1.0 0.0 180.0]
       Cm3+
      End

      Clus : H2O [0.0 0.0 2.0]
       H2o  [0.0 0.0 1.0]
      End

      Disp
        Cm3+H2o   : 3 [0.0,0.0,3.0]
        Cm3+H2o   : 1 [0.0,3.0 0.0]
        H2O       : 2 [0.0 0.0,1.0 90.0]
      End

    End Of Input

  In this example, we define two molecules, H2o and Cm3+. Then we define a Cm3+H2o cluster which has been build from H2o and Cm3+ molecule. The H2o molecule has been rotated around Y-axis by the 180 degree and translated along Z-axis by 2 a.u. The Cm3+ molecule stays unchanged. The second cluster, named H2O has been constructed from translated H2o molecule. The H2o molecule has been translated along Z-axis by 1 a.u. Then the H2O cluster has been translated along Z-direction by 2 a.u. In the **Disp** block Cm3+H2o subsystem is translated by vector [0,0,3] in the three steps. Then, in the second row we define translation of H2O cluster by vector [0,3,0] in one step. Finally we rotate H2O cluster by 90 degree around [0,0,1] vector in the two steps. The total number of different configurations is simply a sum of steps: 9=3+1+2+first configuration.

:kword:`GETE`
  The **GetE**\nergy block is used to read total energy stored at RUNFILE, and to save it into the MKNEMO.Conf file. The argument of GetEnergy block must be present and it must be a label from the list below. Use

  .. container:: list

    **S1** to save the energy of super-system at the first level of theory,

    **S2** to save the energy of super-system at the second level of theory,

    **A1** to save the energy of the A-subsystem with virtual orbitals of B-subsystem at the first level of theory,

    **A2** to save the energy of the A-subsystem with virtual orbitals of B-subsystem at the second level of theory,

    **B1** to save the energy of the B-subsystem with virtual orbitals of A-subsystem at the first level of theory,

    **B2** to save the energy of the B-subsystem with virtual orbitals of A-subsystem at the second level of theory.

  Please note, that :program:`MkNemo` does not have any possibility to check what kind of total energy was computed in the previous step by any |molcas| module. The user has to pay attention on what kind of energy was computed in the previous step.

  Example: ::

    &MkNemo&End
      GetE
        A1
    End Of Input

  In this case the total energy which has been computed by a |molcas| module will be saved as energy of the A-subsystem with virtual orbitals of B-subsystem at the first level of theory.

  .. xmldoc:: %%Keyword: GETE <basic>
              The GETEnergy block is used to read total energy stored at RUNFILE,
              and to save it into the MKNEMO.Conf file. The format of this block is

                &MkNemo&End
                 GetE
                   Arg
                End Of Input

              where the Arg must be any label from the list below. Use

              S1 -- to save the energy of super-system at the first level of theory,
              S2 -- to save the energy of super-system at the second level of theory,
              A1 -- to save the energy of the A-subsystem with virtual orbitals of
                    the B-subsystem at the first level of theory,
              A2 -- to save the energy of the A-subsystem with virtual orbitals of
                    the B-subsystem at the second level of theory,
              B1 -- to save the energy of the B-subsystem with virtual orbitals of
                    the A-subsystem at the first level of theory,
              B2 -- to save the energy of the B-subsystem with virtual orbitals of
                    the A-subsystem at the second level of theory.

              Please note, that MKNEMO does not have any possibility to check what
              kind of total energy was computed in the previous step by called
              MOLCAS module.

:kword:`NEXT`
  The **Next** block is used to save all information about potential curve from previous step into the MKNEMO.Nemo file (the command Next will move data from MKNEMO.Conf file into MKNEMO. Nemo file and will delete MKNEMO.Conf file) and to continue or break an EMIL's loop. **This block cannot be used before Mole, Clus, and Disp blocks.**

  Example: ::

    &MkNemo&End
      Next
    End Of Input

  .. xmldoc:: %%Keyword: NEXT <basic>
              The NEXT block is used to generate new configuration according to displacements
              provided in the DISPlacement block and to save all information about potential
              curve from previous step into the MKNEMO.Nemo file. This block cannot be used
              before Mole, Clus, and Disp blocks.
              Format:

                &MkNemo&End
                  Next
                End Of Input

:kword:`TEST`
  The **TEST** block CAN BE ONLY USED to save verification data for |molcas| command *verify*.

  Example: ::

    &MkNemo&End
      Test
    End Of Input

  .. xmldoc:: %%Keyword: TEST <basic>
              The TEST block CAN BE ONLY USED to save verification data for MOLCAS command verify.
              Format:

                &MkNemo&End
                  Test
                End Of Input

Finally the structure of a standard input file for :program:`MkNemo` module has the following form: ::

  * Loop over configurations

  >>>>>>>>>>>>>>>>>>> Do While <<<<<<<<<<<<<<<<<<<<

    &MkNemo&End

      * Molecules definitions

      Mole : MoleculeName
        AtomLabel  x  y  z
        .........  .. .. ..
        AtomLabel  x  y  z
      End

      ....................

      Mole : MoleculeName
        AtomLabel  x  y  z
        .........  .. .. ..
        AtomLabel  x  y  z
      End

      *
      Clus : ClusterName  ClusterTransformation
        MoleculeName  MoleculeTransformation
        ............  ......................
        MoleculeName
        MoleculeName
      End

      Clus : ClusterName  ClusterTransformation
        MoleculeName  MoleculeTransformation
        ............
        MoleculeName
      End

      Disp
        ClusterName  NumberOfSteps [x y z alpha]
        ClusterName  NumberOfSteps [x y z]
        ...........  ............. .............
        ClusterName  NumberOfSteps [x y z alpha]
      End

    End Of Input

    *************** SUPER-SYSTEM CALCULATION *********************

    * Calculation of integrals
    &Seward
      coord=$Project.MkNemo.Axyz
      coord=$Project.MkNemo.Bxyz
      basis=........
       ................................

    * Energy calculation on the first level of the theory
    &Scf
       ...............................

    * Save energy
    &MkNemo
      GetE=S1

    * Energy calculation on the second level of the theory
    &MBPT2
       ...............................

    * Save energy
    &MkNemo
      GetE=S2

    *************** A-SUBSYSTEM CALCULATION *********************

    * Calculation of integrals
    &Seward
      coord=$Project.MkNemo.Axyz
      coord=$Project.MkNemo.Bxyz
      * the B-subsytem has charge equal to zero
      BSSE=2
      basis=........
       ................................

    * Energy calculation on the first level of the theory
    &Scf
       ...............................

    * Save energy
    &MkNemo&End
      GetE=A1

    * Energy calculation on the second level of the theory
    &MBPT2
       ...............................

    * Save energy
    &MkNemo
      GetE=A2

    *************** B-SUBSYSTEM CALCULATION *********************

    * Calculation of integrals
    &Seward
      coord=$Project.MkNemo.Axyz
      coord=$Project.MkNemo.Bxyz
      * the A-subsytem has charge equal to zero
      BSSE=1
      basis=........
       ................................

    * Energy calculation on the first level of the theory
    &Scf
       ...............................

    * Save energy
    &MkNemo
      GetE=B1

    * Energy calculation on the second level of the theory
    &MBPT2
       ...............................

    * Save energy and take next configuration
    &MkNemo
      GetE=B2; Next

  >>>>>>>>>>>>>>>>>>> EndDo <<<<<<<<<<<<<<<<<<<<

Example: ::

  *
  * Loop over all configurations
  *
  >>>>>>>>>>>>>>>>>>> Do While <<<<<<<<<<<<<<<<<<<<

    *
    * H2O and H2O clusters
    *
    &MkNemo&End

      * Molecules definitions

      Mole : H2O
       H   1.43  0.0  1.07
       H  -1.43  0.0  1.07
       O   0.00  0.0  0.00
      End

      * Clusters definitions

      Clus : H2O
       H2O : [0.0 1.0 0.0 180.0]
      End

      Clus : h2o [ 0.0 0.0 2.0]
       H2O
      End

      Disp
        h2o : 10 [0.0  0.0, 5.0       ]
        h2o : 10 [0.0, 0.0, 20.0      ]
        h2o : 18 [0.0  0.0  1.0  180.0]
      End

    End Of Input

    *************** SUPER-SYSTEM CALCULATION *********************

    * Calculation of integrals

    &Seward
      NEMO
      Title=Sypersystem
      Douglas-Kroll
      ANGM= 0.0 0.0 0.0; AMFI
      COORD=$Project.MkNemo.Axyz;Coord=$Project.MkNemo.Bxyz
      basis=H.ano-rcc...2s1p.,O.ano-rcc.Roos..4s3p2d1f.

    * Energy calculation on the first level of the theory
    &Scf
      Title=Supersystem; Occupied=10; Iterations=30; Disk=1 0

    * Save energy
    &MkNemo
      GetE=S1

    * Energy calculation on the second level of the theory
    &MBPT2
      Title=Sypersystem; Threshold=1.0d-14 1.0d-14 1.0d-14

    * Save energy
    &MkNemo
      GetE=S2

    *************** A-SUBSYSTEM CALCULATION *********************

    * Calculation of integrals

    &Seward
      NEMO
      Title=A-system
      Douglas-Kroll
      ANGM= 0.0 0.0 0.0; AMFI
      COORD=$Project.MkNemo.Axyz;Coord=$Project.MkNemo.Bxyz
      basis=H.ano-rcc...2s1p.,O.ano-rcc.Roos..4s3p2d1f.
      BSSE=2

    * Energy calculation on the first level of the theory
    &Scf
      Title=A-subsystem; Occupied=5; Iterations=30; Disk=1 0

    * Save energy
    &MkNemo
      GetE=A1

    * Energy calculation on the second level of the theory
    &MBPT2
      Title=A-subsystem; Threshold=1.0d-14 1.0d-14 1.0d-14

    * Save energy
    &MkNemo
      GetE=A2

    *************** B-SUBSYSTEM CALCULATION *********************

    * Calculation of integrals

    &Seward
      NEMO
      Title=A-system
      Douglas-Kroll
      ANGM= 0.0 0.0 0.0; AMFI
      COORD=$Project.MkNemo.Axyz;Coord=$Project.MkNemo.Bxyz
      basis=H.ano-rcc...2s1p.,O.ano-rcc.Roos..4s3p2d1f.
      BSSE=1

    * Energy calculation on the first level of the theory

     &Scf
       Title=B-subsystem; Occupied=5; Iterations=30; Disk=1 0

     * Save energy
     &MkNemo
       GetE=B1

    * Energy calculation on the second level of the theory
     &MBPT2
       Title=B-subsytem; Threshold= 1.0d-14 1.0d-14 1.0d-14

    * Save energy and take next configuration
     &MkNemo
      GetE=B2; Next

  >>>>>>>>>>>>>>>>>>> EndDo <<<<<<<<<<<<<<<<<<<<

In this example we calculate potential energy curve for interaction between two water clusters. The A-cluster, H2O, was rotated around Y-axis about 180 degrees. The B-subsystem, h2o,has been translated along Z-axis by 2 a.u.. In the **Disp** block we have defined 20 translation operations for h2o cluster and 18 rotation operations for H2O cluster. For energy calculations of super-system, A-subsystem, and B-subsystem, at first level of theory we used SCF module, and MBPT2 at second level of theory, respectively. After a calculation of energy we save calculated results using keyword **GetE** with proper argument in the MKNEMO.Conf file of :program:`MkNemo` module. Finally, by calling block **Next** of :program:`MkNemo`, we save all informations about potential for given configuration and we generate new configuration. This procedure will be repeated for all translations and rotations defined in the Displacement block.

Input files
...........

Apart from the standard input unit :program:`MkNemo` will use the following input files.

.. class:: filelist

:file:`MKNEMO.Input`
  A :program:`MkNemo`'s input file contains the latest preprocessed input.

:file:`MKNEMO.Restart`
  The MKNEMO.Restart is a restart file, which will be generated by :program:`MkNemo` at the first run if the file does not exist. Any call of **group of command: Mole, Clus, and Disp** will be updated and the restart file is saved in user's $CurrDir. If :program:`MkNemo` calculation crashes, one can fix a reason of crash, copy restart and MKNEMO.Nemo files to $WorkDir, and run the calculation again. The :program:`MkNemo` will restart calculation from the last point which has been finished successfully. If the MKNEMO.Nemo file will not be copied the :program:`MkNemo` will generate a new one and will overwrite the file in your $CurrDirr if any exist. Beware of it.

  .. compound::

    The restart file is formated: ::

      <Restart>   RowInDisp   Step'sNum LoopControl</Restart>

    where the RowInDisp is the index of currently used row in the **Disp** block and the Step'sNum is the current number of step for a given displacement's row. Ex. If a displacement row, RowInDisp, is 3, which corresponds to a displacement row, H2O 4 [0,4,0], and Step'sNum is equal to 2 then it means that current displacement vector is [0,2,0]. The LoopControl parameter is a return code. The command **Next** will read this value and use it to continue looping or breaking a loop.

:file:`MKNEMO.Conf`
  .. compound::

    The MKNEMO.Conf is a file which stores block **Mole**, **Clus**, and **Energies** in similar format like it is define in the input of the:program:`MkNemo`, but within XML format. The propose of this file is to share definition of molecules, clusters, and energies between different blocks of namelist, :kword:`&MkNemo`. A format of this file is: ::

      * Configuration definition - contains informations
      * about configuration
      <Configuration>

        * Definition of molecule
        <Molecule Name=''Name of molecule''>
          labelOfAtom x  y  z
          ........... .. .. ..
          labelOfAtom x  y  z
        </Molecule>

        ....................................

        <Molecule Name=''Name of molecule''>
          labelOfAtom x  y  z
          ........... .. .. ..
          labelOfAtom x  y  z
        </Molecule>

        * Definition of cluster
        <Cluster Name=''Name of cluster A'' Transformation=''x y z q0 q1 q2 q3''>
          labelOfMolecule x' y' z'  q0' q1' q2' a3'
          ............... .. .. ..  ..  ..  ..  ..
          labelOfMolecule x' y' z'  q0' q1' q2' a3'
        </Cluster>

        <Cluster Name=''Name of cluster B'' Transformation=''x y z q0 q1 q2 q3''>
          labelOfMolecule x' y' z'  q0' q1' q2' a3'
          ............... .. .. ..  ..  ..  ..  ..
          labelOfMolecule x' y' z'  q0' q1' q2' a3'
        </Cluster>

        * Enerigies definition
        <Energies>
          EnegyLabel MethodLabel Energy
          .......... ........... ......
          EnegyLabel MethodLabel Energy
        </Energies>
      </Configuration>

    where the EnergyLabel is one of labels defined in the {\bf GetE} block, the MethodLabel is a name of method which has been used to calculate energy, and Energy is a vector of eigenvalues. The **Next** command will save energy information into a MKNEMO.Nemo file, and will clear this file. Hacking hint: If you want to use :program:`Rassi` then do not use call of command **GetE** but postprocess output and print eigenvalues to the MKNEMO.Conf file in the right format (use ! in user input to execute shell command for postprocessing of output)

Files of the :program:`SEWARD`, :program:`SCF`, :program:`RASSCF`, :program:`MBPT2`, :program:`MOTRA`, :program:`CCSDT`, and :program:`CASPT2` modules are needed to get total energy on each level of theory for subsystems and super-system.

Output files
............

In addition to the standard output unit :program:`MkNemo` will generate the following files.

.. class:: filelist

:file:`MKNEMO.Axyz`, :file:`MKNEMO.Bxyz`
  .. compound::

    The MKNEMO.*xyz file is a file of coordinates in format: ::

      NumberOfAtoms
      AdditionalLine
      AtomLabel x  y  z
      ......... .. .. ..
      AtomLabel x  y  z

    where the NumberOfAtoms is a number of atoms in the file, the AdditionalLine is a line where one can provide unit of coordinate (currently :program:`MkNemo` supports only a.u.), the AtomLabel is a label of atom, and x, y, z is a vector of coordinates.

:file:`RUNFILE`
  A file with informations needed by the block of |molcas|.

:file:`MKNEMO.Nemo`
  .. compound::

    On this file :program:`MkNemo` will store all information about intermolecular potential in the NEMO file format. This format is used by :program:`NEMO` to fit intermolecular potential to the NEMO model. The format of this file is defined as follows: ::

      <Nemo>
        * Definition of configuration
        <Configuration>
          .............................
        </Configuration>

        .............................

        <Configuration>
          .............................
        </Configuration>

      </Nemo>

    where configuration block is defined like in the MKNEMO.Conf.

.. _UG\:sec\:mknemo_dependencies:

Dependencies
------------

The :program:`MkNemo` depends on the modules of |molcas| program, which calculate the total energy of the system.